Machine Learning and Food Security: Insights for Agricultural Spatial Planning in the Context of Agriculture 4.0
Abstract
:1. Introduction
2. Materials and Methods
3. Bibliometric Assessment
3.1. Text Data
3.2. Bibliographic Data
3.2.1. Co-Occurrence Links
3.2.2. Bibliographic Coupling Links
4. Systematic Literature Review
4.1. Main Findings
4.1.1. Land Mapping
4.1.2. Crop Yield Prediction
5. Discussion and Conclusions
5.1. Bibliometric Analysis
5.2. Platforms, Methods and Results
5.3. Data Sources
5.4. Practical Implications, Policy Recommendations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Agricultural Land Suitability Analysis: State-of-the-Art and Outlooks for Integration of Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Soares, A.R.; Sanches, I.D.; Fronza, J.G. CBERS Data Cubes for Land Use and Land Cover Mapping in the Brazilian Cerrado Agricultural Belt. Int. J. Remote Sens. 2021, 42, 8398–8432. [Google Scholar] [CrossRef]
- Gamage, R.; Rajapaksa, H.; Sangeeth, A.; Hemachandra, G.; Wijekoon, J.; Nawinna, D. Smart Agriculture Prediction System for Vegetables Grown in Sri Lanka. In Proceedings of the 12th Annual Information Technology, Electronics and Mobile Communication Conference, IEMCON, Vancouver, BC, Canada, 27–30 October 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 246–251. [Google Scholar]
- Fernando, G. Mapping the Diversity of Agricultural Systems in the Cuellaje Sector, Cotacachi, Ecuador Using ATL08 for the ICESat-2 Mission and Machine Learning Techniques. In Proceedings of the 21st International Conference on Computational Science and Its Applications, ICCSA, Cagliari, Italy, 13–16 September 2021; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2021; p. 181, ISBN 03029743 (ISSN); 9783030870126 (ISBN). [Google Scholar]
- Lee, D.; Davenport, F.; Shukla, S.; Husak, G.; Funk, C.; Harrison, L.; McNally, A.; Rowland, J.; Budde, M.; Verdin, J. Maize Yield Forecasts for Sub-Saharan Africa Using Earth Observation Data and Machine Learning. Global Food Secur. 2022, 33, 100643. [Google Scholar] [CrossRef]
- Duke, O.P.; Alabi, T.; Neeti, N.; Adewopo, J. Comparison of UAV and SAR Performance for Crop Type Classification Using Machine Learning Algorithms: A Case Study of Humid Forest Ecology Experimental Research Site of West Africa. Int. J. Remote Sens. 2022, 43, 4259–4286. [Google Scholar] [CrossRef]
- Guo, Z.; Sheng, A. Estimate Crop Type Distribution in South Africa Using Google Earth Engine Cloud Computing. In Proceedings of the 9th International Conference on Agro-Geoinformatics, Shenzhen, China, 26–29 July 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving Land-Use Change Modeling by Integrating ANN with Cellular Automata-Markov Chain Model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef]
- Goodwin, C.E.D.; Bütikofer, L.; Hatfield, J.H.; Evans, P.M.; Bullock, J.M.; Storkey, J.; Mead, A.; Richter, G.M.; Henrys, P.A.; Pywell, R.F.; et al. Multi-Tier Archetypes to Characterise British Landscapes, Farmland and Farming Practices. Environ. Res. Lett. 2022, 17, 095002. [Google Scholar] [CrossRef]
- Graskemper, V.; Yu, X.; Feil, J.-H. Farmer Typology and Implications for Policy Design—An Unsupervised Machine Learning Approach. Land Use Policy 2021, 103, 105328. [Google Scholar] [CrossRef]
- Ha, T.V.; Huth, J.; Bachofer, F.; Kuenzer, C. A Review of Earth Observation-Based Drought Studies in Southeast Asia. Remote Sens. 2022, 14, 3763. [Google Scholar] [CrossRef]
- Holloway, J.; Mengersen, K. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sens. 2018, 10, 1365. [Google Scholar] [CrossRef] [Green Version]
- Ju, S.; Lim, H.; Ma, J.W.; Kim, S.; Lee, K.; Zhao, S.; Heo, J. Optimal County-Level Crop Yield Prediction Using MODIS-Based Variables and Weather Data: A Comparative Study on Machine Learning Models. Agric. For. Meterol. 2021, 307, 108530. [Google Scholar] [CrossRef]
- Kavita; Mathur, P. Satellite-Based Crop Yield Prediction Using Machine Learning Algorithm. In Proceedings of the Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 27–29 August 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021. [Google Scholar]
- Korobov, S.A.; Pshenichnikov, I.V.; Epinina, V.S. Digital Transformation of Managing Business Entities Development in Agricultural Production. In New Technology for Inclusive and Sustainable Growth; Springer: Singapore, 2022; pp. 63–73. [Google Scholar]
- Kumar, R.; Singh, M.P.; Kumar, P.; Singh, J.P. Crop Selection Method to Maximize Crop Yield Rate Using Machine Learning Technique. In Proceedings of the 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Chennai, India, 6–8 May 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2015; pp. 138–145. [Google Scholar]
- Restrepo, D.S.; Pérez, L.E.; López, D.M.; Vargas-Cañas, R.; Osorio-Valencia, J.S. Multi-Dimensional Dataset of Open Data and Satellite Images for Characterization of Food Security and Nutrition. Front. Nutr. 2022, 8, 796082. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gong, P. 21st Century Daily Seamless Data Cube Reconstruction and Seasonal to Annual Land Cover and Land Use Dynamics Mapping-iMap (China) 1.0. Natl. Remote Sens. Bull. 2021, 25, 126–147. [Google Scholar] [CrossRef]
- Magidi, J.; Nhamo, L.; Mpandeli, S.; Mabhaudhi, T. Application of the Random Forest Classifier to Map Irrigated Areas Using Google Earth Engine. Remote Sens. 2021, 13, 876. [Google Scholar] [CrossRef]
- Magidi, J.; van Koppen, B.; Nhamo, L.; Mpandeli, S.; Slotow, R.; Mabhaudhi, T. Informing Equitable Water and Food Policies through Accurate Spatial Information on Irrigated Areas in Smallholder Farming Systems. Water 2021, 13, 3627. [Google Scholar] [CrossRef]
- Pal, S.; Paul, S.; Debanshi, S. Identifying Sensitivity of Factor Cluster Based Gully Erosion Susceptibility Models. Environ. Sci. Pollut. Res. 2022, 26, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, V.; Matin, M.A.; Qamer, F.M.; Ellenburg, W.L.; Bajracharya, B.; Vadrevu, K.; Rushi, B.R.; Yusafi, W. Wheat Area Mapping in Afghanistan Based on Optical and SAR Time-Series Images in Google Earth Engine Cloud Environment. Front. Environ. Sci. 2020, 8, 77. [Google Scholar] [CrossRef]
- Rajamanickam, J.; Mani, S.D. Kullback Chi Square and Gustafson Kessel Probabilistic Neural Network Based Soil Fertility Prediction. Concurr. Comput. Pract. Exper. 2021, 33, e6460. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Zhang, X.; Chan, N.W.; Kung, H.-T.; Ariken, M.; Zhou, X.; Wang, Y. Regional Suitability Prediction of Soil Salinization Based on Remote-Sensing Derivatives and Optimal Spectral Index. Sci. Total Environ. 2021, 775, 145807. [Google Scholar] [CrossRef] [PubMed]
- Runzel, M.A.S.; Hassler, E.E.; Rogers, R.E.L.; Formato, G.; Cazier, J.A. Designing a Smart Honey Supply Chain for Sustainable Development. IEEE Consum. Electron. Mag. 2021, 10, 69–78. [Google Scholar] [CrossRef]
- Saldana Ochoa, K.; Guo, Z. A Framework for the Management of Agricultural Resources with Automated Aerial Imagery Detection. Comput. Electron. Agric. 2019, 162, 53–69. [Google Scholar] [CrossRef]
- Talasila, V.; Prasad, C.; Reddy, G.T.S.; Aparna, A. Analysis and Prediction of Crop Production in Andhra Region Using Deep Convolutional Regression Network. Int. J. Intelligent Eng. Syst. 2020, 13, 1–9. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The Effects of Climate Extremes on Global Agricultural Yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Tao, F.; Luo, Y.; Cao, J.; Li, Z.; Xie, R.; Li, S. Planning Maize Hybrids Adaptation to Future Climate Change by Integrating Crop Modelling with Machine Learning. Environ. Res. Lett. 2021, 16, 124043. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Lu, S.; Wang, T.; Zhang, J.; Liang, Y.; Deng, J. Dryland Ecological Restoration Research Dynamics: A Bibliometric Analysis Based on Web of Science Data. Sustainability. 2022, 14, 9843. [Google Scholar] [CrossRef]
- Scopus Scopus-Document Search. Available online: https://www.scopus.com (accessed on 9 September 2022).
- van Eck, N.J.; Waltman, L. Manual for VOSviewer, Version 1.6.18; Centre for Science and Technology Studies, Leiden University: Leiden, The Netherlands, 2022. [Google Scholar]
- VOSviewer VOSviewer-Visualizing Scientific Landscapes-Version 1.6.18. Available online: https://www.vosviewer.com// (accessed on 9 September 2022).
- Martinho, V.J.P.D. Impacts of the COVID-19 Pandemic and the Russia–Ukraine Conflict on Land Use across the World. Land 2022, 11, 1614. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinho, V.J.P.D. Agri-Food Contexts in Mediterranean Regions: Contributions to Better Resources Management. Sustainability 2021, 13, 6683. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D. Bibliometric Analysis for Working Capital: Identifying Gaps, Co-Authorships and Insights from a Literature Survey. Int. J. Financ. Stud. 2021, 9, 72. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D. Bibliographic Coupling Links: Alternative Approaches to Carrying Out Systematic Reviews about Renewable and Sustainable Energy. Environments 2022, 9, 28. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in Agriculture: A Review and Bibliometric Analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Sott, M.K.; Furstenau, L.B.; Kipper, L.M.; Giraldo, F.D.; López-Robles, J.R.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access 2020, 8, 149854–149867. [Google Scholar] [CrossRef]
- Alagumalai, A.; Mahian, O.; Aghbashlo, M.; Tabatabaei, M.; Wongwises, S.; Wang, Z.L. Towards Smart Cities Powered by Nanogenerators: Bibliometric and Machine Learning–Based Analysis. Nano Energy 2021, 83, 105844. [Google Scholar] [CrossRef]
- Malapane, O.L.; Musakwa, W.; Chanza, N.; Radinger-Peer, V. Bibliometric Analysis and Systematic Review of Indigenous Knowledge from a Comparative African Perspective: 1990–2020. Land 2022, 11, 1167. [Google Scholar] [CrossRef]
- Olatinwo, S.O.; Joubert, T.-H. Deep Learning for Resource Management in Internet of Things Networks: A Bibliometric Analysis and Comprehensive Review. IEEE Access 2022, 10, 94691–94717. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D.; Guiné, R.D.P.F. Integrated-Smart Agriculture: Contexts and Assumptions for a Broader Concept. Agronomy 2021, 11, 1568. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D. Bibliometric Analysis on Era 4.0: Main Highlights for the Agricultural Sector. In Trends of the Agricultural Sector in Era 4.0; SpringerBriefs in Applied Sciences and Technology; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–48. ISBN 978-3-030-98959-0. [Google Scholar]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Z.; Feng, L.; Du, Q.; Runge, T. Combining Multi-Source Data and Machine Learning Approaches to Predict Winter Wheat Yield in the Conterminous United States. Remote Sens. 2020, 12, 1232. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhang, Z.; Kang, Y.; Özdoğan, M. Corn Yield Prediction and Uncertainty Analysis Based on Remotely Sensed Variables Using a Bayesian Neural Network Approach. Remote Sens. Environ. 2021, 259, 112408. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Tao, F. Combining Optical, Fluorescence, Thermal Satellite, and Environmental Data to Predict County-Level Maize Yield in China Using Machine Learning Approaches. Remote Sens. 2020, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.; Luo, Y.; Han, J.; Li, Z. Identifying the Contributions of Multi-Source Data for Winter Wheat Yield Prediction in China. Remote Sens. 2020, 12, 750. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Luo, Y.; Zhang, L.; Zhang, J.; Li, Z.; Tao, F. Wheat Yield Predictions at a County and Field Scale with Deep Learning, Machine Learning, and Google Earth Engine. Eur. J. Agron. 2021, 123, 126204. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean Yield Prediction from UAV Using Multimodal Data Fusion and Deep Learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Bian, C.; Shi, H.; Wu, S.; Zhang, K.; Wei, M.; Zhao, Y.; Sun, Y.; Zhuang, H.; Zhang, X.; Chen, S. Prediction of Field-Scale Wheat Yield Using Machine Learning Method and Multi-Spectral UAV Data. Remote Sens. 2022, 14, 1474. [Google Scholar] [CrossRef]
- Mashaba-Munghemezulu, Z.; Chirima, G.J.; Munghemezulu, C. Delineating Smallholder Maize Farms from Sentinel-1 Coupled with Sentinel-2 Data Using Machine Learning. Sustainability 2021, 13, 4728. [Google Scholar] [CrossRef]
- Htitiou, A.; Boudhar, A.; Chehbouni, A.; Benabdelouahab, T. National-Scale Cropland Mapping Based on Phenological Metrics, Environmental Covariates, and Machine Learning on Google Earth Engine. Remote Sens. 2021, 13, 4378. [Google Scholar] [CrossRef]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, H.; Zhang, L. Spatial Domain Bridge Transfer: An Automated Paddy Rice Mapping Method with No Training Data Required and Decreased Image Inputs for the Large Cloudy Area. Comput. Electron. Agric. 2021, 181, 105978. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop Type Mapping without Field-Level Labels: Random Forest Transfer and Unsupervised Clustering Techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Sakamoto, T. Incorporating Environmental Variables into a MODIS-Based Crop Yield Estimation Method for United States Corn and Soybeans through the Use of a Random Forest Regression Algorithm. ISPRS J. Photogramm. Remote Sens. 2020, 160, 208–228. [Google Scholar] [CrossRef]
- Wang, S.; Di Tommaso, S.; Faulkner, J.; Friedel, T.; Kennepohl, A.; Strey, R.; Lobell, D.B. Mapping Crop Types in Southeast India with Smartphone Crowdsourcing and Deep Learning. Remote Sens. 2020, 12, 2957. [Google Scholar] [CrossRef]
- Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.V.; Ciampitti, I.A. Satellite-Based Soybean Yield Forecast: Integrating Machine Learning and Weather Data for Improving Crop Yield Prediction in Southern Brazil. Agric. For. Meteorol. 2020, 284, 107886. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating Satellite and Climate Data to Predict Wheat Yield in Australia Using Machine Learning Approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Panjala, P.; Gumma, M.K.; Teluguntla, P. Machine Learning Approaches and Sentinel-2 Data in Crop Type Mapping. In Data Science in Agriculture and Natural Resource Management; Reddy, G.P.O., Raval, M.S., Adinarayana, J., Chaudhary, S., Eds.; Studies in Big Data; Springer: Singapore, 2022; pp. 161–180. ISBN 9789811658471. [Google Scholar]
- Pott, L.P.; Amado, T.J.C.; Schwalbert, R.A.; Corassa, G.M.; Ciampitti, I.A. Satellite-Based Data Fusion Crop Type Classification and Mapping in Rio Grande Do Sul, Brazil. ISPRS J. Photogramm. Remote Sens. 2021, 176, 196–210. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.; Luo, Y.; Zhang, J.; Han, J.; Xie, J. Integrating Multi-Source Data for Rice Yield Prediction across China Using Machine Learning and Deep Learning Approaches. Agric. For. Meteorol. 2021, 297, 108275. [Google Scholar] [CrossRef]
- Löw, F.; Biradar, C.; Dubovyk, O.; Fliemann, E.; Akramkhanov, A.; Narvaez Vallejo, A.; Waldner, F. Regional-Scale Monitoring of Cropland Intensity and Productivity with Multi-Source Satellite Image Time Series. GISci. Remote Sens. 2018, 55, 539–567. [Google Scholar] [CrossRef]
- Abubakar, G.A.; Wang, K.; Shahtahamssebi, A.; Xue, X.; Belete, M.; Gudo, A.J.A.; Mohamed Shuka, K.A.; Gan, M. Mapping Maize Fields by Using Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi, Northern Nigeria, Africa. Sustainability 2020, 12, 2539. [Google Scholar] [CrossRef] [Green Version]
- Liao, D.; Niu, J.; Lu, N.; Shen, Q. Towards Crop Yield Estimation at a Finer Spatial Resolution Using Machine Learning Methods over Agricultural Regions. Theor. Appl. Climatol. 2021, 146, 1387–1401. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Chen, F.; Jia, H.; Liang, D.; Yang, A. Feature Comparison and Optimization for 30-M Winter Wheat Mapping Based on Landsat-8 and Sentinel-2 Data Using Random Forest Algorithm. Remote Sens. 2019, 11, 535. [Google Scholar] [CrossRef] [Green Version]
- Meroni, M.; Waldner, F.; Seguini, L.; Kerdiles, H.; Rembold, F. Yield Forecasting with Machine Learning and Small Data: What Gains for Grains? Agric. For. Meteorol. 2021, 308–309, 108555. [Google Scholar] [CrossRef]
- Ahmed, A.A.M.; Sharma, E.; Jui, S.J.J.; Deo, R.C.; Nguyen-Huy, T.; Ali, M. Kernel Ridge Regression Hybrid Method for Wheat Yield Prediction with Satellite-Derived Predictors. Remote Sens. 2022, 14, 1136. [Google Scholar] [CrossRef]
- Shangguan, Y.; Li, X.; Lin, Y.; Deng, J.; Yu, L. Mapping Spatial-Temporal Nationwide Soybean Planting Area in Argentina Using Google Earth Engine. Int. J. Remote Sens. 2022, 43, 1724–1748. [Google Scholar] [CrossRef]
- Samasse, K.; Hanan, N.P.; Anchang, J.Y.; Diallo, Y. A High-Resolution Cropland Map for the West African Sahel Based on High-Density Training Data, Google Earth Engine, and Locally Optimized Machine Learning. Remote Sens. 2020, 12, 1436. [Google Scholar] [CrossRef]
- Servia, H.; Pareeth, S.; Michailovsky, C.I.; de Fraiture, C.; Karimi, P. Operational Framework to Predict Field Level Crop Biomass Using Remote Sensing and Data Driven Models. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102725. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping Cropland Extent of Southeast and Northeast Asia Using Multi-Year Time-Series Landsat 30-m Data Using a Random Forest Classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Jiang, J.; Johansen, K.; Stanschewski, C.S.; Wellman, G.; Mousa, M.A.A.; Fiene, G.M.; Asiry, K.A.; Tester, M.; McCabe, M.F. Phenotyping a Diversity Panel of Quinoa Using UAV-Retrieved Leaf Area Index, SPAD-Based Chlorophyll and a Random Forest Approach. Precis. Agric. 2022, 23, 961–983. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Li, J.; Tian, Q.; Niyogi, D. Improving the Forecasting of Winter Wheat Yields in Northern China with Machine Learning–Dynamical Hybrid Subseasonal-to-Seasonal Ensemble Prediction. Remote Sens. 2022, 14, 1707. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Ata-Ul-Karim, S.T.; Ge, Q.; Li, X.; Xiao, J. Integrating Climate and Satellite Remote Sensing Data for Predicting County-Level Wheat Yield in China Using Machine Learning Methods. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102861. [Google Scholar] [CrossRef]
- Zepp, S.; Heiden, U.; Bachmann, M.; Wiesmeier, M.; Steininger, M.; van Wesemael, B. Estimation of Soil Organic Carbon Contents in Croplands of Bavaria from SCMaP Soil Reflectance Composites. Remote Sens. 2021, 13, 3141. [Google Scholar] [CrossRef]
- Estes, L.D.; Ye, S.; Song, L.; Luo, B.; Eastman, J.R.; Meng, Z.; Zhang, Q.; McRitchie, D.; Debats, S.R.; Muhando, J.; et al. High Resolution, Annual Maps of Field Boundaries for Smallholder-Dominated Croplands at National Scales. Front. Artif. Intell. 2022, 4, 744863. [Google Scholar] [CrossRef]
- Sitokonstantinou, V.; Koukos, A.; Drivas, T.; Kontoes, C.; Papoutsis, I.; Karathanassi, V. A Scalable Machine Learning Pipeline for Paddy Rice Classification Using Multi-Temporal Sentinel Data. Remote Sens. 2021, 13, 1769. [Google Scholar] [CrossRef]
- Tran, K.H.; Zhang, H.K.; McMaine, J.T.; Zhang, X.; Luo, D. 10 m Crop Type Mapping Using Sentinel-2 Reflectance and 30 m Cropland Data Layer Product. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102692. [Google Scholar] [CrossRef]
- Lawal, M.O. Tomato Detection Based on Modified YOLOv3 Framework. Sci. Rep. 2021, 11, 1447. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.M.; Bhaduri, J. Real-Time Growth Stage Detection Model for High Degree of Occultation Using DenseNet-Fused YOLOv4. Comput. Electron. Agric. 2022, 193, 106694. [Google Scholar] [CrossRef]
Terms | Total Link Strength | Occurrences | Average Publication Year | Average Citations | Average Normalized Citations |
---|---|---|---|---|---|
learning model | 569 | 47 | 2021 | 47 | 1 |
insecurity | 427 | 20 | 2021 | 6 | 0 |
vehicle | 396 | 15 | 2021 | 33 | 2 |
proceeding | 238 | 6 | 2022 | 0 | 0 |
content | 236 | 15 | 2021 | 9 | 2 |
mean square error | 234 | 13 | 2021 | 30 | 2 |
mining | 231 | 7 | 2020 | 8 | 0 |
depth | 228 | 9 | 2021 | 12 | 5 |
cover | 224 | 16 | 2020 | 44 | 1 |
zone | 221 | 16 | 2020 | 26 | 2 |
reconstruction | 216 | 6 | 2022 | 1 | 0 |
information system | 209 | 9 | 2020 | 4 | 0 |
reflectance | 200 | 9 | 2020 | 18 | 1 |
enterprise | 196 | 6 | 2022 | 0 | 0 |
agreement | 191 | 7 | 2021 | 12 | 1 |
knowledge gap | 186 | 4 | 2021 | 4 | 1 |
user need | 186 | 3 | 2021 | 2 | 0 |
waste | 173 | 6 | 2021 | 13 | 1 |
agricultural machinery | 171 | 5 | 2022 | 0 | 0 |
alkylphenol | 171 | 5 | 2022 | 0 | 0 |
All Keywords | Total Link Strength | Occurrences | Average Publication Year | Average Citations | Average Normalized Citations |
---|---|---|---|---|---|
machine learning | 4291 | 332 | 2020 | 19 | 1 |
food supply | 3810 | 249 | 2020 | 15 | 1 |
food security | 2325 | 186 | 2020 | 15 | 1 |
crops | 2041 | 126 | 2020 | 13 | 1 |
remote sensing | 1738 | 113 | 2020 | 17 | 1 |
decision trees | 1621 | 91 | 2021 | 15 | 1 |
learning systems | 1505 | 93 | 2020 | 22 | 1 |
agriculture | 1145 | 73 | 2020 | 20 | 1 |
climate change | 1041 | 65 | 2020 | 15 | 1 |
forecasting | 1011 | 63 | 2021 | 12 | 1 |
deep learning | 994 | 77 | 2021 | 38 | 1 |
crop yield | 976 | 69 | 2020 | 24 | 2 |
agricultural robots | 811 | 52 | 2021 | 10 | 1 |
random forests | 780 | 45 | 2021 | 18 | 1 |
algorithm | 755 | 42 | 2020 | 21 | 1 |
mapping | 737 | 42 | 2020 | 19 | 2 |
learning algorithms | 724 | 49 | 2020 | 13 | 1 |
support vector machines | 686 | 39 | 2020 | 15 | 1 |
artificial intelligence | 664 | 40 | 2019 | 23 | 1 |
satellite imagery | 631 | 40 | 2020 | 22 | 1 |
Countries | Total Link Strength | Documents | Citations | Normalized Citations | Average Publication Year | Average Citations | Average Normalized Citations |
---|---|---|---|---|---|---|---|
United States | 33504 | 113 | 4780 | 162 | 2020 | 42 | 1 |
China | 32447 | 104 | 1965 | 176 | 2021 | 19 | 2 |
Australia | 18443 | 31 | 1122 | 66 | 2020 | 36 | 2 |
India | 14040 | 90 | 754 | 64 | 2021 | 8 | 1 |
United Kingdom | 13363 | 42 | 1073 | 80 | 2020 | 26 | 2 |
Germany | 13326 | 28 | 813 | 33 | 2020 | 29 | 1 |
Italy | 10569 | 29 | 750 | 28 | 2021 | 26 | 1 |
France | 10003 | 21 | 556 | 30 | 2020 | 26 | 1 |
Netherlands | 9926 | 15 | 511 | 31 | 2020 | 34 | 2 |
Kenya | 9906 | 14 | 555 | 14 | 2020 | 40 | 1 |
Belgium | 9330 | 7 | 663 | 32 | 2019 | 95 | 5 |
South Africa | 8981 | 17 | 497 | 12 | 2020 | 29 | 1 |
Spain | 7946 | 12 | 753 | 16 | 2020 | 63 | 1 |
New Zealand | 7885 | 6 | 443 | 26 | 2020 | 74 | 4 |
Brazil | 7225 | 10 | 538 | 11 | 2021 | 54 | 1 |
Canada | 6545 | 14 | 667 | 17 | 2020 | 48 | 1 |
South Korea | 6231 | 7 | 401 | 3 | 2020 | 57 | 0 |
Sweden | 6210 | 5 | 396 | 2 | 2020 | 79 | 0 |
Finland | 5837 | 3 | 422 | 3 | 2019 | 141 | 1 |
Denmark | 5814 | 4 | 464 | 5 | 2020 | 116 | 1 |
Organizations | Total Link Strength | Documents | Citations | Normalized Citations | Average Publication Year | Average Citations | Average Normalized Citations |
---|---|---|---|---|---|---|---|
University of Chinese Academy of Sciences, Beijing, China | 5790 | 9 | 46 | 20 | 2021 | 5 | 2 |
Agri-Science Queensland, Department of Agriculture & Fisheries (DAF), Warwick, Australia | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Bayer Crop Science, United States | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Chinese Academy of Agricultural Sciences, Beijing, China | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Department of Biotechnology, Ministry of Science and Technology, Government of India, India | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Indian Council of Agricultural Research (ICAR)–Indian Agricultural Research Institute (IARI), New Delhi, India | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
International Maize and Wheat Improvement Center (CYMMIT), Mexico | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
National Center for Soybean Research, University of Missouri, Columbia, United States | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Shandong Academy of Agricultural Sciences, Jinan, China | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
South Asia Hub, International Rice Research Institute (IRRI), Hyderabad, India | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
University of California, Riverside, United States | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
University of Maryland, United States | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
University of Nebraska-Lincoln, United States | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
University of Southern Queensland, Toowoomba, Australia | 5449 | 1 | 27 | 4 | 2021 | 27 | 4 |
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China | 4392 | 4 | 104 | 14 | 2021 | 26 | 3 |
Sources | Total Link Strength | Documents | Citations | Normalized Citations | Average Publication Year | Average Citations | Average Normalized Citations |
---|---|---|---|---|---|---|---|
Remote Sensing | 6668 | 45 | 785 | 63 | 2021 | 17 | 1 |
International Journal of Applied Earth Observation and Geoinformation | 2094 | 12 | 166 | 16 | 2021 | 14 | 1 |
Agricultural and Forest Meteorology | 2050 | 9 | 348 | 22 | 2021 | 39 | 2 |
Remote Sensing of Environment | 1608 | 8 | 509 | 30 | 2020 | 64 | 4 |
Computers and Electronics in Agriculture | 1464 | 11 | 75 | 8 | 2020 | 7 | 1 |
Sustainability (Switzerland) | 1217 | 10 | 35 | 4 | 2021 | 4 | 0 |
ISPRS Journal of Photogrammetry and Remote Sensing | 885 | 4 | 106 | 8 | 2021 | 27 | 2 |
Science of the Total Environment | 869 | 10 | 75 | 18 | 2021 | 8 | 2 |
International Journal of Remote Sensing | 829 | 4 | 6 | 1 | 2022 | 2 | 0 |
Agricultural Systems | 584 | 5 | 97 | 5 | 2020 | 19 | 1 |
European Journal of Agronomy | 557 | 2 | 67 | 5 | 2020 | 34 | 3 |
GIScience and Remote Sensing | 524 | 3 | 41 | 2 | 2020 | 14 | 1 |
Frontiers in Plant Science | 517 | 8 | 1493 | 14 | 2020 | 187 | 2 |
Geo-Spatial Information Science | 507 | 3 | 12 | 2 | 2021 | 4 | 1 |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 483 | 5 | 28 | 3 | 2021 | 6 | 1 |
Sensors | 454 | 3 | 5 | 5 | 2022 | 2 | 2 |
Precision Agriculture | 403 | 2 | 2 | 2 | 2022 | 1 | 1 |
ISPRS International Journal of Geo-Information | 386 | 3 | 30 | 2 | 2020 | 10 | 1 |
Environmental Research Letters | 380 | 6 | 306 | 9 | 2020 | 51 | 2 |
Studies in Big Data | 334 | 2 | 0 | 0 | 2022 | 0 | 0 |
Documents | Goal | Area | Methods | Predictors | Platforms | Results |
---|---|---|---|---|---|---|
Han J. (2020) [46] | Winter wheat yield prediction | China | SVM GPR RF | EVI TMIN PRE NDVI SM TMAX DI | GEE | R2: >0.75 yield error: <10% |
Wang Y. (2020) [47] | Winter wheat yield prediction | United States | OLS LASSO SVM RF AdaBoost DNN | Vegetation indices (NDVI, EVI, GCI) Climate and soil variables | GEE MODIS | R2: 0.86 RMSE: 0.51 t/ha MAE: 0.39 t/ha |
Ma Y. (2021) [48] | Predict corn yield | United States | BNN | Vegetation indices Climate variables | GEE MODIS | R2: 0.77 R2: ~0.75 for the timeliness of the prediction achieved 2 months before the harvest |
Zhang L. (2020) [49] | Predict maize yield | China | LASSO RF XGBoost LSTM | Vegetation metrics Climate and soil variables Management factor | GEE MODIS | Results explanation: >75% of yield variation |
Cao J. (2020) [50] | Predict winter wheat yield | China | RR RF LightGBM | Vegetation indices Climate and socio-economic variables | GEE MODIS | R2: 0.68~0.75 Individual contribution: climate (~0.53), followed by VIs (~0.45) and SC variables (~0.30) |
Cao J. (2021) [51] | Predict wheat yield | China | RF DNN 1D-CNN LSTM | Crop planting areas Climate, satellite, soil and spatial information | GEE MODIS SRTM | R2: 0.83–0.90 RMSE: 561.18–959.62 kg/ha |
Maimaitijiang M. (2020) [52] | Predict soybean yield | Columbia, Missouri, United States | DNN PLSR RFR SVR | Vegetation indices Canopy height and vegetation fraction Normalized relative canopy temperature index Gray-level co-occurrence matrix | UAV | R2: 0.720 RMSE: 15.9% |
Bian C. (2022) [53] | Wheat yield prediction | China | GPR SVR RFR | Vegetation indices | UAV | R2 0.87–0.88 RMSE: 49.18–49.22 g/m2 MAE: 42.57–42.74 g/m2 |
Mashaba-Munghemezulu Z. (2021) [54] | Mapping maize farms | South Africa | RF SVM ST | Vegetation indices | Sentinel-1 Sentinel-2 | Combined Sentinel-1 and Sentinel-2 information improved the RF, SVM and ST approaches by 24.2%, 8.7% and 9.1%. |
Htitiou A. (2021) [55] | Mapping cropland | Morocco | RF | Vegetation indices | GEE Sentinel-2A Sentinel-2B MODIS | Overall accuracy: 97.86% |
Van Tricht K. (2018) [56] | Crop mapping | Belgium | RF | NDVI | GEE Sentinel-1 radar Sentinel-2 optical imagery | Maximum accuracy: 82% |
Zhang C. (2021) [57] | Mapping paddy rice | China | RF SDBT | NDVI PMI | Sentinel-2 | Effectiveness of RF for the objectives proposed |
Wang S. (2019) [58] | Crop mapping | United States Midwest | RF GMM | Vegetation indices | GEE | Accuracy: >85% |
Sakamoto T. (2020) [59] | Corn and soybean yield estimation | United States | RF | Vegetation indices Environmental variables (temperature, precipitation, soil moisture, etc.) | MODIS | RMSE: 0.539 t/ha for corn; 0.206 t/ha for soybeans |
Wang S. (2020) [60] | Crop mapping | India | CNN RF | Vegetation indices | GEE Sentinel-2 DigitalGlobe imagery | Accuracy: 74% |
Schwalbert R.A. (2020) [61] | Soybean yield prediction | Brazil | OLS RF LSTM | NDVI EVI Land surface temperature and precipitation variables | GEE CAR | MAE: 0.24 Mg ha−1 |
Maimaitijiang M. (2020) [62] | Crop monitoring | Columbia, Missouri, United States | PLSR RFR SVR ELR | Vegetation indices Canopy height and canopy cover | UAV | ELR and RFR presented the most accurate approaches |
Cai Y. (2019) [63] | Wheat yield prediction | Australia | LASSO SVM RF NN | EVI SIF Climate variables | MODIS EnviSat Eumetsat’s MetOp-A/B | R2: ~0.75 |
Panjala P. (2022) [64] | Mapping crop | India | RF SVM CART SMT | NDVI | GEE | Accuracy: 81.8% for RF, 68.8% for SVM, 64.9% for CART and 88% for SMT |
Pott L.P. (2021) [65] | Mapping crop | Brazil | RF Moran’s I Index Cluster k-means | Vegetation indices | GEE Sentinel-2 Sentinel-1 SRTM | Overall accuracy: 0.95 |
Cao J. (2021) [66] | Rice yield prediction | China | LASSO RF LSTM | EVI SIF Climate | GEE | R2: 0.77–0.87 RMSE: 298.11–724 kg/ha Two to one month leading time |
Löw F. (2018) [67] | Yield prediction and mapping of cotton and winter wheat | Central Asia | RF SVM | Vegetation Indexes | MODIS Landsat | Land cover accuracy: 91% Yield R2: 0.81 Acreage R2: 0.87 |
Abubakar G.A. (2020) [68] | Maize mapping | Nigeria | RF SVM | Multi-temporal spectral indices and bands | Sentinel-1A Sentinel-2A | Overall accuracy: 97% |
Liao D. (2021) [69] | Yield prediction | China | SVM KNN GPR | Climate Vegetation Indexes | MODIS | R2 max: 0.77 RMSE max: 42 × 104 kg grid−1 |
Chaves M.E.D. (2021) [2] | Land use/cover mapping | Brazil | RF | Vegetation Indices Spectral bands | CBERS data cubes MODIS | Classification accuracy: >85% |
Ju S. (2021) [13] | Yield prediction of paddy rice, corn and soybeans | South Korea, USA | SVM DT RF ANN SSAE CNN LSTM | Vegetation indices | MODIS | Best RRMSE: 7.45 for rice; 7.81 for corn; 8.91 for soybean |
He Y. (2019) [70] | Wheat mapping | China | RF | Vegetation indices PCA features Spectral bands NDBI method | Landsat-8 Sentinel-2 | Accuracy: 94% |
Meroni M. (2021) [71] | Yield prediction (barley, soft wheat and durum wheat) | Algeria | SVR LASSO MLP | Vegetation indices Climate | MODIS CHIRPS/ ECMWF | Accuracy: 0.16–0.2 t/ha (13–14% of mean yield) |
Masrur Ahmed A.A. (2022) [72] | Yield prediction of wheat | Australia | KRR feature selection (grey wolf, ant colony, atom search, particle swarm) | Hydro-climatic | MERRA-2 | R: 0.998 NRMSE: 0.437% |
Shangguan Y. (2022) [73] | Soybean mapping | Argentina | RF | Vegetation indices Spectral bands | GEE Landsat-8 | Accuracy: 86% Producer’s accuracy: 81.72% User’s accuracy: 89.04% |
Samasse K. (2020) [74] | Cropland mapping | West African Sahel | RF | Vegetation indices Spectral bands | GEE Landsat-8 | Accuracy: 90.1% User’s accuracy: 79% |
Servia H. (2022) [75] | Field biomass prediction | China | MLR SMLR BRT SVR RFR | Vegetation indices Evapotranspiration Radar Net primary production | Sentinel-1 Sentinel-2 FAO WaPOR | Accuracy: 89% (4 months prior to the harvest) |
Oliphant A.J. (2019) [76] | Cropland mapping | Northeast Asia | RF | Vegetation indices Spectral bands Elevation | GEE | Accuracy: 88.1% Producer’s accuracy: 81.6% User’s accuracy: 76.7% |
Jiang J. (2022) [77] | Quinoa abiotic stress prediction | Saudi Arabia | RF | Vegetation indices Spectral bands | UAVs | Leaf area index (R2: 0.977–0.980, RMSE: 0.119–0.167) Soil-plant analysis development (R2: 0.983–0.986, RMSE: 2.535–2.86) |
Cao J. (2022) [78] | Yield prediction of winter wheat | China | RF XGBoost SVR MLR | Atmospheric prediction Climate Vegetation indices | CRU MODIS | (3–4 months before the harvest) R2: 0.81–0.85 RMSE: 0.78–0.89 t//ha |
Zhou W. (2022) [79] | Yield prediction of wheat | China | RF SVM LASSO | Climate (water, temperature) Vegetation indices | CMA CRU MODIS | R2: 0.66–0.79 |
Zepp S. (2021) [80] | Soil organic carbon estimation | Bavaria | RF | Spectral bands Vegetation indices | Landsat | R2 = 0.67 RMSE = 1.24% |
Estes L.D. (2022) [81] | Field mapping | Ghana | RF | Spectral bands | CubeSats PlanetScope | Cropland accuracy: 88% Field boundaries accuracy: 86.7% |
Sitokonstantinou V. (2021) [82] | Paddy rice mapping | South Korea | K-means RF | Spectral bands Vegetation indices | Sentinel-1 Sentinel-2 | Accuracy: 96.69% |
Tran K.H. (2022) [83] | Crop mapping | South Dakota/ California | RF | Spectral bands Vegetation indices | Sentinel-2 | R2: ≥0.94 RMSE: ≤3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinho, V.J.P.D.; Cunha, C.A.d.S.; Pato, M.L.; Costa, P.J.L.; Sánchez-Carreira, M.C.; Georgantzís, N.; Rodrigues, R.N.; Coronado, F. Machine Learning and Food Security: Insights for Agricultural Spatial Planning in the Context of Agriculture 4.0. Appl. Sci. 2022, 12, 11828. https://doi.org/10.3390/app122211828
Martinho VJPD, Cunha CAdS, Pato ML, Costa PJL, Sánchez-Carreira MC, Georgantzís N, Rodrigues RN, Coronado F. Machine Learning and Food Security: Insights for Agricultural Spatial Planning in the Context of Agriculture 4.0. Applied Sciences. 2022; 12(22):11828. https://doi.org/10.3390/app122211828
Chicago/Turabian StyleMartinho, Vítor João Pereira Domingues, Carlos Augusto da Silva Cunha, Maria Lúcia Pato, Paulo Jorge Lourenço Costa, María Carmen Sánchez-Carreira, Nikolaos Georgantzís, Raimundo Nonato Rodrigues, and Freddy Coronado. 2022. "Machine Learning and Food Security: Insights for Agricultural Spatial Planning in the Context of Agriculture 4.0" Applied Sciences 12, no. 22: 11828. https://doi.org/10.3390/app122211828
APA StyleMartinho, V. J. P. D., Cunha, C. A. d. S., Pato, M. L., Costa, P. J. L., Sánchez-Carreira, M. C., Georgantzís, N., Rodrigues, R. N., & Coronado, F. (2022). Machine Learning and Food Security: Insights for Agricultural Spatial Planning in the Context of Agriculture 4.0. Applied Sciences, 12(22), 11828. https://doi.org/10.3390/app122211828