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Abstract: Climate change and global warming interconnected with the new contexts created by the
COVID-19 pandemic and the Russia-Ukraine conflict have brought serious challenges to national
and international organizations, especially in terms of food security and agricultural planning.
These circumstances are of particular concern due to the impacts on food chains and the resulting
disruptions in supply and price changes. The digital agricultural transition in Era 4.0 can play a
decisive role in dealing with these new agendas, where drones and sensors, big data, the internet of
things and machine learning all have their inputs. In this context, the main objective of this study
is to highlight insights from the literature on the relationships between machine learning and food
security and their contributions to agricultural planning in the context of Agriculture 4.0. For this,
a systematic review was carried out based on information from text and bibliographic data. The
proposed objectives and methodologies represent an innovative approach, namely, the consideration
of bibliometric evaluation as a support for a focused literature review related to the topics addressed
here. The results of this research show the importance of the digital transition in agriculture to
support better policy and planning design and address imbalances in food chains and agricultural
markets. New technologies in Era 4.0 and their application through Climate-Smart Agriculture
approaches are crucial for sustainable businesses (economically, socially and environmentally) and
the food supply. Furthermore, for the interrelationships between machine learning and food security,
the literature highlights the relevance of platforms and methods, such as, for example, Google Earth
Engine and Random Forest. These and other approaches have been considered to predict crop yield
(wheat, barley, rice, maize and soybean), abiotic stress, field biomass and crop mapping with high
accuracy (R2 ≈ 0.99 and RMSE ≈ 1%).

Keywords: literature review; bibliometric analysis; Food 4.0; Industry 4.0; Climate-Smart Agriculture

1. Introduction

The agricultural land suitability assessment is an interesting approach to land use plan-
ning and to achieve food security goals, and where the new technologies may contribute
significantly [1]. The digital transition’s contributions to food security and agricultural
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planning come from the collection of information to support policy and decision makers [2]
and the processing of these data to predict plausible scenarios [3]. Cropland mapping is a
case where machine learning, for instance, may produce important insights for sustainable
land management [4]. This is particularly important in African countries [5], for example,
where the challenges related to food security are serious and deserve special attention to
find adjusted solutions [6]. The application of new technologies in the African context is
not an easy task [7].

Agricultural land management and planning are interrelated with other land uses,
such as urbanization [8]. With respect to agricultural land planning, the current chal-
lenges are diverse and range from the food supply to the ecosystem services [9]. In these
frameworks, specifically for policy design, it is important to be aware of the diversity of
stakeholders with different objectives and skills [10]. Additionally, the contexts associated
with climate change bring new concerns [11].

Machine learning is a part of artificial intelligence applied to consider data and ap-
proaches to learn similarly to humans. The machine learning methods use remote sensing
information [12], for example, to predict farming yields [13] and promote an adjusted
agricultural planning [14] in the framework of the digital transition [15]. The outputs of
machine learning are important and bring added value to the following domains: food
security [16] and nutrition [17]; planetary health [18]; water management [19]; irrigated
areas identification [20]; land susceptibilities mapping [21]; farm area mapping [22]; soil
fertility assessment [23]; soil salinization analysis [24]; smart honey chains [25]; agricultural
resources management [26]; agricultural production planning [27]; and climate change
impacts assessment [28] and agricultural modelling [29].

Based on the contexts described above, and taking into account the gaps in the litera-
ture about the use of bibliometric analysis to assess dimensions related to the consideration
of machine learning approaches for food security prediction and agricultural planning, the
main objective of this research is to show insights from the scientific literature about the
interconnections between machine learning and food security and their interrelationships
with agricultural planning in the Era 4.0. Indeed, a search in the Scopus database for the
topics “machine learning”, “food security” and “bibliometric” (within the “Article title, Ab-
stract and Keywords”) identified only one study, related to ecological restoration [30], thus
highlighting the novelty of the research presented here and its relevance to the literature
and to the agricultural and food sectors.

2. Materials and Methods

Considering the objectives proposed for this research, 499 documents were considered
from the Scopus database [31] for the topics “machine learning” and “food security”
in a search carried out on the 9th of September 2022 within the article title, abstract
and keywords.

This bibliometric information was explored through the VOSviewer software [32,33],
considering text and bibliographic data. For text data, co-occurrence links, terms as items
and binary counting were considered. Binary counting means that the occurrence met-
rics represent the number of documents where the term appears at least once [32]. For
bibliographic data, co-occurrence and bibliographic coupling links were considered (with
full counting). All keywords were taken into account as items for the co-occurrence links
(relatedness is based on the number of documents where the items appear together) and
countries, organizations and sources were considered as items for the bibliographic cou-
pling links (relatedness is based on the number of references the items share) [32].

To identify the most relevant networked items for the objectives proposed for this
study, the total link strength metric was taken into account [34]. This metric shows the total
strength of the links of the term, for example, with other terms, indicating the relevance
of the item for the network. This bibliometric analysis was used as support to carry out
a systematic literature review [35] for the top 40 documents with the highest total link
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strength. The consideration of the bibliometric assessment as a basis for the systematic
review has been explored, for example, by Martinho [36–38].

In figures presented for bibliometric assessment, the dimension of the circle (and
respective label) associated with each item indicates the number of occurrences (for co-
occurrence links), documents (for bibliographic coupling links and countries, organizations
and sources as items) and citations (for bibliographic coupling links and documents as
items). The proximity of the items indicates greater relatedness. In tables, average pub-
lication year is the average year of publication of the documents where a keyword or
term appears, or the average year of publication of the documents published by an author,
country, organization, or source. Average citations are the average number of citations
received by the documents. The normalized citations are corrected for the fact that older
documents have had more time to receive citations [32].

In summary, following the PRISMA statement (Preferred Reporting Items for Sys-
tematic reviews and Meta-Analyses) [35], a search of the Scopus database for the topics
“machine learning” and “food safety” was conducted on 9 September 2022 and 499 docu-
ments were identified. To select the studies to be surveyed through the literature review, a
bibliometric assessment was considered, based on co-occurrence and bibliographic cou-
pling links and total link strength metrics. This approach to the topics explored here is
new and shows the relevance of this research. When the number of documents found in
the search is high, there is a need to select the most relevant ones. This selection is criti-
cal [39], but bibliometric analysis can make important contributions here. There are other
approaches considered for other topics [40–43]; nonetheless, the approach here presented
was considered adjusted for the objectives proposed.

3. Bibliometric Assessment

This section is organized into two subsections, one for text data (considering binary
counting and 1 as the minimum number of occurrences of a term) and the other for
bibliographic data (full counting, 1 as the minimum number of occurrences of a keyword,
country, organization or source and 0 as the minimum number of citations of a document).
In this section, the results presented in figures and tables are those obtained from the
outputs of the VOSviewer software.

3.1. Text Data

Figure 1, Table 1 and the remaining information obtained from the VOSviewer software
highlight the importance of terms, such as the following: learning model; insecurity; mining;
reconstruction; information system; knowledge gap; agricultural machinery; functional
food product; industrial building; inverter unit; object detection; and polluted air.

These terms reveal the importance given by several stakeholders to worldwide food
security, where the digital transition and the frameworks associated with Agriculture 4.0,
Food 4.0 and Industry 4.0 may be fundamental to mitigate world undernourishment. The
great challenge is to increase agricultural production, with efficiency and profitability, to
deal with the increased demand for food by the world population without compromising
the sustainability of natural resources. These concerns are already present, for example, in
the Climate-Smart Agriculture (CSA) approach launched by the FAO (Food and Agriculture
Organization) [44,45], but there is still a long way to run.

This text data assessment also reveals the importance of information, learning models
and spatial planning to deal with the contexts of food security. In fact, in the era of artificial
intelligence, information and big data are crucial for the development of autonomous equip-
ment and the internet of things (IoT). In turn, spatial planning, namely, in terms of industrial
building and farm organizations, has its relevance for the frameworks here described.
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Figure 1. Network visualization map for text data (co-occurrence links and terms as items), consid-
ering binary counting and 1 as the minimum number of occurrences of a term. (a) Full network;
(b) network around the items with the highest occurrences.
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Table 1. Top 20 terms with the highest total link strength for text data, considering binary counting
and 1 as the minimum number of occurrences of a term.

Terms Total Link
Strength Occurrences

Average
Publication

Year

Average
Citations

Average
Normalized

Citations

learning model 569 47 2021 47 1
insecurity 427 20 2021 6 0

vehicle 396 15 2021 33 2
proceeding 238 6 2022 0 0

content 236 15 2021 9 2
mean square error 234 13 2021 30 2

mining 231 7 2020 8 0
depth 228 9 2021 12 5
cover 224 16 2020 44 1
zone 221 16 2020 26 2

reconstruction 216 6 2022 1 0
information system 209 9 2020 4 0

reflectance 200 9 2020 18 1
enterprise 196 6 2022 0 0
agreement 191 7 2021 12 1

knowledge gap 186 4 2021 4 1
user need 186 3 2021 2 0

waste 173 6 2021 13 1
agricultural machinery 171 5 2022 0 0

alkylphenol 171 5 2022 0 0

3.2. Bibliographic Data

This subsection will be structured in two parts, one for the co-occurrence links and
all keywords as items, and the other part for bibliographic coupling links and countries,
organizations and sources as items.

3.2.1. Co-Occurrence Links

All keywords with the highest total link strength are the following: machine learning;
food supply; food security; crops; remote sensing; decision trees; climate change; agricul-
tural robots; artificial intelligence; maize; wheat; prediction; land use; and China (Figure 2,
Table 2 and the remaining output from the VOSviewer software). The several dimensions
related to food security are interrelated with the different domains of the agricultural sector
(crops production), global warming, Era 4.0 (big data, internet of things, machine learning
and remote sensing), land use changes, grain production (maize and wheat) and specific
contexts (such as those from China).

Generally, and considering the full information, all the keywords with the highest
relatedness are also those with the greatest number of occurrences, but are not the items
with the greatest average citations, or average normalized citations. The average publication
year for the top 20 all keywords is recent and ranges, namely, between 2020 and 2021.
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Table 2. Top 20 all keywords with the highest total link strength for bibliographic data, considering
full counting and 1 as the minimum number of occurrences of a keyword.

All Keywords Total Link
Strength Occurrences

Average
Publication

Year

Average
Citations

Average
Normalized

Citations

machine learning 4291 332 2020 19 1
food supply 3810 249 2020 15 1
food security 2325 186 2020 15 1

crops 2041 126 2020 13 1
remote sensing 1738 113 2020 17 1
decision trees 1621 91 2021 15 1

learning systems 1505 93 2020 22 1
agriculture 1145 73 2020 20 1

climate change 1041 65 2020 15 1
forecasting 1011 63 2021 12 1

deep learning 994 77 2021 38 1
crop yield 976 69 2020 24 2

agricultural robots 811 52 2021 10 1
random forests 780 45 2021 18 1

algorithm 755 42 2020 21 1
mapping 737 42 2020 19 2

learning algorithms 724 49 2020 13 1
support vector machines 686 39 2020 15 1

artificial intelligence 664 40 2019 23 1
satellite imagery 631 40 2020 22 1

3.2.2. Bibliographic Coupling Links

The United States, China, Australia, India, the United Kingdom, Germany, Italy,
France, The Netherlands and Kenya are among the countries with the highest total link
strength for the topics addressed (Figure 3 and Table 3). These countries of affiliation for
the researchers reveal the concerns of the scientific community with some specific contexts,
such as China and India (considering their population), for example, because of the risks of
food insecurity, and where machine learning and agricultural planning may bring relevant
contributions. Another context that deserves special attention is Brazil where, despite the
technological advances in agriculture and this country being one of the biggest producers
of grain, the problems with food insecurity remain, calling for more adjusted policies.

In general, the countries with the greatest total link strength have also a high number
of documents, citations and normalized citations. The correlations among the total link
strength and the average citations and the average normalized citations are not so evident.
The average publication year for the top 20 countries ranges between 2019 and 2021.

The top five organizations with the greatest relatedness are the following (Figure 4 and
Table 4): the University of the Chinese Academy of Sciences, Beijing, China; Agri-Science
Queensland, Department of Agriculture & Fisheries (DAF), Warwick, Australia; Bayer
Crop Science, United States; the Center for Soybean Research of The State Key Laboratory
of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong,
Shatin, Hong Kong; and the Center of Excellence in Genomics & Systems Biology, Inter-
national Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
The information presented in Figure 4 and Table 4 (and the remaining output from the
VOSviewer software) highlight the interest of institutions and the scientific communities in
countries, such as China and India, in topics related to food security and machine learning.
In this case, the correlations between the total link strength and the other metrics, for the
full information, are not so obvious.
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Figure 3. Network visualization map for bibliographic data (bibliographic coupling links and countries
as items), considering full counting and 1 as the minimum number of occurrences of a country.

Table 3. Top 20 countries with the highest total link strength for bibliographic data, considering full
counting and 1 as the minimum number of occurrences of a country.

Countries Total Link
Strength Documents Citations Normalized

Citations

Average
Publication

Year

Average
Citations

Average
Normalized

Citations

United States 33504 113 4780 162 2020 42 1
China 32447 104 1965 176 2021 19 2

Australia 18443 31 1122 66 2020 36 2
India 14040 90 754 64 2021 8 1

United Kingdom 13363 42 1073 80 2020 26 2
Germany 13326 28 813 33 2020 29 1

Italy 10569 29 750 28 2021 26 1
France 10003 21 556 30 2020 26 1

Netherlands 9926 15 511 31 2020 34 2
Kenya 9906 14 555 14 2020 40 1

Belgium 9330 7 663 32 2019 95 5
South Africa 8981 17 497 12 2020 29 1

Spain 7946 12 753 16 2020 63 1
New Zealand 7885 6 443 26 2020 74 4

Brazil 7225 10 538 11 2021 54 1
Canada 6545 14 667 17 2020 48 1

South Korea 6231 7 401 3 2020 57 0
Sweden 6210 5 396 2 2020 79 0
Finland 5837 3 422 3 2019 141 1

Denmark 5814 4 464 5 2020 116 1



Appl. Sci. 2022, 12, 11828 9 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 25 
 

Sweden 6210 5 396 2 2020 79 0 

Finland 5837 3 422 3 2019 141 1 

Denmark 5814 4 464 5 2020 116 1 

The top five organizations with the greatest relatedness are the following (Figure 4 

and Table 4): the University of the Chinese Academy of Sciences, Beijing, China; Agri-

Science Queensland, Department of Agriculture & Fisheries (DAF), Warwick, Australia; 

Bayer Crop Science, United States; the Center for Soybean Research of The State Key La-

boratory of Agrobiotechnology and School of Life Sciences, the Chinese University of 

Hong Kong, Shatin, Hong Kong; and the Center of Excellence in Genomics & Systems 

Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hy-

derabad, India. The information presented in Figure 4 and Table 4 (and the remaining 

output from the VOSviewer software) highlight the interest of institutions and the scien-

tific communities in countries, such as China and India, in topics related to food security 

and machine learning. In this case, the correlations between the total link strength and the 

other metrics, for the full information, are not so obvious. 

 

(a) 

 

(b) 

Figure 4. Network visualization map for bibliographic data (bibliographic coupling links and
organizations as items), considering full counting and 1 as the minimum number of occurrences of
an organization. (a) Full network; (b) network around some of the items with the highest documents.

Remote Sensing, the International Journal of Applied Earth Observation and Geoinformation,
Agricultural and Forest Meteorology, Remote Sensing of Environment, Computers and Electronics
in Agriculture, Sustainability (Switzerland), the ISPRS Journal of Photogrammetry and Remote
Sensing, Science of the Total Environment, the International Journal of Remote Sensing and
Agricultural Systems are the top 10 sources with the highest relatedness (Figure 5 and
Table 5). These sources have scopes associated with new technologies, agriculture and
sustainability. Considering the full information, the more evident correlation with the total
link strength comes from the number of documents, citations and normalized citations (in
some cases, however, not very strong).
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Table 4. Top 20 organizations with the highest total link strength for bibliographic data, considering
full counting and 1 as the minimum number of occurrences of an organization.

Organizations Total Link
Strength Documents Citations Normalized

Citations

Average
Publication

Year

Average
Citations

Average
Normalized

Citations

University of Chinese Academy of
Sciences, Beijing, China 5790 9 46 20 2021 5 2

Agri-Science Queensland, Department of
Agriculture & Fisheries (DAF),

Warwick, Australia
5449 1 27 4 2021 27 4

Bayer Crop Science, United States 5449 1 27 4 2021 27 4
Center for Soybean Research of the State

Key Laboratory of Agrobiotechnology and
School of Life Sciences, The Chinese

University of Hong Kong,
Shatin, Hong Kong

5449 1 27 4 2021 27 4

Center of Excellence in Genomics &
Systems Biology, International Crops
Research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

5449 1 27 4 2021 27 4

Chinese Academy of Agricultural
Sciences, Beijing, China 5449 1 27 4 2021 27 4

Crops Research Institute, Guangdong
Academy of Agricultural Sciences,

Guangzhou, China
5449 1 27 4 2021 27 4

Department of Biotechnology, Ministry of
Science and Technology, Government of

India, India
5449 1 27 4 2021 27 4

Indian Council of Agricultural Research
(ICAR)–Indian Agricultural Research

Institute (IARI), New Delhi, India
5449 1 27 4 2021 27 4

International Crops Research Institute for
the Semi-Arid Tropics (ICRISAT),

Nairobi, Kenya
5449 1 27 4 2021 27 4

International Maize and Wheat
Improvement Center (CYMMIT), Mexico 5449 1 27 4 2021 27 4

Joint FAO/IAEA Division of Nuclear
Techniques in Food and Agriculture,

Vienna, Austria
5449 1 27 4 2021 27 4

National Center for Soybean Research,
University of Missouri, Columbia,

United States
5449 1 27 4 2021 27 4

Shandong Academy of Agricultural
Sciences, Jinan, China 5449 1 27 4 2021 27 4

South Asia Hub, International Rice
Research Institute (IRRI),

Hyderabad, India
5449 1 27 4 2021 27 4

University of California, Riverside,
United States 5449 1 27 4 2021 27 4

University of Maryland, United States 5449 1 27 4 2021 27 4
University of Nebraska-Lincoln,

United States 5449 1 27 4 2021 27 4

University of Southern Queensland,
Toowoomba, Australia 5449 1 27 4 2021 27 4

Key Laboratory of Land Surface Pattern
and Simulation, Institute of Geographical
Sciences and Natural Resources Research,

Chinese Academy of Sciences,
Beijing, China

4392 4 104 14 2021 26 3
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as items), considering full counting and 1 as the minimum number of occurrences of a source.
(a) Full network; (b) network around some of the items with the highest documents.

Table 5. Top 20 sources with the highest total link strength for bibliographic data, considering full
counting and 1 as the minimum number of occurrences of a source.

Sources Total Link
Strength Documents Citations Normalized

Citations

Average
Publication

Year

Average
Citations

Average
Normalized

Citations

Remote Sensing 6668 45 785 63 2021 17 1
International Journal of Applied Earth

Observation and Geoinformation 2094 12 166 16 2021 14 1

Agricultural and Forest Meteorology 2050 9 348 22 2021 39 2
Remote Sensing of Environment 1608 8 509 30 2020 64 4

Computers and Electronics in Agriculture 1464 11 75 8 2020 7 1
Sustainability (Switzerland) 1217 10 35 4 2021 4 0

ISPRS Journal of Photogrammetry and
Remote Sensing 885 4 106 8 2021 27 2

Science of the Total Environment 869 10 75 18 2021 8 2
International Journal of Remote Sensing 829 4 6 1 2022 2 0

Agricultural Systems 584 5 97 5 2020 19 1
European Journal of Agronomy 557 2 67 5 2020 34 3
GIScience and Remote Sensing 524 3 41 2 2020 14 1

Frontiers in Plant Science 517 8 1493 14 2020 187 2
Geo-Spatial Information Science 507 3 12 2 2021 4 1

IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 483 5 28 3 2021 6 1

Sensors 454 3 5 5 2022 2 2
Precision Agriculture 403 2 2 2 2022 1 1

ISPRS International Journal of
Geo-Information 386 3 30 2 2020 10 1

Environmental Research Letters 380 6 306 9 2020 51 2
Studies in Big Data 334 2 0 0 2022 0 0
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4. Systematic Literature Review

Table 6 presents the top 40 documents with the highest total link strength that will be
considered in this section to carry out the literature review based on bibliometric assessment.
This table highlights also that there is no strong correlation (analyzing coefficients of
correlation) among the total link strength and the other metrics considered.

Table 6. Top 40 documents with the highest total link strength for bibliographic data (bibliographic
coupling links), considering full counting and 0 as the minimum number of citations of a document.

Documents URL Total Link
Strength Citations Normalized

Citations
Publication

Year

Han J. (2020) [46] https://doi.org/10.3390/rs12020236 523 76 4 2020
Wang Y. (2020) [47] https://doi.org/10.3390/rs12081232 432 46 2 2020

Ma Y. (2021) [48] https://doi.org/10.1016/j.rse.2021.112408 431 27 4 2021
Zhang L. (2020) [49] https://doi.org/10.3390/rs12010021 416 39 2 2020

Cao J. (2020) [50] https://doi.org/10.3390/rs12050750 414 28 1 2020
Cao J. (2021) [51] https://doi.org/10.1016/j.eja.2020.126204 401 25 4 2021

Maimaitijiang M. (2020) [52] https://doi.org/10.1016/j.rse.2019.111599 386 211 11 2020
Bian C. (2022) [53] https://doi.org/10.3390/rs14061474 380 5 5 2022

Mashaba-Munghemezulu Z.
(2021) [54] https://doi.org/10.3390/su13094728 360 3 0 2021

Htitiou A. (2021) [55] https://doi.org/10.3390/rs13214378 357 3 0 2021
Van Tricht K. (2018) [56] https://doi.org/10.3390/rs10101642 347 160 4 2018

Zhang C. (2021) [57] https://doi.org/10.1016/j.compag.2020.105978 346 9 1 2021
Wang S. (2019) [58] https://doi.org/10.1016/j.rse.2018.12.026 344 118 3 2019

Sakamoto T. (2020) [59] https://doi.org/10.1016/j.isprsjprs.2019.12.012 342 37 2 2020
Wang S. (2020) [60] https://doi.org/10.3390/rs12182957 334 25 1 2020

Schwalbert R.A. (2020) [61] https://doi.org/10.1016/j.agrformet.2019.107886 330 90 5 2020
Maimaitijiang M. (2020) [62] https://doi.org/10.3390/rs12091357 325 58 3 2020

Cai Y. (2019) [63] https://doi.org/10.1016/j.agrformet.2019.03.010 322 178 5 2019
Panjala P. (2022) [64] https://doi.org/10.1007/978-981-16-5847-1_8 320 0 0 2022
Pott L.P. (2021) [65] https://doi.org/10.1016/j.isprsjprs.2021.04.015 318 14 2 2021

Cao J. (2021) [66] https://doi.org/10.1016/j.agrformet.2020.108275 317 50 8 2021
Löw F. (2018) [67] https://doi.org/10.1080/15481603.2017.1414010 311 22 1 2018

Abubakar G.A. (2020) [68] https://doi.org/10.3390/su12062539 310 17 1 2020
Liao D. (2021) [69] https://doi.org/10.1007/s00704-021-03799-3 305 0 0 2021

Chaves M.E.D. (2021) [2] https://doi.org/10.1080/01431161.2021.1978584 304 6 1 2021
Ju S. (2021) [13] https://doi.org/10.1016/j.agrformet.2021.108530 303 3 0 2021
He Y. (2019) [70] https://doi.org/10.3390/rs11050535 301 14 0 2019

Meroni M. (2021) [71] https://doi.org/10.1016/j.agrformet.2021.108555 296 5 1 2021
Masrur Ahmed A.A. (2022) [72] https://doi.org/10.3390/rs14051136 293 1 1 2022

Shangguan Y. (2022) [73] https://doi.org/10.1080/01431161.2022.2049913 283 0 0 2022
Samasse K. (2020) [74] https://doi.org/10.3390/rs12091436 281 12 1 2020
Servia H. (2022) [75] https://doi.org/10.1016/j.jag.2022.102725 278 0 0 2022

Oliphant A.J. (2019) [76] https://doi.org/10.1016/j.jag.2018.11.014 278 88 3 2019
Jiang J. (2022) [77] https://doi.org/10.1007/s11119-021-09870-3 274 2 2 2022
Cao J. (2022) [78] https://doi.org/10.3390/rs14071707 272 2 2 2022

Zhou W. (2022) [79] https://doi.org/10.1016/j.jag.2022.102861 266 0 0 2022
Zepp S. (2021) [80] https://doi.org/10.3390/rs13163141 263 5 1 2021

Estes L.D. (2022) [81] https://doi.org/10.3389/frai.2021.744863 261 0 0 2022
Sitokonstantinou V. (2021) [82] https://doi.org/10.3390/rs13091769 261 3 0 2021

Tran K.H. (2022) [83] https://doi.org/10.1016/j.jag.2022.102692 251 3 3 2022

The summary findings from the systematic review are presented in the next sub-
section. Some of the best results for accuracy (Figure 6) were found, for example, by Htitiou
A. (2021) [55], Masrur Ahmed A.A. (2022) [72] and Jiang J. (2022) [77]. Htitiou A. (2021) [55]
and Jiang J. (2022) [77] used Random Forest methods and vegetation indices as predictors.

https://doi.org/10.3390/rs12020236
https://doi.org/10.3390/rs12081232
https://doi.org/10.1016/j.rse.2021.112408
https://doi.org/10.3390/rs12010021
https://doi.org/10.3390/rs12050750
https://doi.org/10.1016/j.eja.2020.126204
https://doi.org/10.1016/j.rse.2019.111599
https://doi.org/10.3390/rs14061474
https://doi.org/10.3390/su13094728
https://doi.org/10.3390/rs13214378
https://doi.org/10.3390/rs10101642
https://doi.org/10.1016/j.compag.2020.105978
https://doi.org/10.1016/j.rse.2018.12.026
https://doi.org/10.1016/j.isprsjprs.2019.12.012
https://doi.org/10.3390/rs12182957
https://doi.org/10.1016/j.agrformet.2019.107886
https://doi.org/10.3390/rs12091357
https://doi.org/10.1016/j.agrformet.2019.03.010
https://doi.org/10.1007/978-981-16-5847-1_8
https://doi.org/10.1016/j.isprsjprs.2021.04.015
https://doi.org/10.1016/j.agrformet.2020.108275
https://doi.org/10.1080/15481603.2017.1414010
https://doi.org/10.3390/su12062539
https://doi.org/10.1007/s00704-021-03799-3
https://doi.org/10.1080/01431161.2021.1978584
https://doi.org/10.1016/j.agrformet.2021.108530
https://doi.org/10.3390/rs11050535
https://doi.org/10.1016/j.agrformet.2021.108555
https://doi.org/10.3390/rs14051136
https://doi.org/10.1080/01431161.2022.2049913
https://doi.org/10.3390/rs12091436
https://doi.org/10.1016/j.jag.2022.102725
https://doi.org/10.1016/j.jag.2018.11.014
https://doi.org/10.1007/s11119-021-09870-3
https://doi.org/10.3390/rs14071707
https://doi.org/10.1016/j.jag.2022.102861
https://doi.org/10.3390/rs13163141
https://doi.org/10.3389/frai.2021.744863
https://doi.org/10.3390/rs13091769
https://doi.org/10.1016/j.jag.2022.102692


Appl. Sci. 2022, 12, 11828 13 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 25 
 

Chaves M.E.D. (2021) [2] 
https://doi.org/10.1080/01431161.2021.197

8584 
304 6 1 2021 

Ju S. (2021) [13] 
https://doi.org/10.1016/j.agrformet.2021.1

08530 
303 3 0 2021 

He Y. (2019) [70] https://doi.org/10.3390/rs11050535 301 14 0 2019 

Meroni M. (2021) [71] 
https://doi.org/10.1016/j.agrformet.2021.1

08555 
296 5 1 2021 

Masrur Ahmed A.A. (2022) [72] https://doi.org/10.3390/rs14051136 293 1 1 2022 

Shangguan Y. (2022) [73] 
https://doi.org/10.1080/01431161.2022.204

9913 
283 0 0 2022 

Samasse K. (2020) [74] https://doi.org/10.3390/rs12091436 281 12 1 2020 

Servia H. (2022) [75] https://doi.org/10.1016/j.jag.2022.102725 278 0 0 2022 

Oliphant A.J. (2019) [76] https://doi.org/10.1016/j.jag.2018.11.014 278 88 3 2019 

Jiang J. (2022) [77] 
https://doi.org/10.1007/s11119-021-09870-

3 
274 2 2 2022 

Cao J. (2022) [78] https://doi.org/10.3390/rs14071707 272 2 2 2022 

Zhou W. (2022) [79] https://doi.org/10.1016/j.jag.2022.102861 266 0 0 2022 

Zepp S. (2021) [80] https://doi.org/10.3390/rs13163141 263 5 1 2021 

Estes L.D. (2022) [81] https://doi.org/10.3389/frai.2021.744863 261 0 0 2022 

Sitokonstantinou V. (2021) [82] https://doi.org/10.3390/rs13091769 261 3 0 2021 

Tran K.H. (2022) [83] https://doi.org/10.1016/j.jag.2022.102692 251 3 3 2022 

The summary findings from the systematic review are presented in the next sub-sec-

tion. Some of the best results for accuracy (Figure 6) were found, for example, by Htitiou 

A. (2021) [55], Masrur Ahmed A.A. (2022) [72] and Jiang J. (2022) [77]. Htitiou A. (2021) 

[55] and Jiang J. (2022) [77] used Random Forest methods and vegetation indices as pre-

dictors. 

 

Figure 6. Results for accuracy found by the different studies. 

4.1. Main Findings 

From reviewing and assessing deeper the several documents presented in Table 6, 

the main findings are exhibited in Table 7. It is worth mentioning that remote sensing data 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Results for accuracy

Figure 6. Results for accuracy found by the different studies.

4.1. Main Findings

From reviewing and assessing deeper the several documents presented in Table 6, the
main findings are exhibited in Table 7. It is worth mentioning that remote sensing data and
machine learning models are buzzwords in the contexts of agriculture 4.0 for food security
frameworks assessment and agricultural planning. Remote sensing may be considered
unmanned aerial vehicle (UAV) platforms, and for machine learning the following models
can be used [53], for example: Gaussian process regression (GPR); support vector machine
(SVM) regression; and random forest (RF) regression. Other approaches and designations
are usually taken into account for machine learning, such as neural network (NN) [63], deep
neural network (DNN), 1D convolutional neural network (CNN), long short-term memory
(LSTM) networks [51], ridge regression (RR), light gradient boosting (LightGBM) [50],
Bayesian neural network (BNN) [48] and adaptive boosting (AdaBoost) [47]. For the data
collection, satellite information [62] is also considered, such as that from the Sentinel-1
and Sentinel-2 [54] under the Copernicus program [56]. Shuttle radar topographic mission
(SRTM) [65] and moderate resolution imaging spectroradiometer (MODIS) [59] are other
methodologies and designations used in approaches considered to collect information.
Regarding data gathering, the Google Earth Engine (GEE) is a useful platform [58] that
allows converting every satellite image into Normalized Difference Vegetation Index [64].

Agricultural yield prediction is crucial in times of volatility and uncertainty as currently
happening worldwide, to deal with the implications of climate change, pandemics [55],
international conflicts and policy design [52]. The new technologies associated with the
digital transition, such as those related to machine learning, bring important contributions [57]
to mitigate the risks of food insecurity and for better agricultural planning [46] in specific
contexts such as those of Brazil [61], India [60] and China [49].

In the following subsections, deeper dimensions related to land mapping and crop
yield prediction will be explored.
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Table 7. Summary insights from the systematic review.

Documents Goal Area Methods Predictors Platforms Results

Han J. (2020) [46] Winter wheat yield prediction China
SVM
GPR
RF

EVI
TMIN
PRE

NDVI
SM

TMAX
DI

GEE R2: >0.75
yield error: <10%

Wang Y. (2020) [47] Winter wheat yield prediction United States

OLS
LASSO

SVM
RF

AdaBoost
DNN

Vegetation indices (NDVI, EVI, GCI)
Climate and soil variables

GEE
MODIS

R2: 0.86
RMSE: 0.51 t/ha
MAE: 0.39 t/ha

Ma Y. (2021) [48] Predict corn yield United States BNN Vegetation indices
Climate variables

GEE
MODIS

R2: 0.77
R2: ~0.75 for the timeliness of the

prediction achieved 2 months before
the harvest

Zhang L. (2020) [49] Predict maize yield China

LASSO
RF

XGBoost
LSTM

Vegetation metrics
Climate and soil variables

Management factor

GEE
MODIS

Results explanation: >75% of yield
variation

Cao J. (2020) [50] Predict winter wheat yield China
RR
RF

LightGBM

Vegetation indices
Climate and socio-economic variables

GEE
MODIS

R2: 0.68~0.75
Individual contribution: climate

(~0.53), followed by VIs (~0.45) and
SC variables (~0.30)

Cao J. (2021) [51] Predict wheat yield China

RF
DNN

1D-CNN
LSTM

Crop planting areas
Climate, satellite, soil and spatial

information

GEE
MODIS
SRTM

R2: 0.83–0.90
RMSE: 561.18–959.62 kg/ha

Maimaitijiang M. (2020) [52] Predict soybean yield
Columbia,

Missouri, United
States

DNN
PLSR
RFR
SVR

Vegetation indices
Canopy height and vegetation fraction

Normalized relative canopy
temperature index

Gray-level co-occurrence matrix

UAV R2: 0.720
RMSE: 15.9%

Bian C. (2022) [53] Wheat yield prediction China
GPR
SVR
RFR

Vegetation indices UAV
R2 0.87–0.88

RMSE: 49.18–49.22 g/m2

MAE: 42.57–42.74 g/m2
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Table 7. Cont.

Documents Goal Area Methods Predictors Platforms Results

Mashaba-Munghemezulu Z.
(2021) [54] Mapping maize farms South Africa

RF
SVM

ST
Vegetation indices Sentinel-1 Sentinel-2

Combined Sentinel-1 and Sentinel-2
information improved the RF, SVM
and ST approaches by 24.2%, 8.7%

and 9.1%.

Htitiou A. (2021) [55] Mapping cropland Morocco RF Vegetation indices
GEE

Sentinel-2A Sentinel-2B
MODIS

Overall accuracy: 97.86%

Van Tricht K. (2018) [56] Crop mapping Belgium RF NDVI

GEE
Sentinel-1 radar

Sentinel-2 optical
imagery

Maximum accuracy: 82%

Zhang C. (2021) [57] Mapping paddy rice China RF
SDBT

NDVI
PMI Sentinel-2 Effectiveness of RF for the objectives

proposed

Wang S. (2019) [58] Crop mapping United States
Midwest

RF
GMM Vegetation indices GEE Accuracy: >85%

Sakamoto T. (2020) [59] Corn and soybean yield
estimation United States RF

Vegetation indices
Environmental variables (temperature,

precipitation, soil moisture, etc.)
MODIS RMSE: 0.539 t/ha for corn; 0.206

t/ha for soybeans

Wang S. (2020) [60] Crop mapping India CNN
RF Vegetation indices

GEE
Sentinel-2 DigitalGlobe

imagery
Accuracy: 74%

Schwalbert R.A. (2020) [61] Soybean yield prediction Brazil
OLS
RF

LSTM

NDVI
EVI

Land surface temperature and
precipitation variables

GEE
CAR MAE: 0.24 Mg ha−1

Maimaitijiang M. (2020) [62] Crop monitoring
Columbia,

Missouri, United
States

PLSR
RFR
SVR
ELR

Vegetation indices
Canopy height and canopy cover UAV ELR and RFR presented the most

accurate approaches

Cai Y. (2019) [63] Wheat yield prediction Australia

LASSO
SVM
RF
NN

EVI
SIF

Climate variables

MODIS
EnviSat

Eumetsat’s MetOp-A/B
R2: ~0.75

Panjala P. (2022) [64] Mapping crop India

RF
SVM

CART
SMT

NDVI GEE
Accuracy: 81.8% for RF, 68.8% for

SVM, 64.9% for CART and 88% for
SMT
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Table 7. Cont.

Documents Goal Area Methods Predictors Platforms Results

Pott L.P. (2021) [65] Mapping crop Brazil
RF

Moran’s I Index
Cluster k-means

Vegetation indices
GEE

Sentinel-2 Sentinel-1
SRTM

Overall accuracy: 0.95

Cao J. (2021) [66] Rice yield prediction China
LASSO

RF
LSTM

EVI
SIF

Climate
GEE

R2: 0.77–0.87
RMSE: 298.11–724 kg/ha

Two to one month leading time

Löw F. (2018) [67] Yield prediction and mapping
of cotton and winter wheat Central Asia RF

SVM Vegetation Indexes MODIS
Landsat

Land cover accuracy: 91%
Yield R2: 0.81

Acreage R2: 0.87

Abubakar G.A. (2020) [68] Maize mapping Nigeria RF
SVM

Multi-temporal spectral indices and
bands

Sentinel-1A
Sentinel-2A Overall accuracy: 97%

Liao D. (2021) [69] Yield prediction China
SVM
KNN
GPR

Climate
Vegetation Indexes MODIS R2 max: 0.77

RMSE max: 42 × 104 kg grid−1

Chaves M.E.D. (2021) [2] Land use/cover mapping Brazil RF Vegetation Indices
Spectral bands

CBERS data cubes
MODIS Classification accuracy: >85%

Ju S. (2021) [13] Yield prediction of paddy rice,
corn and soybeans

South Korea,
USA

SVM
DT
RF

ANN
SSAE
CNN
LSTM

Vegetation indices MODIS Best RRMSE: 7.45 for rice; 7.81 for
corn; 8.91 for soybean

He Y. (2019) [70] Wheat mapping China RF

Vegetation indices
PCA features

Spectral bands
NDBI method

Landsat-8
Sentinel-2 Accuracy: 94%

Meroni M. (2021) [71] Yield prediction (barley, soft
wheat and durum wheat) Algeria

SVR
LASSO

MLP

Vegetation indices
Climate

MODIS
CHIRPS/
ECMWF

Accuracy: 0.16–0.2 t/ha (13–14% of
mean yield)

Masrur Ahmed A.A. (2022) [72] Yield prediction of wheat Australia

KRR
feature selection

(grey wolf,
ant colony,

atom search,
particle swarm)

Hydro-climatic MERRA-2 R: 0.998
NRMSE: 0.437%
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Table 7. Cont.

Documents Goal Area Methods Predictors Platforms Results

Shangguan Y. (2022) [73] Soybean mapping Argentina RF Vegetation indices
Spectral bands

GEE
Landsat-8

Accuracy: 86%
Producer’s accuracy: 81.72%

User’s accuracy: 89.04%

Samasse K. (2020) [74] Cropland mapping West African Sahel RF Vegetation indices
Spectral bands

GEE
Landsat-8

Accuracy: 90.1%
User’s accuracy: 79%

Servia H. (2022) [75] Field biomass prediction China

MLR
SMLR
BRT
SVR
RFR

Vegetation indices
Evapotranspiration

Radar
Net primary production

Sentinel-1
Sentinel-2

FAO
WaPOR

Accuracy: 89% (4 months prior to
the harvest)

Oliphant A.J. (2019) [76] Cropland mapping Northeast Asia RF
Vegetation indices

Spectral bands
Elevation

GEE
Accuracy: 88.1%

Producer’s accuracy: 81.6%
User’s accuracy: 76.7%

Jiang J. (2022) [77] Quinoa abiotic stress
prediction Saudi Arabia RF Vegetation indices

Spectral bands UAVs

Leaf area index (R2: 0.977–0.980,
RMSE: 0.119–0.167)

Soil-plant analysis development
(R2: 0.983–0.986, RMSE: 2.535–2.86)

Cao J. (2022) [78] Yield prediction of winter
wheat China

RF
XGBoost

SVR
MLR

Atmospheric prediction
Climate

Vegetation indices

CRU
MODIS

(3–4 months before the harvest)
R2: 0.81–0.85

RMSE: 0.78–0.89 t//ha

Zhou W. (2022) [79] Yield prediction of wheat China
RF

SVM
LASSO

Climate (water, temperature)
Vegetation indices

CMA
CRU

MODIS
R2: 0.66–0.79

Zepp S. (2021) [80] Soil organic carbon estimation Bavaria RF Spectral bands
Vegetation indices Landsat R2 = 0.67

RMSE = 1.24%

Estes L.D. (2022) [81] Field mapping Ghana RF Spectral bands CubeSats
PlanetScope

Cropland accuracy: 88%
Field boundaries accuracy: 86.7%

Sitokonstantinou V. (2021) [82] Paddy rice mapping South Korea K-means
RF

Spectral bands
Vegetation indices

Sentinel-1
Sentinel-2 Accuracy: 96.69%

Tran K.H. (2022) [83] Crop mapping South Dakota/
California RF Spectral bands

Vegetation indices Sentinel-2 R2: ≥0.94
RMSE: ≤3%

Note: SVM, support vector machine; GPR, Gaussian process regression; RF, random forest; OLS, ordinary least square; AdaBoost, adaptive boosting; XGBoost, extreme gradient boosting;
LASSO, least absolute shrinkage and selection operator; DNN, deep neural network; BNN, Bayesian Neural Network; LSTM, long short-term memory networks; RR, Ridge Regression;
LightGBM, Light Gradient Boosting; CNN, convolutional neural networks; PLSR, partial least squares regression; RFR, random forest regression; SVR, support vector regression; ST,
model stacking; SDBT, spatial domain bridge transfer; GMM, Gaussian mixture models; ELR, extreme learning regression; MetOp, Meteorological Operational satellite programme; NN,
neural network; CART, classification and regression trees; SMT, spectral matching technique; KNN, k-nearest neighbor regression; DT, decision tree; ANN, artificial neural network; SSAE,
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stacked-sparse autoencoder; MLP, multi-layer perceptron; KRR, kernel ridge regression; MLR, multivariate linear regression; SMLR, stepwise multivariate linear regression; BRT, boosted

regression trees; GEE, Google Earth Engine; MODIS, moderate resolution imaging spectroradiometer; EVI, enhanced vegetation index; TMIN, monthly minimum temperature; PRE,

monthly precipitation accumulation; NDVI, normalized vegetation index; SM, soil moisture; TMAX, monthly maximum temperature; DI, Palmer drought severity index; GCI, green

chlorophyll index; PMI, perpendicular moisture index; SIF, solar-induced chlorophyll fluorescence; SRTM, shuttle radar topography mission; UAV, unmanned aerial vehicle; CAR, Rural

Environmental Registry; CBERS, China–Brazil earth resources satellite; RRMSE, average root mean square error; PCA, Principal Component Analysis; NDBI, normalized difference

built-up index; CHIRPS/ECMWF, Climate Hazards Group InfraRed Precipitation with Station data/European Centre for Medium-Range Weather Forecasts; NRMSE, normalized root

mean squared error; MERRA, modern-era retrospective analysis; FAO, Food and Agriculture Organization; WaPOR, water productivity through open-access remotely sensed data

platform; CRU, Climatic Research Unit; CMA, China Central Meteorological Agency; RMSE, root mean square error; MAE, mean absolute error.
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4.1.1. Land Mapping

Land-use mapping represents a critical research topic that addresses approaches for
identifying crop areas in counties, regions and countries. Crop maps are the basis of accurate
agricultural statistics for estimation, stratification purposes and food security studies.

Machine learning, deep learning and statistical methods provide tools for automat-
ically classifying zones dedicated to specific crop types. Most of the work on land-use
mapping uses vegetation indices and spectral bands derived from satellite imagery. MODIS
and Landsat image datasets were explored to perform cotton and winter wheat mapping
in Central Asia [67]. By applying Random Forest and Support Vector Machines algorithms
to these datasets, it was possible to reach a land cover accuracy of 91%.

Maize mapping in Nigeria was studied in [68], using the same algorithms over multi-
temporal spectral indices and bands retrieved from Sentinel-1A and Sentinel-2A datasets.
Another study [2] followed a similar approach for delimiting land use and cover mapping
in Brazil, using a CBERS (China–Brazil earth resources satellite) data cube technology
and MODIS datasets. Wheat mapping is proposed in [70] using Chinese Landsat-8 and
Sentinel-2 datasets. The authors of the work explored Principal Component Analysis (PCA)
to increase the accuracy provided by vegetation indices and spectral bands in classifying
Brazilian rainfed crops, irrigated crops, savannas/shrublands, grasslands, forestlands,
pasturelands and perennial crops. The NDVI (normalized vegetation index) predictors
showed the best performance in delimiting crops, while the NDBI (normalized difference
built-up index) method proved valuable for excluding buildings. Soybean mapping and
cropland mapping in Argentina, the West African Sahel and Northeast Asia are studied
in [73,74,76]. Vegetation indices and spectral bands obtained using the Google Earth Engine
were selected as predictors for an RF model. Research on field mapping in Ghana, using
similar methods, is presented in [81] using CubeSats and PlanetScope datasets. RF models
were also used for Quinoa abiotic stress prediction [77].

Supervised learning models depend on labeled datasets for training and evaluation.
Data labeling represents a manual, work-intensive process. Automatization of the data
labeling process significantly reduces the cost of datasets and promotes their readiness.
In [82], paddy rice mapping in South Korea resorts to the K-means clustering algorithm to
create pseudo-labels for datasets and RF for classification, using Sentinel-1 and Sentinel-2
datasets. Another study on crop mapping in South Dakota [83] adopted a similar approach
using high-resolution images (10 m crop-type maps).

4.1.2. Crop Yield Prediction

Crop yield prediction is fundamental for farmers and decision makers to control yield
losses and ensure food security.

Rice represents one of the essential worldwide crops. Rice yield prediction in China is
studied in [66], using climate variables and vegetation indices as predictors over the GEE
platform. LASSO (least absolute shrinkage and selection operator), RF and LSTM (long
short-term memory networks) methods yielded the best results for prediction periods of
two- to one-month leading time. Yield prediction has been applied to other crop types.
In [67], RF and K-means were explored to predict cotton and winter wheat in Central Asia,
using vegetation indices derived from MODIS and Landsat imagery with high accuracy
levels. In [69], the SVM, KNN (k-nearest neighbor regression) and GPR methods revealed
the best performance of eight ML methods explored for crop yield prediction in China at the
county and regional levels. Climate variables and vegetation indices derived from MODIS
imagery were used as predictors, taking the interannual variability of planting area as a
constraint. This study used spatial resolution as an essential prediction performance factor.
However, climate data achieved significantly better predictive performance than satellite
data. In [13], seven methods from the machine learning and deep learning categories
were used along with vegetation indices (MODIS) for yield prediction of rice, corn and
soybeans in South Korea and the USA. SVMs presented the best prediction performance.
Yield prediction of barley, soft wheat and durum wheat in Algeria was presented in [71].
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Vegetation indices and climate data obtained from MODIS and CHIRPS/ECMWF (Climate
Hazards Group InfraRed Precipitation with Station data/ European Centre for Medium-
Range Weather Forecasts) datasets provided predictors for SVR (support vector regression),
LASSO and MLP (multi-layer perceptron) methods. It was observed that the performance
of ML models is much less affected when focusing on low-yield years, while one-Hot
Encoded features appear to increase the overall accuracy.

In [72], yield prediction of wheat in Australia resorts to hydro-climatic predictors de-
rived from MERRA-2 (modern-era retrospective analysis) datasets. Feature selection using
grey wolf, ant colony, atom search and particle swarm methods significantly increased
the KRR (kernel ridge regression) method’s prediction performance. In [79], climate data
across the growing season provided additional information necessary for yield predic-
tion compared to remote sensing data. Remote sensing data increased the prediction
performance when covering the sowing to maturity periods. Additionally, some biotic
factors (pathogens and insects) influencing crop growth reflected in leaf characteristics
were detected from satellite images. In another study [78], the atmospheric prediction data
significantly improved the wheat yield prediction performance provided by climate and
vegetation indices from CRU (Climatic Research Unit) and MODIS datasets up to four
months before the harvest.

Prediction of field biomass in China from vegetation indices, evapotranspiration, radar
and net primary production variables, derived from Sentinel-1, Sentinel-2, FAO and WaPOR
(water productivity through open-access remotely sensed data platform) datasets is studied
in [75], using several ML regression methods. Results showed that cumulative vegetation
indices have higher predictive power than standard vegetation indices. Additionally, the
prediction accuracies of machine-learning models were not consistent as these increased or
decreased unexpectedly as the lead time increased.

Soil organic carbon estimation in Bavaria is addressed in [80] using spectral bands
and vegetation indices from Landsat. Data for organic carbon estimation is scarce since
images only respect periods when soil is not covered with vegetation. Thus, composite
techniques of multitemporal satellite Landsat images were explored for prediction using
the RF method.

5. Discussion and Conclusions

Considering the trends for the current issues addressed here, this research intended
to reveal insights from the scientific literature about the interlinkages between the digital
transition and food security, and their interrelationships with agricultural planning and
organization. In this context, 499 documents were considered in the Scopus database from
a search performed on 9 September 2022 for the topics “machine learning” and “food
security”. These documents were first assessed through bibliometric approaches with
text and bibliographic data. The top 40 documents with the highest total link strengths
were thereafter further explored. In the text data, the items are terms and the links are
co-occurrences. For the bibliographic data, co-occurrence and bibliographic coupling links
were considered, as well as keywords, countries, organizations and sources as items.

5.1. Bibliometric Analysis

The bibliometric analysis highlighted the importance of the digital transition, in the
frameworks of Era 4.0 (Agriculture 4.0, Food 4.0 and Industry 4.0), to deal with food
security challenges from a perspective of sustainable development. In fact, one of the
great tasks for the future is to increase agricultural production without compromising the
several dimensions of sustainability, particularly the environmental, economic and socio-
cultural. The new technologies and approaches, such as those related to Climate-Smart
Agriculture, will be decisive to improve the efficiency of farms and food chains, as well as to
promote better agricultural planning and organization. This will be particularly important
to manage the most critical farming resources, such as labor, soil, water and energy. There
are relevant advances with autonomous equipment and the internet of things (in some cases
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used to better support farmers’ decisions). The main concerns of the several stakeholders
seem to be with grain production (maize and wheat) and with the most populous countries
(China and India). In any case, there is still a field to be explored, specifically by other
countries which also have great expertise in these domains, such as Brazil.

5.2. Platforms, Methods and Results

The systematic review shows the relevance of concepts such as remote sensing data
and machine learning approaches in the contexts of the digital transition and food security
worldwide. Unmanned aerial vehicle platforms, satellite information, the Copernicus
program, shuttle radar topographic mission, moderate resolution imaging spectroradiome-
ter and Google Earth Engine are platforms/methodologies/designations considered to
collect/gather/analyze big data. Gaussian process regression, support vector machine
regression, random forest regression, neural network, deep neural networks, 1D con-
volutional neural networks, long short-term memory networks, ridge regression, light
gradient boosting, Bayesian neural network and adaptive boosting are some of the ap-
proaches/designations highlighted by the literature for the machine learning assessments.
This literature review highlights the relevance of the Google Earth Engine platform and the
Random Forest in the interrelationships between the machine learning and food security
topics. These approaches are considered to predict crop mapping and yield with high
precision, in some cases with R squares of about 99% and root mean squared error around
1%. These technologies are in some contexts in the beginning of being implemented in the
agricultural and food frameworks, but there is an enormous field to be explored [84,85]
and this research may be a relevant contribution to show gaps, trends and opportunities
for the several stakeholders.

5.3. Data Sources

Data is the principal critical factor for success in machine-learning- and deep-learning-
based work. Crop mapping and yields are commonly estimated from vegetation indices
(e.g., NDVI), crop biophysical variables (e.g., Fraction of Photosynthetically Active Radia-
tion), representing green biomass, and the dynamics of a vegetation index over time (e.g.,
green-up rate or senescence). Using multi-temporal satellite images covering several mo-
ments of cropping seasons may cover different features relevant to the research outcomes.
Additionally, available climate forecasting data spanning each growing season increases the
prediction capabilities of remote sensing data for yield prediction problems. Atmospheric
predictions can even outperform those based on observational data [78]. The reason is
that atmospheric predictions use not only observational climate data but also other data
relevant to predict the climate during the growing season (e.g., climate change, climate
connections between the region and other parts of the globe).

The research work revisited in this article pinpoints several limitations offering op-
portunities for improvement in future work. Firstly, current tools cannot predict crop
yields based on open-access high-resolution data. Even with the 10 m spatial resolution
of Sentinel-2 A/B datasets, their geographical availability still needs to be improved. Ad-
ditionally, the temporal resolution of the five-day revisit time may still be low for some
objectives. Secondly, cloud cover contaminates Sentinel data over more than half of the
earth’s surface throughout the year. Synthetic Aperture Radar (SAR) captures cloud-free
data and is sensitive to the crop plant structure, geometry and water content, but provides
higher spatial resolutions. Finally, the increase in temporal and spatial resolution demands
increased computational power to enable effective and efficient exploitation. Thus, the
importance of computational cost analysis will increase along with imagery resolution.
Adaptive temporal resolution, for example, can be exploited for high-resolution images
when computational constraints are involved. Crop growth sensitivities to climatic events
vary with the growth stage [79]. For example, the grain formation process is more sensitive
to drought and heat stress than the vegetative.
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Countries with smallholder-dominated croplands present additional prediction chal-
lenges. The spatial and temporal mismatches between satellite data and smallholder
fields, and the lack of high-quality labels required to train machine learning classifiers,
are problems still being solved [76,81]. Other identified challenges are the high spatial
and temporal variability within and between fields and the tendency to intergrade with
the surrounding vegetation. UAVs offer the potential for new insights into relative plant
performance in terms of phenotypic traits and abiotic stress experiments [77]. UAVs offer
high spatial resolution data at a smallholder cropland scale. In addition to crop prediction
and mapping, these data can be explored for crop monitoring activities—e.g., crop density
analysis, irrigation scheduling, and detection and diagnosis of diseases, an emergent area
with vast potential in the future.

5.4. Practical Implications, Policy Recommendations and Future Research

The new technologies are here, and there is relevant research about the digital transi-
tion in Era 4.0, as well as about its contribution to improvements in the farms and food chain
efficiency. Nonetheless, some constraints remain, namely, those related to the difficulties
felt by farmers in implementing digital approaches. In terms of practical implications, it
seems that there is still significant work to be done in these fields to motivate and prepare
farmers to adopt these new approaches. For policy recommendations, it is suggested to
governments, national and international institutions and organizations that they create
and make available more scientific and technical financing programs, supplying resources
and promoting skills among farmers and informing them about the advantages of new
technologies. The main limitations of this research are related to the need to investigate
databases with information from applied social sciences (economics, management and busi-
ness) that allow comparing their results with this research, as well as to explore dimensions
associated with the limitations felt by farmers and food chain operators in implementing
the digital transition in their respective activities and sectors. These can be explored in
future studies.
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