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Abstract: The development of hybrid models focused on gene expression data processing for the
allocation of differentially expressed and mutually correlated genes is one of the current directions
in modern bioinformatics. The solution to this problem can allow us to improve the effectiveness
of existing systems for complex diseases diagnosis based on gene expression data analysis on the
one hand and increase the efficiency of gene regulatory network reconstruction procedures by more
careful selection of genes by considering the type of disease on the other hand. In this research, we
propose a stepwise procedure to form the subsets of mutually correlated and differentially expressed
gene expression profiles (GEP). Firstly, we allocate an informative GEP in terms of statistical and
entropy criteria using the Harrington desirability function. Then, we performed cluster analysis using
SOTA and spectral clustering algorithms implemented within the framework of objective clustering
inductive technology. The result of this step’s implementation is a set of clusters containing co- and
differentially expressed GEPs. Validation of the model was performed using a one-dimensional
two-layer convolutional neural network (CNN). The analysis of the simulation results has shown the
high efficiency of the proposed model. The clusters of GEPs formed based on the clustering quality
criteria values allowed us to identify the investigated objects with high accuracy. Moreover, the
simulation results have also shown that the hybrid inductive model based on the spectral clustering
algorithm is more effective in comparison with the use of the SOTA clustering algorithm in terms
of both the complexity of the formed optimal cluster structure and the classification accuracy of the
objects that contain the allocated gene expression data as attributes. The proposed hybrid inductive
model contributes to increasing objectivity during the formation of the subsets of differentially
and co-expressed gene expression profiles for further their application in various disease diagnosis
systems and for gene regulatory network reconstruction.

Keywords: gene expression profiles; SOTA clustering algorithm; spectral clustering algorithm;
convolutional neural network; inductive clustering technique; Harrington desirability function

1. Introduction

The application of both data mining and machine learning techniques to develop hy-
brid models for the purpose of allocation of differentially and co-expressed gene expression
profiles (GEP) is one of the current directions in modern bioinformatics. The solution to this
problem can allow us to form subsets of informative GEPs which can be used at the next
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step for both the creation of various disease diagnostic systems such as cancer, Parkinson’s,
Alzheimer’s, etc., and to more effectively reconstruct gene regulatory networks (GRNs)
based on the allocated groups of genes. The following analysis of these GRNs during
the implementation of the simulation procedure can contribute to a better understanding
of the particularities of the molecular component’s interconnection and the influence of
these interconnections on the state of target genes by considering the state of the respective
disease. In this case, the genes are differentially expressed, the expression values of which
significantly differ between patients with various states of disease (for example, healthy
and ill). Moreover, the values of gene expressions for all samples should be larger than the
appropriate threshold value that can be established empirically based on the joint use of
various types of criteria. The allocated gene expression profiles should be also mutually
correlated (co-expressed). This means that the gene expression values should be varying
consistently with respect to the investigated disease state in the appropriate samples.

It should be noted that the allocation of a set of informative (differentially expressed
and mutually correlated) GEPs depends on selection and the use of a proximity metric to
evaluate the appropriate GEP proximity level. The traditional metrics such as Euclidean,
Manhattan, etc., are not effective for this type of data due to the high dimensionality of the
data. In review [1], the authors presented a comparative analysis of various models to form
co-expressed gene expression profiles using various types of proximity metrics focused on
high-dimensional data. Within the framework of the implementation of various hybrid
models, they analyzed the following metrics: correlation proximity, metrics based on the
evaluation of mutual information, and the chi-squared test. In [2], the authors compared
the effectiveness of various GEP proximity metrics. In this research, they have shown
that the correlation proximity metric is less effective in comparison to metrics based on
mutual information and the chi-squared test. Moreover, they have also shown that the
metrics based on mutual information can disagree with each other when using various
methods of Shannon entropy evaluation. As a result of the research, the authors proposed a
hybrid metric based on the joint use of various types of mutual information metrics and the
chi-squared test. However, it should be noted a significant disadvantage of the proposed
technique exists in the high time and computer resources to implement this step of the
data processing.

Another challenge that should be solved when processing gene expression data is
the formation of subsets of co-expressed GEPs that can be used for the creation of disease
diagnosis systems (classification problems) and the reconstruction of gene regulatory
networks. There are various clustering algorithms focused on high-dimensional gene
expression data processing. So, the self-organizing SOTA clustering algorithm [3] is a
logical continuation of Kohonen’s neural network [4]. The result of this algorithm operation
is a topological binary tree formed in accordance with the cell structure growing algorithm
proposed by Fritzke [5]. However, we would like to note that the application of the
SOTA algorithm with proximity metrics focused on high-dimensional data (for example,
correlation metrics) leads to the division of gene expression data into two subsets that are
almost similar in size at one step of the algorithm’s implementation. A stepwise procedure
implementation of this algorithm is possible; however, in this case there arises the problem
of the optimal cluster structure formation. Internal clustering quality criteria can allow
us to form an optimal cluster structure, but they do not solve the reproducibility error.
Successful results obtained in one dataset do not guarantee obtaining the same results
when using other similar datasets.

Another clustering algorithm used for gene expression data clustering is the spectral
clustering algorithm [6–9]. This algorithm is one of the modern algorithms which allows
us to identify clusters of arbitrary shape based on the application of object similarity
matrices. In comparison with traditional algorithms, the spectral clustering algorithm has
many fundamental advantages. The results obtained by applying the spectral clustering
algorithm are often superior in quality to those obtained using traditional approaches.
Moreover, the implementation of the spectral clustering algorithm is straightforward and
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can be effectively implemented based on the methods of standard linear algebra. The
general difference of the spectral clustering algorithm is that the formation of clusters is
not based on the absolute location of objects in the feature space, but instead on the basis of
the analysis of the level of these objects’ affinity, which is especially useful when forming
clusters with complex shapes. The principal problem in the successful implementation of
the spectral clustering algorithm is the formation of the optimal cluster structure according
to both the relevant clustering quality criteria and the reproducibility error. It should be
noted that this problem does not currently have an unequivocal solution.

In this research, we present our point of view to solve this problem solution. We
propose a hybrid inductive model of the stepwise procedure to form differentially and
co-expressed gene expression profiles based on the joint use of statistical and entropy
criteria, spectral and SOTA clustering algorithms implemented within the framework of
objective clustering inductive technology, and convolutional neural networks for obtaining
the final solution concerning the choice of optimal cluster structure.

The main contributions of this manuscript are the following:

• We propose a technique to form a subset of informative GEPs based on the joint use of
statistical criteria and Shannon entropy, where the final solution regarding the level of
respective gene informativity is conducted based on analysis of the general Harrington
desirability index.

• We implemented the SOTA and spectral clustering algorithms within the framework of
objective clustering inductive technology, which allows us to decrease reproducibility
error when the gene expression data are clustered.

• We have proposed a hybrid model for the extraction of differentially and co-expressed
gene expression profiles based on the joint use of an inductive clustering algorithm
(SOTA or spectral clustering) and a convolutional neural network.

• The proposed hybrid inductive model contributes to increasing objectivity during the
formation of the subsets of differentially and co-expressed gene expression profiles to
further their applications in various disease diagnosis systems and gene regulatory
network reconstruction.

2. Literature Review

Gene expression processing based on the joint use of various data mining and ma-
chine learning techniques to improve appropriate diagnosis classification is currently very
successful. So, in [10], the authors presented research results focused on applying various
feature selection and machine learning techniques to allocate the biomarkers with the
highest score when performing breast cancer disease detection. In this research, the authors
used ROC analysis with the calculation of the AUC (area under curve) to evaluate the
appropriate classification model’s quality. However, it should be noted that the authors
applied principal component analysis as the feature extraction method. In this case, we lose
information about individual genes, which is not acceptable in gene regulatory network
reconstruction. In [11], the authors introduced a predictive modeling approach to process
the gene expression data to infer treatment responses in cancers. In this research, the au-
thors demonstrated the benefits of considering pathway activity estimates in tandem with
drug descriptors as features. Using data from The Cancer Genome Atlas, they also showed
the applicability of the proposed approach on patient drug response and an independent
clinical study describing the treatment journey of three melanoma patients.

The results of the research regarding the development of an approach focused on
gene expression subset selection for high-dimensional gene expression data using a multi-
objective optimization-based multi-view co-clustering algorithm is presented in [12]. In this
research, the authors applied the non-dominated sorting genetic algorithm II evolutionary
technique as an optimization strategy. The authors showed that the reduction in dimensions
formed by new feature- pace causes decreases in the computational burden and noise level
of the original data. However, we would like to note that applying a co-clustering algorithm
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can lead to a loss of useful samples during the bicluster allocation. This fact limited the
successful application of the proposed method.

In [13], the authors proposed a method for informative gene extraction and following
classification of samples based on the extracted genes in diffuse large B-cell lymphoma
(DLBCL). In this research, the informative gene expression subset was selected according
to the calculation of the cosine angle and distance between the map and the ideal template.
However, in this research, the authors do not compare various distance metrics focused
on high-dimensional data. The classification accuracy of about 85% obtained during the
simulation procedure implementation is very low for this type of data. The research
results regarding applying a modified Wrapper feature selection model to address the gene
classification challenge by replacing its randomness approach with an extended particle
swarm optimization model (EPSO) and PSO are presented in [14]. The simulation results
showed that the EPSO method required less processing time to select the optimal features
(an average of 62.14 s) than PSO (an average of 95.72 s). Moreover, EPSO’s accuracy
provided better classification results (from 54% to 100%) than PSO (from 52% to 96%).

In [15–20], the authors developed hybrid models based on the joint use of clustering
and classification techniques, where various proximity metrics were used at the stage of
gene expression profile filtering. The analysis of the presented sources allows us to conclude
that the challenge in objective extraction of informative genes considering resolving power,
which allows for the recognition of investigated objects with high accuracy, does not
have an unambiguous solution. In most cases, high classification accuracy is achieved
when using a small number of the most informative genes. Only in a few cases of the
authors’ research, the number of extracted genes exceeded 100 when a high classification
accuracy was achieved. The significant shortcomings of the presented models should also
include the fact that in most cases, the parameters of the corresponding algorithms were
determined empirically during the simulation process. In other words, the models are
not self-organizing. This fact introduces a large amount of subjectivity into the process of
making the final decision regarding gene extraction.

The questions regarding the application of both convolution neural networks and
deep learning techniques in various fields of scientific research are presented in [21,22]. So,
in [21], the authors considered the application of a 2D convolutional neural network in the
torsional capacity evaluation of reinforced concrete beams. A model of diagnosing surface
cracks in concrete structures based on CNN application has been considered in [22]. In
these studies, the authors have shown CNN’s performance in solving complex problems.

The unsolved part of the general problem is the absence of objective techniques to
allocate large numbers of differentially and co-expressed gene expression profiles and
contribute to the high accuracy of the studied object’s classification.

In our research, we present our decision regarding gene expression profile extraction
based on the joint use of the Harrington desirability function to form the general criterion
to identify the informativity level of gene expression profiles based on the joint use of
statistical criteria and Shannon entropy. Then, we implement the hybrid inductive model
based on the joint use of a clustering algorithm (SOTA and spectral clustering) and a
convolutional neural network (CNN).

3. Material and Methods
3.1. Conceptual Description of the Hybrid Model to Form Subsets of Differentially Expressed and
Mutually Correlated GEPs Based on the Joint Application of Clustering Algorithms and CNN

As was noted in the introduction, the main goal of this research is to increase the
objectivity of forming subsets of differentially expressed and mutually correlated GEPs,
which creates the conditions for increasing the accuracy of the classification of objects
whose attributes are the selected gene expression values. The application of the clustering
stage allows the division of the set of gene expression profiles into subsets that are mutually
close by the appropriate metrics, and the choice of the metrics by which the clusters are
formed is very important. In [2], various metrics focused on evaluating the proximity level
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of high-dimensional GEPs were investigated, and as a result of the research, a hybrid metric
based on the joint application of metrics based on the assessment of mutual information
and Pearson’s chi-squared test was proposed. This metric is used to form a cluster structure
within the framework of our research.

Figure 1 shows the structural block chart of the stepwise procedure of the general
concept to form the subsets of differentially expressed and mutually correlated GEPs based
on the joint application of clustering and classification methods.

Figure 1. Structural block chart of the stepwise procedure for implementing the concept to form the
subsets of differentially expressed and mutually correlated GEPs.

The practical implementation of this concept involves the following stages:

I. Removing non-expressed and low-expressed gene expression profiles. The implemen-
tation of this step assumes the removing of genes with zero expression for all samples
and non-informative genes by the absolute value of gene expressions, variance, and
Shannon entropy.

II. Dividing the subset of the gene expression profiles formed in stage I into two equiva-
lent subsets with subsequent parallel clustering on these data subsets within the range
of the clustering algorithm’s variation parameter. The final decision regarding the
optimal parameters of the corresponding clustering algorithm operation is performed
taking into account the analysis of the values of the balance criterion, which contains,
as the components, both the internal and external clustering quality criteria. The
optimal cluster structures correspond to the maxima values of the balance criterion.

III. Classification of objects containing gene expression data in the selected clusters by
applying a one-dimensional two-layer convolutional neural network (CNN). At this
stage, a CNN is applied to the gene expression data of each cluster in order to classify
the examined objects. The implementation of this stage requires preprocessing of
gene expression value vectors in order to set the filters correctly. Vectors of gene
expressions are supplemented with genes with zero expression so that the length
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of the gene expression vector is divided without residuals by the filter size. The
classification stage results in calculation of the classification quality criteria based on
the gene expression data allocated in each of the clusters.

IV. Analysis of the obtained results and formation of subsets of differentially expressed
and mutually correlated GEPs.
The implementation of this stage involves a comprehensive analysis of both the
clustering and classification quality criteria. The subsets of gene expression data that
correspond to the maximum values of both the clustering and classification criteria
are allocated at this step. It should be noted that this stage’s implementation assumes
the formation of several subsets of differentially expressed and mutually correlated
gene expression profiles according to the maximum values of the relevant criteria.
This fact creates the conditions for increasing the objectivity of the studied objects’
classification due to the agreed decision-making process regarding the identification
of the objects considering the result of the classification of this object based on the
gene expression data of all allocated clusters.

3.2. The Technique of Informative Gene Expression Profile Formation Using Statistical Criteria and
Shannon Entropy Based on the Use of Harrington Desirability Function

Within the framework of the proposed method, the GEP is considered an informative
one if the maximum values of the expression for all samples and variance of this profile are
greater and the Shannon’s entropy of the GEP is less than the respective boundary values:

{eij} =
{

max
i=1,n

(eij ≥ ebound), and var(eij) ≥ varbound,

and entr(eij) ≤ entrbound

}
, j = 1, m (1)

where n is the number of samples or objects to be examined and m is the number of genes.
In [23], the authors presented a solution regarding the division of a set of gene expres-

sion profiles into subsets considering the level of gene informativity based on the use of a
fuzzy inference system. The simulation results showed that the main disadvantages of the
fuzzy model applied for forming subsets of informative GEPs are the high complexity of
information processing and high sensitivity to the model parameters, which significantly
influence the obtained results. Moreover, the proposed system has allowed the authors to
allocate about 13,000 highly informative genes from 25,000 ones. It should be noted that
this quantity is very large for the following data processing steps.

As an alternative, we propose a solution to this challenge based on the Harrington
desirability function, which is currently successfully used in various fields of scientific
research [24,25]. This method is based on the following equation:

d = exp(−exp(−Y)) (2)

where Y is a dimensionless parameter, the value of which varies within the range from −2
to 5 and d is private desirability that corresponds to one of the criteria used for forming a
generalized quality index.

Figure 2 shows Harrington’s desirability function, which is the basis for forming the
general desirability index, the value of which determines the appropriate decision. It is
obvious that the boundary values that distinguish the extreme intervals desirability value
variations of 0.2 (unacceptable–bad) and 0.8 (good–excellent) are conditional ones, and
they can be adjusted depending on the nature of the model input parameter values varia-
tion. The boundaries separating the corresponding intervals within the range 0.37 = 1/e
(bad–satisfactory) and 0.63 = 1− 1/e (good–excellent) are fixed and correspond to the
intersection points of the desirability function. Within the framework of the proposed
model, it is assumed that parameter Y and the values of the criteria applied as the model
input change with the linear law.
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Figure 2. Harrington’s desirability function and standard marks on the desirability scale.

The algorithm to calculate the general Harrington desirability index involves the
following steps:

1. Determination of the coefficients of the linear equation to transform the values of
statistical criteria and Shannon’s entropy into the value of the Y parameter, taking
into account the boundary values of the respective criteria and the particularities of
their change:

Ymin = a1 + b1 ·max_exprmin; Ymax = a1 + b1 ·max_exprmax

Ymin = a2 + b2 · varmin; Ymax = a2 + b2 · varmax

Ymin = a3 − b3 · entrmax; Ymax = a3 − b3 · entrmin

(3)

where Ymin = −2; Ymax = 5.
2. Determination of Y parameter values for each of the criteria used in the model as the

input data:
Ymax_expr = a1 + b1 ·max_expr

Yvar = a2 + b2 · var

Yentr = a3 − b3 · entr

(4)

3. Calculation of private desirabilities for each value of the used criteria:

dmax_expr = exp(−exp(−Ymax_expr))

dvar = exp(−exp(−Yvar))

dentr = exp(−exp(−Yentr))

(5)

4. Calculation of the general index of the gene expression profiles significance as a
geometric mean of the private desirabilities:

GI = (dmaxexpr · dvar · dentr)
1/3 (6)

A higher value of the general index (6) corresponds to a higher significance level of
the appropriate GEP.

Figure 3 shows the structural block chart of the algorithm that forms subsets of infor-
mative gene expression profiles based on Harrington’s desirability function and evaluating
the model’s adequacy by calculating the classification accuracy of the investigated samples.
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Figure 3. Structural block chart of the algorithm that forms the subsets of informative GEPs based on
Harrington’s desirability function and assessment of the model adequacy.

Implementation of the model assumes the following stages:

I. Formation of gene expression matrices and vectors of statistical criteria and Shannon
entropy values.

1.1. Formation of a gene expression matrix, the values of which are determined by
using both DNA microarray experiments or an mRNA molecule sequencing
method.

1.2. For each gene expression profile, the maximum expression value, variance,
and Shannon entropy are calculated and the vectors of the received values are
formed.

II. Formation of subsets of various informativity level gene expression profiles using the
Harrington desirability method.

2.1. Calculation of the coefficients of the linear equation to transform the scales of
quality criteria of GEPs into the scale of the dimensionless parameter Y, taking
into account the boundary values of the corresponding criteria by Equation (3).

2.2. For each value of the statistical criteria and Shannon’s entropy, calculate the
value of the parameter Y by Equation (4).

2.3. Calculation of private desirabilities for each of the criteria by Equation (5) and
the generalized desirability index by Equation (6).

2.4. Formation of subsets of GEPs considering the level of their significance using
the results obtained during the implementation of steps two and three of
this procedure.

III. Application of the sample classification model using subsets of gene expressions with
various significance levels.

3.1. Choice and adjustment of the classifier and formation of data classification
quality criteria.

3.2. Classification of objects, the attributes of which are gene expression values
with various significance levels.

3.3. Calculation of data classification quality criteria and formation of vectors of
these criteria values.
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IV. Analysis of the obtained results.

4.1. Analysis of the classification results and the formation of a conclusion regarding
the level of adequacy of the proposed model.

3.3. Formation of Criteria for Assessing the Quality of the Cluster Structure

The formation of clustering quality criteria for assessing the cluster structure of GEPs
was conducted taking into account the principles of the objective clustering inductive
technology (OCIT) [26,27], the application of which involves the assessment of the cluster
structure based on the use of both the internal and external clustering quality criteria. In this
instance, the final decision regarding the optimal cluster structure formation is performed
based on the analysis of the values of the balance criterion, which contains both internal
and external criteria as the components. The application of OCIT involves the division of
GEPs into two equivalent subsets applying hybrid profile proximity metrics based on the
evaluation of both the mutual information using various methods of Shannon’s entropy
evaluation and Pearson’s chi-squared test, which is proposed in [2]. The equivalent subsets
contain an equal number of pairwise similar GEPs.

The used hybrid proximity metric combines various methods of Shannon entropy
calculation when the mutual information of gene expression profiles is evaluated and the
Pearson’s chi-squared test. As has been shown in [2], the object classification results differ
when various GEP proximity metrics are applied during the mutually correlated gene
expression data formation. In order to increase the objectivity of the distance between GEP
evaluation, in this research, the authors proposed the stepwise procedure of proximity
metric formation. In the first step, the mutual information based on the use of various
methods of Shannon entropy and Pearson’s chi-squared criterion values are evaluated for
appropriate pair of GEPs. Then, the Harrington desirability function is applied to form
the general proximity metric. A larger value of the general proximity metric, in this case,
corresponds to a greater proximity between this pair of GEPs.

As a rule, the internal clustering quality criteria should take into account both the
particularities of the gene expression profiles distribution within clusters relative to the
respective cluster median (as the average value of all GEP is an abstraction and does not
correspond to the real distribution of expression values in the profile) and the particularities
of the clusters distribution (cluster medians) in the feature space. Within the framework of
our research, the first component of the internal criterion was calculated as the square root
of the sum of the squares of the distances from the GEPs to the median of the cluster where
these profiles are allocated. Because within the framework of the research the distance is
taken as the joint value of various types of mutual information [2], this component of the
internal criterion can be presented as follows:

CW =

√√√√ K

∑
k=1

m

∑
i=1

MI(ei Mk)2 (7)

where MI is a hybrid metric based on joint application of the mutual information evaluation
and Fisher’s chi-squared test (a larger value of this metric corresponds to a smaller distance
between appropriate GEPs), ei is a vector of i-th gene expression values, Mk is the median
of the k-th cluster, m is the number of GEPs, and K is the number of clusters.

It is obvious that a larger value of the internal criterion component (7) corresponds to
a smaller distance from the gene expression profiles to the median of the respective cluster
(or a larger density of the GEPs distribution within the clusters).

The second component of the internal clustering quality criterion is calculated as the
square root of the sum of squares of all values of hybrid proximity metric between all pairs
of the cluster medians:

CB =

√√√√K−1

∑
i=1

K

∑
j=i+1

MI(Mi Mj)2 (8)
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In this case, it should be noted that better clustering corresponds to a smaller value
of the distance between gene expression profiles in the clusters (larger value of criterion
(7)) and a larger distance between the clusters (smaller value of criterion (8)). Taking into
account this fact, the formula for calculating the internal clustering quality criterion can be
presented as follows:

QCint =
CB

K · CW
(9)

where the number of clusters K is, to some extent, a "normalized" coefficient, i.e., formula (9)
determines the average density of the gene expression profiles and medians of the corre-
sponding clusters distribution relative to one cluster. In accordance with this criterion, a
smaller value of criterion (9) corresponds to better clustering.

The external criterion assumes the presence of two equivalent subsets of gene expres-
sion profiles. Whether using this criterion is reasonable is determined by the minimization
of the reproducibility error, which is intrinsic to most existing data clustering algorithms.
In other words, the clustering results obtained on the same data are not always repeated
within the acceptable error when using another equivalent subset of data. It is obvious
that if the nature of the gene expression profiles’ distribution in equivalent data subsets is
similar, the values of the internal criteria (9) obtained on these subsets should not differ
significantly from each other. When the reproducibility error increases, the discrepancy
between the values of the internal criteria will increase. Taking this fact into account, we
propose to calculate the value of the external clustering quality criterion as the normalized
difference of the values of the internal criteria obtained on the equivalent data subsets A
and B:

QCext =
|QCA

int −QCB
int|

QCA
int + QCB

int
(10)

A smaller value of this criterion corresponds to a smaller discrepancy of the clustering
results obtained on equivalent data subsets. However, it should be noted that the values
of the internal and external criteria can disagree with each other. High internal criterion
values (unsatisfactory clustering on equivalent subsets) can be similar to each other. This
fact can lead to a low external criterion value. In this case, it is reasonable to calculate the
balance criterion, which contains as the components both the internal and external criteria.
The balance criterion was calculated using Harrington’s desirability function (Figure 2).
One of the significant advantages of the Harrington method is that in is not necessary to
normalize the input vectors with high objectivity when the output parameter calculation is
performed. Normalization of the input data is performed automatically at the stage of the
transformation of the input parameters’ scales into the scale of the dimensionless output
parameter Y, the values of which are varied within the range from −2 to 5. In this instance,
the algorithm to calculate the balance criterion involves the following steps:

1. Evaluation of the coefficients a and b in the linear equations considering the boundary
values of the appropriate criteria:

Ymax = a− b ·QCmin

Ymin = a− b ·QCmax
(11)

where Ymin = −2; Ymax = 5, QCmin, and QCmax are the minimal and maximal values
of the internal and external criteria, respectively.

2. Transformation of both the internal and external criteria values into the value of the
dimensionless parameter Y:

YA
int = aA

int − bA
int ·QCA

int

YB
int = aB

int − bB
int ·QCB

int

Yext = aext − bext ·QCext

(12)
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3. Calculation of the private desirability values for each of the criteria:

dA
int = exp(−exp(−YA

int))

dB
int = exp(−exp(−YB

int))

dext = exp(−exp(−Yext))

(13)

4. Calculation of the balance criterion:

QCbal =
3
√

dA
int · dB

int · dext (14)

A higher value of the balance criterion corresponds to better clustering by the group
of the used criteria.

3.4. Validation of the Gene Expression Profiles Clustering Model

The main idea of the implementation of this stage is that clusters containing GEPs
with a higher level of mutual expression should correspond to higher classification results
of objects containing gene expression values of appropriate profiles as attributes. In
our research, the assessment of the objects’ classification quality was performed using
traditional methods based on type I and type II errors with the use of a confusion matrix.

The following classification quality criteria were applied:

• Classification accuracy:

ACC =
TP + TN

TP + TN + FP + FN
(15)

where:

– TP is the true positive cases;
– TN is the true negative cases;
– FP is the false positive cases;
– FN is the false negative cases.

• F-measure:

F =
2 · PR · SE
PR + SE

(16)

where:

– PR is defined as the ratio of correctly identified positive values to the total number
of values identified as positive:

PR =
TP

TP + FP
(17)

– SE (sensitivity) is defined as the ratio of correctly identified positive values to the
total number of true positive values:

SE =
TP

TP + FN
(18)

Higher values of criteria (15) and (16) correspond to a higher quality of the investigated
objects classification.

This research is a continuation of the previous of our research in [28], where we
considered the various types of CNNs with various combinations of hyperparameters for
the classification of objects, the attributes of which are the gene expression data. In this
research, we have also considered the CNN’s stability level to the noise component. The
results of the research showed a superior performance of a 1D two-layer CNN, where 32
filters and a kernel size of eight were used. Maximal pooling, in this case, was two. This
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structure of CNN was used within the current research. Of course, the sizes of filters were
adapted considering the length of the input vector of gene expressions. These filter sizes
were presented in the experimental part of the paper.

A 1D two-layer convolutional neural network was used as the classifier within the
framework of our research. This choice is determined by our previous results, presented
in [28]. In this research, we studied various CNN topologies with various combinations of
hyperparameters to classify samples, the attributes of which are gene expression values.
The results of the research have shown a better performance of 1D two-layer CNN, where
32 filters and kernel size 8 have been used. Maximal pooling, in this case, was 2. This
structure of CNN was used within the implementation framework of the classification
procedure. The size of the used filters was adapted considering the length of the gene
expression vector during the simulation procedure implementation.

3.5. A Hybrid Inductive Model of GEP Clustering Based on the SOTA Clustering Algorithm

As was noted in the introduction, the self-organizing SOTA clustering algorithm [3]
forms a binary topological tree based on the joint use of self-organizing Kohonen’s maps [4]
and the Fritzke algorithm of spatial cellular structure growth [5]. The application of this
algorithm leads to an increase in the number of tree nodes in the higher object (gene
expression profiles) density areas, while the concentration of objects in the area with lower
density does not change at the current step of the algorithm application. An analysis of
the simulation results presented by the authors of the SOTA clustering algorithm [3] has
shown that the result of the algorithm operation (the structure of the formed topological
tree) is determined by the boundary value of the relative change of the variation coefficient
value or by the number of iterations on the one hand, and by the value of the parameter
for correcting the weights of the sister’s cell (parameters for correcting other cells are
determined using the conditions: αw = 2αp; αp = 5αs ).

Within the framework of our research, the boundary value of the relative change of the
variation coefficient was taken as 0. Under this condition, the termination of the algorithm’s
operation was determined either by repeating the nature of the GEP distribution into
clusters on two consecutive iterations or by reaching the boundary number of iterations.
Determination of the optimal value of the parameter for correcting of the sister’s cell
weights was performed using the previously described OCIT.

The implementation of the inductive hybrid model of the SOTA algorithm assumes
the following stages:

I. Data formation and initialization of the SOTA clustering algorithm.

1.1. Formation of a matrix of gene expression data, where the rows are the in-
vestigated objects, and the columns are the genes whose expression values
determine the state of the corresponding object.

1.2. Removal of the non-informative GEPs in terms of statistical criteria and Shan-
non entropy in accordance with the technique presented in Section 3.2.

1.3. Formation of metrics for assessing the proximity level of GEP. Considering
the research results presented in [2], we have used a hybrid modified metric
based on the integrated application of the hybrid metric of mutual information
maximization and Pearson’s chi-squared test.

1.4. Formation of two equivalent subsets of GEPs A and B.
1.5. Formation of clustering quality criteria to assess the quality of the cluster structure.
1.6. Initialization of the algorithm. The boundary value of the relative change of the

variation coefficient Elim = 0 and the range and step variation of the parameter
αs for the correction of the sister’s cell weight are set up.

II. GEP clustering and determination of the SOTA algorithm’s optimal parameters.

2.1. Initialization of the first value of the parameter for correcting the sister’s cell
weights: αs = αsmin.
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2.2. Applying the SOTA clustering algorithm to GEP contained in equivalent sub-
sets A and B. Cluster structure formation.

2.3. If the number of clusters formed on equivalent subsets A and B is the same,
then, the calculation of both the internal and external clustering quality criteria
and the increase in the αs value is αs = αs + dαs. Otherwise, increase the αs
without calculating the criteria.

2.4. If αs ≤ αsmax, then, go to step 2.2 of this procedure. Otherwise, use the
calculation of the balance criterion values.

2.5. Analysis of the obtained results and fixing the values of the αs parameter,
which correspond to the maximum values of the balance criterion.

2.6. Application of the SOTA clustering algorithm with optimal value of αs param-
eters to the full set of GEPs created at step 1.2 of this procedure and formation
of a cluster structure.

III. Applying the convolutional neural network (CNN) to gene expression data in the
formed clusters.

3.1. Pre-processing of gene expression data in the formed clusters by adding pro-
files with zero expression to obtain the required number of profiles for the
correct application of CNN filters.

3.2. Applying the CNN to gene expression data in the formed clusters. Calculation
of the objects classification quality criteria.

3.3. Analysis of the obtained results. The formation of subsets of differentially
expressed and mutually correlated GEPs that correspond to the maximum
values of both the balance criterion and the classification quality criteria.

3.6. A Hybrid Inductive Model of GEP Clustering Based on the Spectral Clustering Algorithm

Implementation of spectral clustering algorithm within the framework of OCIT to
form the clusters of differentially expressed and mutually correlated GEPs assumes the
following stages:

I. Data formation and initialization of the model parameters.

1.1. Formation of the gene expression matrix ei,j, i = 1, n, j = 1, m, where n is the
number of investigated objects and m is the number of genes.

1.2. Formation of a GEP proximity metric.
1.3. Formation of vectors and functions for calculation of clustering quality criteria:

internal, external, and balanced.
1.4. Division of the set of GEPs into two equivalent subsets A and B.
1.5. Calculation of similarity matrix for all pairs of GEPs contained in the

equivalent subsets.
1.6. Initialization of the range for the number of clusters variation: kmin, kmax

II. Clustering of gene expression profiles. Calculation of clustering quality criteria.

2.1. Initialization of the initial number of clusters k = kmin.
2.2. Clustering of GEPs allocated in equivalent data subsets A and B and formation

of cluster structures.
2.3. Calculation of internal and external clustering quality criteria.
2.4. If k < kmax, then increase the number of clusters by one and go to step 2.2 of

this procedure. Otherwise, the calculation of the balance criterion using the
obtained values of the internal and external criteria.

2.5. Analysis of the received results, fixation of optimal clusterings which corre-
spond to the maximum values of the balance criterion.

III. Classification of gene expression data.

3.1. Formation of subsets of gene expression data allocated in the formed clusters
for further application as input data in a CNN.



Appl. Sci. 2022, 12, 11795 14 of 23

3.2. Application of CNN to gene expression data contained in each cluster at a cur-
rent hierarchical level of the cluster structure. Calculation of the classification
quality criteria.

3.3. Analysis of the obtained results. Formation of subsets of differentially ex-
pressed and mutually correlated GEPs.

4. Experiment, Results and Discussion
4.1. Experimental Data

We used the gene expression dataset GSE19188 [29] from the freely available database
GEO (the Geo Expression Omnibus) [30] as the experimental data. This dataset contains
the gene expression values for 156 patients examined for lung cancer. Of them, 65 patients
were identified as healthy and 91 were identified with lung cancer tumors. Initially, this
data contained 54,675 genes.

4.2. Formation of the Subsets of GEPs Considering the Significance Level Using the Harrington
Desirability Method

Figure 4 shows the block charts of private desirabilities and the general desirability
index, which determine the gene expression profiles’ significance level and were calculated
for the maximum values of gene expressions for all samples, variance, and Shannon entropy.

Figure 4. Box plots of private desirabilities and the general desirability index, which determines the
gene expression profiles’ significance level.

An analysis of the resulting charts allows us to conclude based on the values of private
desirability and the value of the general desirability index, most profiles (54,087 from
54,675) are identified as profiles with a very low significance level. In this instance, 15 genes
were identified as having a very high significance level, 38 were identified as genes with
a high significance level, and 142 and 393 profiles were identified as genes with medium
and low significance levels, respectively. However, it should be noted that informative
genes are not mutually expressed. This fact is confirmed by the classification results of
samples containing, as the attributes, gene expression values allocated in appropriate
subsets (Table 1).
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Table 1. Simulation results regarding the classification of objects based on gene expression data of
various significance level when applying the Harrington desirability method.

Genes
Significance

Classification Quality Criteria

Accuracy % Significance Specificity F-Score MCC

Very high 87.1 0.909 0.850 0.890 0.736

High 96.8 1 0.947 0.894 0.935

Medium 91.9 0.862 0.970 0.890 0.841

Low 96.8 1 0.947 0.894 0.935

Indeed, at first glance, the presented results are not logical. However, it should be
noted that this fact only shows that the application of the proposed method can allow
us only to divide the initial set of gene expression profiles into informative and non-
informative ones according to the appropriate quantitative criteria. Moreover, the number
of informative genes is determined by the threshold value of the general desirability index,
which can vary depending on the nature of the experimental data distribution.

Within the framework of the current research, considering the particularities of the
GEPs’ general desirability index (GI) values distribution, the boundary value of the GI
dividing the gene expression profiles into informative and non-informative ones was
chosen at the level of 0.04. In this case, 10,000 gene expression profiles were selected. To
assess the model adequacy by applying a classifier, this set of genes was divided into
three subsets: 0.04 ≤ GI < 0.2: medium significance (9162 genes); 0.2 ≤ GI < 0.37: high
significance (513 genes); GI ≥ 0.37: very high significance (332 genes). The classifier was
applied to the full set of gene expression data (10,000 profiles) and to the gene expression
profiles in the formed subsets. The classification results are presented in Table 2.

Table 2. Simulation results regarding the classification of objects based on gene expression data with
various significance levels when applying the Harrington desirability method.

Genes
Significance

Classification Quality Criteria

Accuracy % Significance Specificity F-Score MCC

Full set
of GEP 91.9 1 0.947 0.894 0.935

Very high 91.9 0.862 0.970 0.890 0.841

High 96.8 1 0.947 0.894 0.935

Medium 91.9 1 0.878 0.958 0.842

As it can be seen, in all cases, the value of the classification quality criteria is quite
high but not the maximum. Moreover, the classification results of objects containing a large
number of gene expression values as attributes (10,000 and 9162) are the same. This fact can
be explained by the presence of a large number of differentially expressed gene expression
profiles that can be identified as noise. The highest quality of the samples classification
is achieved when using 513 genes of high significance level, which can be explained by a
significantly smaller number of genes on the one hand and the presence of a larger number
of genes designated as informative by the applied criteria on the other hand.

The presented research demonstrates the advisability of using the proposed technique
for preprocessing gene expression data to reasonably remove uninformative genes based
on measures of GEPs significance. The application of the proposed method allows us
to form a subset of the most informative gene expression profiles according to the set of
statistical and entropy criteria. In this instance, the number of genes is determined by the
threshold value of the general desirability index, which is determined empirically during
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the simulation process taking into account the target value of the number of genes, which
needs to be allocated for further research.

4.3. Practical Implementation of the Hybrid Inductive Model of GEP Clustering Based on the
SOTA Clustering Algorithm

The simulation results regarding the evaluation of the optimal value of the αs parame-
ter for correcting the sister’s cell weights are presented in Figure 5.

Figure 5. The simulation results for determining the optimal parameters of the SOTA clustering
algorithm based on the application of inductive methods of complex systems analysis.

The value of this parameter varied within the range from 0.0001 to 0.01 with a step
of 0.0002. The simulation was performed based on the use of the R software environment
using the functions of clValid package [31]. The sota() function, in this instance, provides
the possibility of implementing the SOTA clustering algorithm using both Euclidean and
correlation distance metrics. Taking into account the high dimensionality of GEPs, the
formation of a cluster structure during the algorithm operation was conducted using
the correlation metric, and the calculation of the internal clustering quality criteria was
performed using a modified hybrid metric [2].

In accordance with the first part of the algorithm, presented in Section 3.5, at the
first stage, the selected subset of GEP (10,000 profiles) was divided into two equivalent
subsets A and B, containing the same number of pairwise similar objects (according to
the modified hybrid metric). Then, at each step of the SOTA algorithm implementation,
internal clustering quality criteria were calculated on equivalent subsets of gene expression
profiles (in the cases, if the number of clusters is the same). Figure 5a,b show charts of the
internal criteria values versus the αs parameter of the SOTA algorithm, while, according
to these criteria, the optimal clustering corresponds to their minimum values. As can be
seen in the obtained charts, the values of these criteria, calculated on the subsets A and
B, to some extent disagree with each other. Figure 5c shows the chart of external criteria
calculated using the appropriate internal criteria. The analysis of these charts also does
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not allow us to unambiguously determine the optimal value of the αs parameter (by the
minimum value). Figure 5d shows a chart of the balance criterion, the analysis of which
allows us to allocate the ranges of the parameter variation, which achieves the maximal
values of the balance criterion on the one hand and stable clustering on the other hand.
A more careful analysis of the obtained results showed that the balance criterion reaches
its maximum value (0.985) at the fourth step of this procedure implementation. In this
case, the low value of the internal criteria also confirms the fact that at this step, the nature
of the GEPs distribution in the clusters corresponds to the optimal cluster structure. It
should be noted that in all cases (at each iterative step), the data were divided into two
clusters. The algorithm stopped when repeating the configuration of the cluster structures
on two consecutive iterations. Thus, the value αs = 0.0007 was chosen as an optimal one
for further simulation stages.

At the second stage of the model’s implementation, the SOTA clustering algorithm
with a determined parameter was applied to the full set of GEPs (10,000). The result of this
step implementation formed two clusters: the first contained 6020 profiles, and the second
contained 3980 profiles.

The classification procedure was performed using a one-dimensional two-layer con-
volutional neural network (CNN), the efficiency and robustness of which for gene ex-
pression data classification was proven in [28]. For the correct application of the CNN,
the first cluster was supplemented with profiles with zero expression to obtain a total of
6050 profiles. In this case, filters (50× 121) and (25× 242) were applied on the first and
second convolutional layers, respectively. The second cluster was supplemented to obtain
a total of 4000 profiles, while the filters had dimensions (50× 80) and (25× 160) on the
first and the second layers. The simulation results regarding the application of CNN to
gene expression data contained in the formed clusters are shown in Figures 6 and 7.

Figure 6. Charts of objects classification accuracy and the loss function value during the network
training on the data in the first cluster.

Figure 7. Charts of objects classification accuracy and the loss function value during the network
training on the data in the second cluster.
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The accuracy of object classification using the corresponding test data subsets was 95%
for the first cluster and 97% for the objects of the second one, while from 39 objects, 37 and
38 were correctly identified in the first and second cases, respectively.

At the next stage, the SOTA algorithm was applied stepwise to the GEPs contained
in the appropriate clusters, followed by the classification of the objects based on the
data obtained clusters by applying CNN with adapted filters. The simulation results are
presented in Table 3.

Table 3. Simulation results regarding the step-by-step application of the hybrid inductive model of
GEP clustering based on the SOTA clustering algorithm and CNN.

Stage Number of
Genes Filter F-Measure Accuracy % LossCluster 1 Cluster 2

I

6020 50× 121
25× 242

0.93 0.96 95 0.152

3980 50× 80
25× 160

0.96 0.98 97 0.146

II

3011 50× 61
25× 122

0.96 0.98 97 0.197

3009 50× 61
25× 122

0.96 0.98 97 0.165

1934 50× 39
25× 78

0.92 0.96 95 0.227

2046 50× 41
25× 82

0.89 0.94 92 0.205

III

1639 40× 41
20× 82

0.96 0.98 97 0.156

1372 40× 35
20× 70

0.95 0.96 95 0.199

1519 40× 38
20× 76

0.96 0.98 97 0.123

1490 30× 50
15× 100

0.89 0.94 92 0.193

Figure 8 shows a dendrogram of the GEP distribution into clusters with values of the
investigated object classification accuracy.

Figure 8. Dendrogram of the GEP distribution into clusters with the classification accuracy of the
objects containing as attributes the values of gene expressions of the appropriate clusters.

The analysis of the obtained results allows us to conclude that the joint application of
the SOTA clustering algorithm and the CNN allows us to identify clusters of GEP that can
allow us to identify the objects that contain the value of gene expressions that are localized
in the corresponding clusters as attributes with high accuracy. As can be seen, in the first
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stage, 10,000 GEPs were divided into two clusters, while for the second (smaller cluster),
a high classification accuracy was achieved on the test data subset; 38 of 39 objects were
correctly identified in this case. For the larger cluster, the classification accuracy was lower
in terms of various criteria, with two objects out of 39 being falsely identified.

However, it should be noted that the further division of the GEP contained in the
smaller clusters into subsets consisting of 1934 and 2046 GEP worsened the classification
accuracy, i.e., the division of the smaller cluster into subclusters is not reasonable in this
case. Another conclusion can be reached in the case of dividing a larger cluster (6020 GEP)
into subclusters. Dividing this cluster into two subsets (3011 and 3009 GEP) increases the
classification accuracy of objects containing the values of gene expressions as attributes
allocated in these clusters. Their further division into smaller subclusters allows us to
allocate a subset of GEPs that are more informative according to the classification quality
criteria for each branch.

4.4. Practical Implementation of the Hybrid Inductive Model of GEP Clustering Based on the
Spectral Clustering Algorithm

Figure 9 shows the simulation results regarding the application of the proposed
hybrid inductive clustering model based on the hierarchical spectral clustering algo-
rithm. The number of clusters varied within the range from 2 to 10 during the simulation
process’s implementation.

As we can see, the internal and external clustering quality criteria, in some cases,
contradict each other. This fact confirms that it is reasonable to apply the balance criterion
which contains the internal and corresponding external criteria as the components. The
balance criterion reaches its maximum value when dividing the set of GEP into three
clusters. Moreover, according to the internal criterion, the optimal clustering corresponds
to three clusters for subset A and two clusters for subset B. In accordance with the external
criterion, the optimal clustering corresponds to the three-cluster structure.

Figure 9. The simulation results regarding the practical implementation of the hierarchical spectral
clustering algorithm based on inductive methods of complex systems analysis.

The next step of the model implementation is an application of a CNN to gene ex-
pression data in the allocated clusters. To confirm the previously described conclusions
regarding the effectiveness of the optimal cluster structure formation based on clustering
quality criteria, we studied cluster structures containing two, three, and four clusters. The
simulation results are presented in Table 4. The analysis of the obtained results confirms
the fact that the three-cluster structure is optimal in terms of both the classification accuracy
and the value of the loss function when the CNN was training. However, it should be noted
that the classification accuracy is quite high in all cases, which can be explained by the high
efficiency of the CNN for this type of data and its resistance to the noise component. The
classification accuracy of the studied objects was evaluated on the test data subset, which
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was not used for the network’s training. At the same time, in the case of a three-cluster
structure, when using the third cluster containing 4964 genes, 100% classification accuracy
was achieved with the minimum value of the loss function. When applying other clusters
of this cluster structure, out of 39 objects that make up the test subset of gene expression
data, 38 were identified correctly.

Table 4. Simulation results regarding the step-by-step application of the hybrid inductive model of
GEP clustering based on the spectral clustering algorithm and CNN.

Stage and Model Parameters Cluster 1 Cluster 2 Cluster 3 Cluster 4

Two-cluster
structure

Number of genes 4074 4926 – –

Filter 60× 68
30× 136

50× 119
25× 238

– –

Accuracy, % 95 97 – –
Loss 0.254 0.067 – –

Three-cluster
structure

Number of genes 2487 2549 4964 –

Filter 50× 50
25× 100

50× 51
25× 102

60× 83
30× 166

–

Accuracy, % 97 97 100 –
Loss 0.141 0.123 0.058 –

Four-cluster
structure

Number of genes 1615 2779 4715 891

Filter 30× 54
15× 108

50× 56
25× 112

50× 95
25× 190

50× 18
25× 36

Accuracy, % 97 97 97 95
Loss 0.169 0.142 0.189 0.295

The comparison analysis with other research in this subject area [1] allows us to draw
conclusions on the performance of the proposed technique. So, in most cases presented
in the review [1] a high classification accuracy is achieved when using a small number
of genes. The proposed method allows us to form the subsets of differentially and co-
expressed gene expression profiles, which contribute to the high value of the investigated
samples’ classification accuracy. Moreover, the allocated subsets of GEPs can be used as
a next step in the hybrid modeling of disease diagnosis, such as various types of cancer,
Alzheimer’s, Parkinson’s, etc., in order to take a more objective solution regarding the
state of the patient using the object classification results obtained on various subsets of the
allocated genes.

In our minds, the presented research creates the conditions for increasing the objectiv-
ity of the diagnosis of the complex disease by making a compromise decision based on the
results of the classification of objects containing informative differentially expressed and
mutually correlated gene expression data, which are allocated in different clusters.

5. Conclusions

In this manuscript, we have presented the results of research regarding the formation
of subsets of differentially and co-expressed gene expression profiles based on the joint
use of inductive clustering algorithms and a one-dimensional two-layer convolutional
neural network. In the first stage of this procedure implementation, we removed the
non-informative genes using statistical criteria and Shannon entropy with the Harrington
desirability function. The number of genes decreased from 54,675 to 10,000 as a result
of this step’s implementation. Then, we sequentially applied the SOTA and spectral
clustering algorithms implemented within the framework of objective clustering inductive
technology, the application of which assumes the division of the initial data into two
equivalent subsets with parallel clustering of the data allocated in these subsets within the
range of the respective algorithm parameters variation. As a result, the internal, external,
and balance criteria were calculated in the case if the number of clusters is the same in
various clustering. The optimal clustering corresponds, in this instance, to the maximum
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values of the balance clustering quality criterion. To confirm the obtained clustering results,
we have applied, at the final step of this procedure’s implementation, a one-dimensional
two-layer convolutional neural network to identify the objects, the attributes of which are
gene expressions in the allocated clusters. The simulation results have shown that in the
case of the SOTA clustering application, we can allocate various clusters of differentially
and co-expressed gene expression profiles which correspond to high values of both the
clustering and classification quality criteria. However, the procedure of the SOTA clustering
algorithm application within the framework of OCIT has larger complexity in comparison
with the application of the spectral clustering algorithm. Moreover, to our mind, the
application of spectral clustering within the framework of the proposed model is more
effective in terms of both the studied objects classification accuracy and the complexity of
the algorithm’s implementation.

In our minds, the conducted research creates the conditions for increasing the ob-
jectivity of the formation of subsets of differentially and co-expressed gene expression
profiles for subsequent applications. The future directions of the authors’ research include
the application of the proposed technique within the hybrid model of various disease
diagnostics and gene regulatory network reconstruction on the basis of allocated subsets of
differentially and co-expressed genes.
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