Research on Deep Coalbed Methane Localized Spotting and Efficient Permeability Enhancement Technology
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection Equation of Deep Coalbed Directional Hydraulic Splitting Angle
2.1.1. Technology of Directional Hydraulic Splitting and Permeability Enhancement for Deep Coalbed Methane Mining
2.1.2. An Angle Selection Equation for the Directional Hydraulic Splitting of Deep Coalbeds
2.2. Simulation Research of Splitting Disturbance Range Based on Extended Finite Element
2.2.1. Governing Equations
2.2.2. Physical Model
2.2.3. Model Design and Mesh Parameters
2.2.4. Numerical Simulation Scheme
2.2.5. Grid Independence Test
3. Results
3.1. Characteristics of Crack Disturbance Range under Different Splitting Angles
3.2. Comparison of Coal Damage Effect under the Action of Single and Double Cracks
3.3. Engineering Application of Directional Hydraulic Splitting and Penetration Enhancement Technology for Deep Coalbed Methane Mining
3.3.1. Engineering Background
3.3.2. Hole-Forming Effect of Working Surface
3.3.3. Comparison of Coalbed Methane Extraction Effects of Different Additional Extraction Methods at the Same Depth
3.3.4. Drainage Effect of New Hydraulic Splitting Technology at Different Depths
4. Discussion
5. Conclusions
- (1)
- According to the basic knowledge of theoretical mechanics, the hydraulic splitting angle selection equation was deduced. The split angle is negatively correlated with the crack length. The longer the crack, the smaller the split angle. The split angle is positively correlated with the width of the disturbed region and the wider the split angle.
- (2)
- The characteristics of the coal body disturbance area are different. The combined action of the double fissure damage disturbance region will lead to asymmetric stress distribution on both sides of the fissure, resulting in recurrent stress fluctuation during fissure development and forming a zigzag fracture. When the split angle is 90°, the disturbance occupies 2/3 of the area around the borehole, and the overall crack effect is the best.
- (3)
- The designed new hydraulic splitting device is combined with directional drilling technology. By installing the new hydraulic cracking device at the end of the directional drilling rod, the hydraulic splitting device is transported to the designated position inside the coal body, and deep directional cracking is realized, and the gas extraction efficiency of the coal seam is improved. After the new directional hydraulic splitting technology, the CBM extraction efficiency can reach 5.37 m3/min, which is improved by about 5.08%. At the same time, the deeper the drilling distance, the higher the CBM extraction efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Cheng, W.; Wang, G.; Li, H. Correlation Mechanism between the Law of Ultrasonic Propagation in Coal Samples and the Migration of Water. Fuel 2022, 310, 122264. [Google Scholar] [CrossRef]
- Wu, M.; Wang, J.; Wu, F. Dem Investigations of Failure Mode of Sands under Oedometric Loading. Adv. Powder Technol. 2022, 33, 103599. [Google Scholar] [CrossRef]
- Koroviaka, Y.; Pinka, J.; Tymchenko, S.; Rastsvietaiev, V.; Astakhov, V.; Dmytruk, O. Elaborating a Scheme for Mine Methane Capturing While Developing Coal Gas Seams. Min. Miner. Depos. 2020, 14, 21–27. [Google Scholar] [CrossRef]
- Yang, X.; Guo, S.; Kuru, E. A Numerical Simulation Study of the Impact of Microchannels on Fluid Flow through the Cement–Rock Interface. Appl. Sci. 2022, 12, 4766. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, W.; Wang, G.; Li, H. Effect of Dominated Coal Pores and Fractures on Water Migration after Low-Pressure Water Injection Based on Ct Images. Fuel 2022, 307, 121795. [Google Scholar] [CrossRef]
- Cai, C.; Gao, F.; Li, G.; Huang, Z.; Hou, P. Evaluation of Coal Damage and Cracking Characteristics Due to Liquid Nitrogen Cooling on the Basis of the Energy Evolution Laws. J. Nat. Gas. Sci. Eng. 2016, 29, 30–36. [Google Scholar] [CrossRef]
- Qin, L.; Zhai, C.; Liu, S.; Xu, J. Mechanical Behavior and Fracture Spatial Propagation of Coal Injected with Liquid Nitrogen under Triaxial Stress Applied for Coalbed Methane Recovery. Eng. Geol. 2018, 233, 1–10. [Google Scholar] [CrossRef]
- Shang, Z.; Wang, H.; Li, B.; Cheng, Y.; Zhang, X.; Zhao, F.; Zhang, X.; Hao, C.; Wang, Z. Fracture Processes in Coal Measures Strata under Liquid CO2 Phase Transition Blasting. Eng. Fract. Mech. 2021, 254, 107902. [Google Scholar] [CrossRef]
- Wang, F.; Tu, S.; Yuan, Y.; Feng, Y.; Chen, F.; Tu, H. Deep-Hole Pre-Split Blasting Mechanism and Its Application for Controlled Roof Caving in Shallow Depth Seams. Int. J. Rock. Mech. Min. Sci. 2013, 64, 112–121. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, K.; Huang, J.; Li, X.; Liu, T.; Qu, D.; Chen, P. Impact Analysis of Pressure-Relief Blasting on Roadway Stability in a Deep Mining Area under High Stress. Tunn. Undergr. Space Technol. 2021, 110, 103781. [Google Scholar] [CrossRef]
- Chen, M.; Ye, Z.; Wei, D.; Lu, W.; Yan, P. The Movement Process and Length Optimization of Deep-Hole Blasting Stemming Structure. Int. J. Rock Mech. Min. Sci. 2021, 146, 104836. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, W.; Wang, G.; Li, H. Law of Water Migration inside the Water-Injected Coal Base on the Joint Analysis of Cross-Scale Ct Images. Fuel 2022, 310, 122337. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Wu, Y.; Sun, H.; Shen, K.; Yang, X. The Effects of Process Parameters on the Rock-Breaking Efficiency of Multi-Nozzle Jet. J. Pet. Sci. Eng. 2021, 206, 108857. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, W.; Wang, G. Simulation of the Meso-Macro-Scale Fracture Network Development Law of Coal Water Injection Based on a Sem Reconstruction Fracture Cohesive Model. Fuel 2021, 287, 119475. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Z.; Zhang, H.; Guo, Z.; Wu, X.; Wang, T.; Zhang, C.; Xiong, C. Experimental Study of Thermal-Crack Characteristics on Hot Dry Rock Impacted by Liquid Nitrogen Jet. Geothermics 2018, 76, 253–260. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, W.; Wang, G.; Li, H.; Li, Y. New Method of Monitoring the Transmission Range of Coal Seam Water Injection and Correcting the Monitoring Results. Measurement 2021, 177, 109334. [Google Scholar] [CrossRef]
- Du, M.; Gao, F.; Cai, C.; Su, S.; Wang, Z. Study on the Surface Crack Propagation Mechanism of Coal and Sandstone Subjected to Cryogenic Cooling with Liquid Nitrogen. J. Nat. Gas. Sci. Eng. 2020, 81, 103436. [Google Scholar] [CrossRef]
- Hu, G.; He, W.; Sun, M. Enhancing Coal Seam Gas Using Liquid CO2 Phase-Transition Blasting with Cross-Measure Borehole. J. Nat. Gas. Sci. Eng. 2018, 60, 164–173. [Google Scholar] [CrossRef]
- Ojo, A.O.; Kao, H.; Visser, R.; Goerzen, C. Spatiotemporal Changes in Seismic Velocity Associated with Hydraulic Fracturing-Induced Earthquakes near Fox Creek, Alberta, Canada. J. Pet. Sci. Eng. 2022, 208, 109390. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, M.; Li, X.; Liu, Y. Impact Research of CH4 Replacement with CO2 in Hydrous Coal under High Pressure Injection. Min. Min. Depos. 2022, 16, 121–126. [Google Scholar] [CrossRef]
- Chen, J.; Guo, L.; Zhang, J. Relationship between Shock Parameter and Coal Particle Parameter of Advanced Premixed Micro-Soft Abrasive Coal-Water Jet. Powder Technol. 2021, 379, 393–406. [Google Scholar] [CrossRef]
- Shen, W.Q.; Shao, J.F.; Kondo, D.; De Saxcé, G. A New Macroscopic Criterion of Porous Materials with a Mises-Schleicher Compressible Matrix. Eur. J. Mech. A Solids 2015, 49, 531–538. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, M.; Yang, M.; Huang, W.; Peng, Y.; Wang, Z. Effects of Biaxial Residual Stress Components on Mixed-Mode Fatigue Crack Propagation Behavior in Friction Stir Welded 7075-T6 Aluminium Alloy Panel. Theor. Appl. Fract. Mech. 2022, 121, 103437. [Google Scholar] [CrossRef]
- Huang, M.; Cai, L.; Han, G. Semi-Analytical Expressions to Describe Stress Fields near the Tip of Mode-I Crack under Plane-Strain Conditions. Appl. Math. Modell. 2022, 108, 724–747. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, D.; Wang, L.; Shang, Z.; Zhu, C.; Wei, J.; Yuan, A.; Zhang, H.; Zeng, F. An Analysis of the Meso-Structural Damage Evolution of Coal Using X-ray Ct and a Gray-Scale Level Co-Occurrence Matrix Method. Int. J. Rock Mech. Min. Sci. 2022, 152, 105062. [Google Scholar] [CrossRef]
- Li, B.; Shi, Z.; Li, L.; Zhang, J.; Huang, L.; He, Y. Simulation Study on the Deflection and Expansion of Hydraulic Fractures in Coal-Rock Complexes. Energy Rep. 2022, 8, 9958–9968. [Google Scholar] [CrossRef]
- Lin, H.; Kang, W.H.; Oh, J.; Canbulat, I. Estimation of in-Situ Maximum Horizontal Principal Stress Magnitudes from Borehole Breakout Data Using Machine Learning. Int. J. Rock Mech. Min. Sci. 2020, 126, 104199. [Google Scholar] [CrossRef]
- Brockmann, J.; Salviato, M. The Gap Test—Effects of Crack Parallel Compression on Fracture in Carbon Fiber Composites. Compos. Part A 2023, 164, 107252. [Google Scholar] [CrossRef]
- Sun, D.-L.; Zhang, X.-Y.; Li, X.-F. Interaction of Multiple Parallel Cracks in a Pre-Stressed Orthotropic Elastic Plane. Eur. J. Mech. A Solids 2022, 96, 104704. [Google Scholar] [CrossRef]
- Mei, J.; Sheng, X.; Yang, L.; Zhang, Y.; Yu, H.; Zhang, W. Time-Dependent Propagation and Interaction Behavior of Adjacent Cracks in Rock-Like Material under Hydro-Mechanical Coupling. Theor. Appl. Fract. Mech. 2022, 122, 103618. [Google Scholar] [CrossRef]
- Xiong, Q.; Lin, Q.; Gao, Y.; Hampton, J.C. Fundamental Physics Distinguishes the Initial Stage Acoustic Emission (Ae) Behavior between Compressive and Fracture Toughness Tests in Rock. Eng. Fract. Mech. 2022, 275, 108829. [Google Scholar] [CrossRef]
- Chen, T.; Foulger, G.R.; Mathias, S.A.; Gong, B. Numerical Investigation on Origin and Evolution of Polygonal Cracks on Rock Surfaces. Eng. Geol. 2022, 311, 106913. [Google Scholar] [CrossRef]
- Burud, N.B.; Chandra Kishen, J.M. Application of Generalized Logistic Equation for B-Value Analysis in Fracture of Plain Concrete Beams under Flexure. Eng. Fract. Mech. 2019, 210, 228–246. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, Y.; Liu, H.; Ma, X. Experimental Investigation of Crack Propagation Behavior and Failure Characteristics of Cement Infilled Rock. Constr. Build. Mater. 2021, 268, 121735. [Google Scholar] [CrossRef]
Number of Split Pistons | Angle of Rotation | Extended Distance | |
---|---|---|---|
Prototypes | 2 | 70°~110° | 3 cm |
Developed device | 1 | Can’t rotate | 5.5 cm |
Damage Evolution Displacement | Number of Units | Primary Fissure | ||||
---|---|---|---|---|---|---|
1.35 × 103 kg/m3 | 3500 MPa | 0.35 | 20 MPa | 0.001 mm | 26,460 | 3 mm |
Simulation Parameters | Numerical Value | Numerical Value | Numerical Value | Numerical Value | Numerical Value |
---|---|---|---|---|---|
Splitting angle | 70° | 80° | 90° | 100° | 110° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Niu, Y.; Chen, J.; Guo, Y.; Guo, L. Research on Deep Coalbed Methane Localized Spotting and Efficient Permeability Enhancement Technology. Appl. Sci. 2022, 12, 11843. https://doi.org/10.3390/app122211843
Zhang J, Niu Y, Chen J, Guo Y, Guo L. Research on Deep Coalbed Methane Localized Spotting and Efficient Permeability Enhancement Technology. Applied Sciences. 2022; 12(22):11843. https://doi.org/10.3390/app122211843
Chicago/Turabian StyleZhang, Jiayong, Yongzhen Niu, Jian Chen, Yanlei Guo, and Liwen Guo. 2022. "Research on Deep Coalbed Methane Localized Spotting and Efficient Permeability Enhancement Technology" Applied Sciences 12, no. 22: 11843. https://doi.org/10.3390/app122211843
APA StyleZhang, J., Niu, Y., Chen, J., Guo, Y., & Guo, L. (2022). Research on Deep Coalbed Methane Localized Spotting and Efficient Permeability Enhancement Technology. Applied Sciences, 12(22), 11843. https://doi.org/10.3390/app122211843