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Abstract: The mechanism of crack expansion in conventional Brazilian discs is clearly obtained with
the help of numerical simulations, and the direction of crack expansion is related to the loading
speed. Then the relationship between the stress field and the platform angle was given quantitatively
based on the theoretical analysis. To obtain the accurate tensile strength of self-compacting concrete
under the premise of numerical simulation and theoretical analysis, flattened Brazilian disc (BD)
splitting tests with six loading angles were carried out by using the split Hopkinson pressure bar
(SHPB) loading system. The crack initiation mode and fracture propagation mode of specimens
under different loading angles and loading rates were analyzed through digital image correlation
(DIC) and strain gauges. When the loading angle lies between 28◦ and 30◦, the specimens easily meet
the requirement of central cracking under high loading rates. The experimental results were well
explained with theoretical analysis from a view of dimensionless Griffith’s equivalent stress. The
dynamic tensile strength measured from the non-central crack mode in flattened BD splitting tests
underestimates the inherent dynamic tensile strength.

Keywords: self-compacting concrete; dynamic tensile strength; flattened Brazilian disc test; optimal
loading angle; digital image correlation; numerical simulation

1. Introduction

Currently, explosions are common across the globe, posing a serious threat to human
life and causing dramatic damage to homes and infrastructure. The latter has received
attention from scholars in the field of structural engineering who study the effects of blast
and impact on different RC members (beams, columns, slabs, silos, etc.) [1–4].

When a pressure pulse is reflected as a tensile pulse in a column or on the free surface
of a slab, it will likely cause a fairly high tensile stress somewhere adjacent to the free
surface, and once a certain dynamic fracture criterion is met, it will cause the tensile rupture
of the material at that location. When the crack is large enough, the whole lobe flies away
with the momentum caught in it. This dynamic tensile fracture on the back side caused
by the reflection of pressure pulses on the free surface is called spalling. The lobes that fly
out are called scab. In the above case, once a lamellar crack appears, a new free surface is
also formed at the same time. Continued incident pressure pulses are then reflected on this
new free surface, which may cause a second spalling of lamination cracks. By analogy, a
series of multi-layer lamellar fractures can be formed under certain conditions to produce
a series of multi-spalling lamellar fractures. Therefore, it is of great importance to obtain
the accurate tensile strength of concrete materials for the safe design of civil engineering
structures [5–7].

Testing methods to determine the tensile strength of brittle materials can be divided
into direct tensile methods [8–10] and indirect tensile methods [11–15]. The direct tensile
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method obtains the tensile strength of concrete in a straightforward manner, but the
difficulty in achieving a uniaxial tensile stress state and the irregularity of the experimental
operation may lead to local stress concentration and cause a non-standard damage pattern.
On the other hand, indirect tensile testing methods, such as the Brazilian disc (BD) test [16],
Ring method [17], and the Luong method [18], have received extensive attention due to
their feasibility and simplicity of operation. Among them, the BD test has been adopted as
the suggested testing method by the ISRM [19] and ISO standards [20] for testing the tensile
strength of rock materials, and it has been designated as the standard method in ASTM
C496 and DIN EN 12390-6 for testing the tensile strength of concrete materials [21,22].

However, previous research [23–26] has pointed out that nonnegligible stress concen-
tration can easily be generated at the interface between BD specimen and loading platen,
which results in cracks forming at the loading edge rather than the center of the specimen.
The crack initiation at the loading edge does not satisfy the Griffith strength criterion,
bringing out unreliable tensile strength. Therefore, efforts have been made to improve the
loading configuration of BD splitting experiments to ensure the validity of the results.

The improvement to reduce the stress concentration basically falls into two categories:
the arc-loaded BD test and the flattened BD test. In terms of the arc-loaded BD test,
Hondros et al. [27] gave theoretical solutions of the whole stress and displacement fields
for the specimen under radial loading on a finite arc, which turned out to be superior
to the original concentrated load. However, in-depth error analysis is absent for the
approximate expressions describing the relevant stress components, and it is difficult to
achieve the required uniform radial loads distributed over a pair of circular arcs in practical
experiments [28,29]. Regarding the flattened BD test, the loading angle greatly affects
the validity of the results. With the help of the finite element method, it was found that
to ensure the central cracking of the sample, the loading angle should be no less than
19.5◦ [30,31]. Meanwhile, Wang et al. [32,33] found that if the loading angle was too large,
the failure of the specimen tended to deviate from the symmetry plane. Based on cusp
catastrophe theory, he suggested that the loading angle should be no larger than 30◦. Kaklis
et al. [34] proposed two loading modes for the flattened BD tests: (1) uniformly distributed
loads directly act on the specimen and (2) loads indirectly act on the specimen through a
cushion block. It was concluded that the loading angle must be no less than 20◦ for the first
loading mode, while in the second loading mode, the loading angle must be no less than
15◦. The recommended loading angles are basically between 15◦ and 30◦ for rock materials
tests, while little research was reported on concrete materials. Whether those conclusions
obtained from rocks can be extended to concrete at a high loading rate remains unknown.

The purpose of this study is to explore the influence of the loading angle on the failure
of self-compacting concrete (SCC) and subsequently determine the optimal range of the
loading angle to measure the tensile strength of SCC in the flattened BD test under dynamic
load. Initially, the numerical simulation of the traditional Brazilian disc was carried out
to study the mechanism of crack propagation. Secondly, the theoretical analysis of the
platform Brazilian disc was carried out to study the influence of different loading angles
on the stress field. Finally, the flattened Brazilian splitting experiment was implemented
with a split Hopkinson pressure bar (SHPB). The crack initiation and failure process were
detected by both digital image correlation (DIC) and strain gage. The relationship between
loading angle and dynamic tensile strength of SCC was obtained.

2. Numerical Simulations

The mechanics of Brazilian splitting of disc self-compacting concrete under dynamic
loads is first investigated by means of numerical simulations. The set speeds of the projectile
with a length of 400 mm are 4.9 m/s, 9.6 m/s, and 12.5 m/s, respectively, where the
projectile was defined as kinetic energy penetrators, and the impact compression of the disc
concrete specimen is obtained to obtain the whole process of dynamic fracture evolution.

The numerical simulation of Brazilian splitting uses a plane strain assumption, the
diameter of the numerical specimen is 50 mm, the model mesh adopts a mapping mesh,
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the element size is 0.25 mm, and the whole model contains a total of 10,000 cells and
10,201 nodes. The loading process is controlled by speed, and the boundary conditions
are deformation in the z-direction of the fixed model, the speed boundary condition in the
x direction of the projectile is applied to the model, and the transmission rod is fixed and
constrained.

A total of 61 measuring points are arranged along the central profile of the length of
the Brazilian splitting disc specimen, and the spacing between each measuring point is
5 mm, of which the No. 6 measurement point is arranged in the center of the circle, as
shown in Figure 1. Using the JHC (Johnson Holmquist Concrete) constitutive model [35,36],
the numerical model parameters are shown in Table 1. When the model element is yielded,
the cohesion and tensile strength of the unit gradually soften linearly with the accumulation
of plastic shear strain and plastic tensile strain. When the plastic shear strain and plastic
tensile strain accumulate to the critical value, the cohesion and tensile strength of the unit
weaken to the residual strength and remain unchanged.
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Table 1. Material parameters of JHC model.

Sign ρ/kg.m−3 f c/MPa G/GPa A B C N T/MPa εfmin

Value 2425 52 13.9 0.80 1.60 0.007 0.61 3 0.007

Sign Pc/MPa µc Pl/MPa µl D1 D2 K1/MPa K2/MPa K3/MPa

Value 11.7 6.26 × 10−4 800 0.06 0.0452 10 85 −171 208

In the plane of the Brazilian disc, any pair of symmetry points, as shown in Figure 2,
the compressive stress on the symmetry point are symmetrical, indicating that the specimen
can be maintained in a dynamic force equilibrium state during the dynamic load process.

As shown in Figure 3(a0)–(c0), at a velocity of 4.9 m/s, the stress wave first forms a
compression crack at the end of the incident rod due to the dynamic load. From Figure 4a,
it can be seen that the compressive stress peak at 32.08 µs formed a compressive stress of
205.6 MPa at measurement point 1, and then the compressive stress decayed rapidly. As
the tensile stress increases along the radial loading direction, as shown in Figure 4d, before
t = 40 µs, the tensile stress is small, and the mean tensile stress is about 2.5 MPa, which is
not enough to produce damage. In t = 50~80 µs, the tensile stress from measurement point
3 to measurement point 9 is generally increased, and the average value is about 7.5 MPa.
At t = 50 µs, the compressive stress propagates to the transmission bar end and begins
to reflect, and the incident wave and the reflected wave are the same sign, showing the
loading process.
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Figure 2. Symmetrical measurement point stress change of disc specimens. 
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From Figure 4a, it can be seen that the reflected compressive stress peak at 55.71 µs at
the measuring point 11 forms a compressive stress of 212.06 MPa, which is 1.031 times the
compressive stress of measurement point 1, which plays a guiding role in the direction of
crack propagation; that is, the crack begins to expand from the transmission bar end along
the loading diameter direction, and the action of the incident bar is until it extends to the
end of the incident bar end, as detailed in Figure 3(d0)–(f0). As shown in Figure 3(a1),(b1),
there is a similar phenomenon at a speed of 9.6 m/s and at the previous speed of 4.9 m/s,
but the peak compressive stress is higher than the previous one.

From Figure 4b, it can be seen that the compressive stress peak at 22.08 µs formed a
compressive stress of 286.96 MPa at measurement point 1, and the compressive stress then
attenuated equally rapidly. As the pressure stress decays and the tensile stresses increase
along the diameter direction of the applied load, as shown in Figure 4e. Before t = 40 µs,
the tensile stress of measuring points 3, 4 and 5 is close to the tensile stress of measurement
point 1 and the tensile stress average is 8.5 MPa, since the tensile stress wave is felt before
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measuring point 6, so under dynamic load, it is not the center of the circle that first begins
to crack but the tensile crack occurs at the middle of the incident rod end and the center of
the circle, as shown in Figure 3(c1).
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From Figure 4b, it can be seen that at t = 57 µs, the compressive stress propagation
to the transmission bar end begins to reflect, and the peak of the reflected compressive
stress decreases to 130 MPa, which is caused by the increase in the projectile speed and the
increase in the crack in the test piece. Under the action of reflected compressive stress, there
are tensile cracks at the transmission end and center of the circle, and finally the previous
crack converges to form a main crack, as shown in Figure 3(d1)–(f1).

When the velocity increases to 12.5 m/s, the crack formation is consistent with the
law of 9.6 m/s at a velocity, but the tensile stress strength increases, the number of cracks
increases, and the crack propagation mechanism is consistent. There is no repetition
here. Through numerical simulation, it was found that there was a problem of non-
central cracking of traditional Brazilian discs, and then the platform angle was introduced
experimentally to explore this.

3. Theoretical Analysis

It is known from the literature [37] that under the same loading rate the stress at any
point in the BD specimen on the loading under the action of horizontal radial concentrated
force can be expressed as Appendix A, as shown in Figure 5.

The horizontal stress σx in the loading BD specimen decreases from the A1 and the
A2 to the O, as shown in Figure 6. Moreover, with the increase in the loading angle, the
vertical compressive stress decreases significantly, from 18.11 when the loading angle is 20◦

to 12.21 when the loading angle is 30◦, so its change rate with the loading angle is 0.59. The
compression–tension stress ratio in the loading BD decreases with the increase in loading
angle, as shown in Table 2.
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Table 2. Ratios of non-dimensional compressive stress to tensile stress inside discs.

Loading Angle (◦) Compressive Stress
σxmax

Compressive Stress
σymax

Tensile Stress σx1max σxmax/σx2max σymax/σx1max

20 18.11 12.87 1.88 9.63 6.84
22 16.52 12.13 1.86 8.88 6.52
24 15.15 11.48 1.83 8.27 6.27
26 13.96 10.90 1.81 7.71 6.02
28 13.08 10.36 1.78 7.34 5.82
30 12.21 9.86 1.74 7.01 5.66

It can be seen from Figure 7 that the maximum value of vertical tensile stress σy
appears at the O point of the disc and gradually decreases from the O point to both ends
A1 and A2 and finally becomes vertical compressive stress. Moreover, with the increase in
loading angle, the vertical tensile stress in the BD specimen of the loading decreases slowly,
from 1.88 at 20◦ to 1.74 at 30◦, and its change rate with loading angle is 0.014, which can
be considered as a constant value. The maximum value of vertical compressive stress is
reduced from 12.87 to 9.86.
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Meanwhile, it is found that the tensile stress zone in the loading BD specimen gradually
decreases towards the center of the disc with the increase in the loading angle; that is,
increasing the loading angle reduces the tensile stress zone in the loading direction of the
disc and increases the possibility of cracking at the center. It is found that increasing the
loading angle can obviously reduce the compressive stress value and stress concentration at
the loading place, thus reducing the possibility of compression failure of the BD specimen
near the loading and creating conditions for the specimen to take the lead in central tensile
splitting failure.

According to Griffith strength criterion [38,39] to judge the damage of SCC, the specific
form is: {

σG = − (σ1−σ3)
2

8(σ1+σ3)
≥ σT , σ1+3σ3 ≤ 0

σG = |σ3| ≥ σT , σ1 + 3σ3 > 0
(1)

where σ1 ≥ σ2 ≥ σ3 are three principal stresses, which satisfy this relationship in turn.
In the loading diameter direction (x = 0), it can be known from Formula (1) that τxy is

0, and it is easy to judge that σy ≥ σx corresponds to σ1 ≥ σ3. By Griffith strength criterion,
σ1 + 3σ3 ≤ 0, so it can be expressed as:

σ1 + 3σ3 =
4P

2πrHsinθ/2
(− b1

a1
− b3

a3
+ 2c1 + 2c3 + 2sinθ/2cosθ/2) (2)

f1 = (σ1 + 3σ3)/(P/2πrH) (3)

After dimensionless σ1 + 3σ3 is recorded as f 1, it can be seen from Figure 8 that the
loading angle satisfies σ1 + 3σ3 ≤ 0 from 20◦ to 30◦. Combining Formula (4) with (1) and
(2), it can be further obtained that the Griffith equivalent stress on the loading diameter of
the loading BD specimen is:

σG =
−P(b1/a1 + b3/a3)

2

4πrHsin(θ/ 2)(c1 + c3 + sinθ/2cosθ/2)
(4)

f2 = σG/(P/2πrH) (5)
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After dimensionless Griffith’s equivalent stress is recorded as f 2, the relationship
between its value and loading angle is as shown in Figure 9.
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When the loading angle is less than 20◦, f 2 increases first and then decreases from the
disc O to A1 and A2, as shown in Figure 9. It indicates that Griffith equivalent stress at the
loading end of BD is larger than that at the center O. It cannot meet the crack initiation
requirement at the center and be used to measure the tensile strength of SCC.
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When the loading angle is between 20◦ and 30◦, f 2 decreases from disc O to A1 and
A2, from 1.88 when the loading angle is 20◦ to 1.77 when the loading angle is 30◦, and its
change rate with the loading angle is 0.11. At the same time, it is found that f 2 gradually
decreases to the center of the disc with the increase in the loading angle, and the Griffith
equivalent stress zone approaches to the center of the specimen, which makes it easier for
the specimen to start from the middle. When the loading angle is greater than 30◦, the
value of f 2 decreases rapidly at the disc O, and its tensile stress is not enough to destroy the
center point of the specimen.

4. Experimental Procedures
4.1. Specimen Preparation

To investigate the optimal loading angle in the flattened BD test for SCC, this paper
manufactured the molds with the loading angles [40,41] θ of 20◦, 22◦, 24◦, 26◦, 28◦, and
30◦ by a 3D printer with the material of high-strength resin. The height of the model is 25
mm, the inner diameter is 50 mm, and the outer diameter is 60 mm, as shown in Figure 10.
The printing accuracy is 0.01 mm, which could meet the requirements of flatness and
parallelism of the loading surfaces.
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Figure 10. Mold sketch and 3D-printed molds.

According to the ratio in Table 3, the concrete specimen was mixed into a uniform
slurry state and poured into the molds. The specimens were demolded one day after
pouring and solidified for 28 days in a stable environment with a temperature of (20 ± 2)
◦C and humidity of 95%.

Table 3. The mix of self-compacting concrete (kg/m3).

Cement Fly Ash Water Grit Admixture

495 48 160 830 14

A layer of white paint was sprayed on the front face of the specimen with black
speckles spotted for DIC algorithm. Five strain gauges, numbered 1#, 2#, 3#, 4#, and 5#,
were equally attached to the opposite face of the specimen along the loading diameter
direction, which assisted to monitor the cracking development (Figure 11). The basic
physical and mechanical properties of SCC are list in Table 4.

Table 4. Basic physical and mechanical properties of concrete.

Specimen Density/(g.cm−3) Peak Stress/MPa Peak Strain Elastic
Modulus/MPa

Deformation
Modulus/GPa

Poisson’s
Ratio

SCC 2.425 52 0.0213 4.981 1.732 0.25
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4.2. Experimental Apparatus

The schematic of the testing system is shown in Figure 11. The SHPB is made of high-
strength steel with a diameter of 75 mm, elastic modulus of 195 GPa, and yield strength
of 1.10 GPa. The image acquisition system is composed of an ultra-high-speed camera,
lighting system, trigger, and synchronous control system. The frame rate and exposure
time of ultra-high-speed camera IDT Y7S3 were configured at 100,000 fps and 100 ns,
respectively. The strain field of the specimen was extracted using DIC in which the subset
size was of 31 pixels and the step size was of 5 pixels.

4.3. Loading Procedure

Each loading angle is carried out under three impact pressures, namely, 0.12 MPa,
0.20 MPa, and 0.30 MPa to achieve different loading rates. The specific test protocol is
shown in Table 5. A typical raw strain pulse recorded by strain gauges attached on bars and
the force balance curve at both ends of the specimen are shown in Figure 12. The three-wave
method [31] was adopted to calculate the dynamic tensile strength of the flattened BD
specimen as follows:

σT = k
P

πrH
= k

E0D0
2

8rH
(ε I + εR + εT) (6)

where k is a function of θ calculated by finite element by Griffith criterion [23]. The values
of k are 0.963, 0.956, 0.948, 0.940, 0.931, and 0.921 corresponding to θ = 20◦, 22◦, 24◦, 26◦,
28◦, and 30◦, respectively. According to the strain signal, the loading rate of tensile stress of
the concrete specimen is obtained from the slope of a quasi-linear section in tensile stress
history (Figure 13).

Table 5. Testing speed and loading rate.

Test Number P/MPa v/m·s−1 ¯
v

.
σ/GPa·s−1 .̄

σ

1
0.12 4.7

4.9
364

3430.12 5.1 328
0.12 4.9 338

2
0.20 9.8

9.6
583

5870.20 9.7 540
0.20 9.3 667

3
0.30 12.3

12.5
790

7640.30 12.5 742
0.30 12.8 761
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5. Results and Analysis
5.1. Crack Development in Flattened BD Test

Figure 14 illustrates the evolution of the strain field of the flattened BD specimen in
the y direction during the dynamic loading extracted by DIC. By analyzing the splitting
process of dynamic loadings of SCC, it is found that the prefabricated loading angle in the
specimen has an obvious influence on the splitting process of SCC under dynamic load.

When the loading angle is in the range of 0◦~24◦, as shown in Figure 14a–d, the BD
specimen starts to fracture at the loading point and expands from the other end along the
loading direction. It does not meet the center cracking assumption required by the BD
experiment [42], which was consistent with the results of the numerical simulations above
for the conventional Brazilian disc analysis. Therefore, the loading angle θ in the range of
20◦~24◦ is not enough to effectively reduce the stress concentration at the end under the
action of dynamic load.

When the loading angle is 26◦, as shown in Figure 14e, the crack propagation of the
specimen becomes independent from the impact speed. This loading angle can be regarded
as a critical value representing the transition from non-center initiation to center initiation.
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When the loading angle is in the range of 28◦~30◦ (Figure 14f,g), despite the increase in
impact speed, the concentrated zone of tensile strain begins to appear in the center of the
flattened BD specimen and then expands to both ends, which satisfies the validity condition
of the BD dynamic tensile test. The BD specimen O first reaches the critical tensile strain
value when the concrete is damaged, breaks and quickly expands to a crack parallel to the
loading direction towards both ends of the specimen.
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5.2. Strain Analysis of Crack Propagation in BD Specimen

To confirm the results obtained by DIC, the location and sequence of crack initiation
were also examined from the strains recorded by strain gauges at different locations of the
disc specimen under different loading angles, as shown in Figure 15. As can be seen from
Figure 15, the maximum principal strain at the monitoring point under impact loading
first exhibits a nonlinear variation, indicating an increasing degree of damage at this point.
Fracture occurs when the damage at this point reaches its maximum level. The sudden
increase in strain at the monitoring point is defined as the failing moment for each strain
gauge. Due to the dense data, it is not appropriate to discern from the graph, but the strain
value of the mutation point can be accurately identified in the raw data text. Since the
sampling frequency of the dynamic acquisition instrument is set to 2 MHz, the strain value
corresponding to each time can be seen in the raw data text. By importing the data into
origin in the form of a picture that cannot be easily discriminated, the mutation point can
be easily identified through the raw data text. Hence, the point where the sudden change
in strain occurs in the experiment is taken as the fracture point of the specimen, and the
failure strain at this time is reliable from the data of previous studies. It can be seen that the
average failure strain is 6.61 × 10−3 at an impact velocity of 9.6 m/s and a loading angle
of 20◦.

Under the action of the average impact speed of 4.9 m/s, when the loading angle is
less than 26◦, the time of fracture of the 5# strain gauge is earlier than that of the 1# strain
gauge, and the response to the force wave action is the first; the overall trend at the moment
of fracture of the strain gauge is left high and right low as shown in Figure 16a, indicating
that the crack propagation starts from the A2 end; with the increase in the impact speed,
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the moment of fracture of the strain gauge changes, and the overall trend is left low and
right high (Figure 16b,c), indicating that the crack propagation starts from the A1 end. The
validity and correctness of DIC and numerical simulation are further verified. When the
loading angle is greater than 26◦, the moment of fracture of the SCC is not affected by the
impact speed, and it occurs in the middle of the specimen.
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It is clear from Figure 16d that as the loading angle increases, the first crack point of the
crack moves closer to the middle of the specimen. The time of crack propagation in the BD
is directly related to the impact velocity, and the overall performance is that the time for the
crack to expand in the BD is shortened with the increase in speed. When the cracking point
is amalgamation, the crack propagation time is 53 µs at a velocity of 4.9 m/s. At a speed of
9.6 m/s, the crack propagation time is 32 µs, and the time is reduced to 39.6%. When the
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crack is cracked in the center, the crack propagation time is relatively shortened, expanding
from the center point to both sides, and the expansion time is basically maintained at 20 µs.
The crack propagation time is about half as short as that of non-intermediate initiation.

The test and theoretical analysis get consistent results, corroborate each other’s cor-
rectness and further reduce the size of the platform loading angle, improve the accuracy
of the test, and better serve similar materials such as concrete. At the platform angle less
than 20◦, there is an obvious stress concentration phenomenon at the loading end, which
cannot meet the central cracking requirement, and a clear explanation can be given by both
numerical mode and theory.

If the platform angle is located between 20◦~26◦, although the disc center point O stress
reached the maximum (even though near the loading ends of the stress is still relatively
large), at the same time, the loading end of the disc is affected by the composite effect of
tension and compression, so the central stress is still insufficient to make the specimen
from the center point O first crack. When the platform angle is increased to 28◦~30◦, the
stress at the center point O reaches the maximum, while the stress at the loading end is
significantly reduced, eliminating the phenomenon of stress concentration at the end, which
well explains the rationality of this platform angle loading and provides a clear direction
for the subsequent development of other material tests. By further increasing the platform
angle, although the stress at the center point is the largest, its value is not large enough to
cause the specimen to fracture.

5.3. Influence of Loading Angle on Tensile Strength of Specimens

The relationship between dynamic tensile strength and average loading rate of BD
specimens on six loading angles is demonstrated in Figure 17. With the increase in loading
rate, the dynamic tensile strength of BD specimens shows an increasing trend. When the
loading rate is at relatively the same range, the larger the loading angle is, the greater the
dynamic tensile strength of the BD specimen is. For loading angles less than 28◦, the tensile
strength decreases successively. The reason is relevant to the first crack position of the
crack. When the crack firstly develops at the end of the specimen, the shear failure occurs
at the edge and cause less tensile resistance being effective. Therefore, the tensile strength
measured at a loading angle less than 28◦ underestimates the inherent tensile strength.
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6. Conclusions

Based on the numerical simulation and theoretical analysis, the influence of the
introduction of the platform loading angle on the stress field of the Brazilian disc is obtained.
Under the known relationship between the platform angle and the stress field, the Brazilian
disc test under the dynamic splitting platform is designed to obtain the platform Angle
range suitable for concrete and other similar materials. The following conclusions can be
obtained through comprehensive analysis:

(1) The numerical simulation results show that the starting point of the traditional Brazil-
ian disc is affected by the loading speed. When the loading speed is relatively small,
the crack propagation direction is from the transmission bar end to the incident bar
end. When the loading speed is increased, the crack growth direction is changed. It is
essentially related to stress wave propagation.

(2) The Griffith equivalent stress theory well explained the optimal loading angle range
in flattened BD tests on concrete from a theoretical view. With the increase in the
loading angle, the maximum stress transferred from the loading end to the center of
the specimen.

(3) The optimal loading angle in dynamic flattened Brazilian disc splitting test for concrete
is between 28◦ and 30◦. For different loading rates, this loading angle can still
effectively ensure the central cracking of the specimen.

(4) At the same loading rate, the dynamic tensile strength with non-center crack initiation
obtained from the loading angle less than 28◦ underestimates the inherent tensile
strength.

7. Further Research

Further research may include the following:

(1) Carrying out the effect of loading angle on crack extension for different strength
concretes.

(2) Carrying out the crack evolution process in 3D space on the basis of experiments with
the help of numerical simulations.

(3) Performing simulations to explore the crack extension mechanism of other similar
materials.
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Nomenclature

a1,a2,a3,a4 Intermediate variable N Pressure hardening exponent
A Normalized cohesive strength µc,µl Crushing volumetric strain, Locking volumetric

strain
A1, A2 Incident bar, transmission bar and disc PC,P l,P Crushing pressure, Locking pressure, peak load

contact surface, respectively
b1,b2,b3,b4 Intermediate variable ρ Mass density
B Normalized pressure hardening εI,εT,εR Strain signals of the incident, reflected and

transmitted
waves

c1,c2,c3,c4 Intermediate variable σx,σy,τxy,σG,σT Horizontal stress, vertical stress, shear stress,
Griffith’s
equivalent stress and the tensile strength of con-
crete of
the point

D0,D1,D2 Damage constant σxmax,σymax,σx1max x,y-compressive stress, x-tensile stress
E0 Elasticity modulus θ Loading angle
εfmin Amount of plastic strain before fracture f 1,f 2 Dimensionless stress, dimensionless Griffith’s

equivalent stress
fC Compressive strength K1,K2,K 3 Pressure constant
G Shear modulus H,R,r Height and outer radius and the inner radius
T Maximum tensile hydrostatic pressure σ1,σ2,σ3 Three principal stresses
v,v Impact velocities

.
σ,

.
σ Loading rate

Appendix A
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