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Abstract: Due to their high kinematic characteristics, six-bar tensegrities have great potential appli-
cation value in the field of robotics, especially in the field of deep space exploration robots. In this
paper, an ultralight six-bar tensegrity robot is designed, and a gait planning method for continuous
motion is proposed. First, the equilibrium matrix of the tensegrity structure is constructed, and
singular value decomposition (SVD) is performed to find the node coordinates and internal forces of
the tensegrity structure. Two representative examples regarding tensegrity structures are presented
to demonstrate the capability of the proposed method in the initial selfstress design that satisfies
the stability of tensegrities. Furthermore, both the principal rolling analysis and gait planning are
also addressed based on the offset of the center of gravity. A six-bar tensegrity robot prototype is
developed, and the obstacle avoidance experiment is completed. Finally, the results show that the
six-bar tensegrity robot has good kinematic performance. Moreover, this robot is expected to play a
key role in future planetary exploration.

Keywords: tensegrity robot; configuration design; internal force; gait planning; prototype experiment

1. Introduction

Recently, deep space exploration has become an important research direction in the
aerospace field with the development of science and technology [1–3]. However, problems
such as the high cost of traditional exploration robots, complex landing methods, and
a small number of launches are difficult to solve. Therefore, developing new planetary
probes is becoming urgent and important.

A tensegrity structure is a selfequilibrium system composed of a continuous set of
cables and a discrete set of struts, for which the designs are characterized by rigid bodies
that are suspended in a balanced tension network of elastic elements; these configurational
features make it lightweight, compliant, and impact-resilient under external loads. There-
fore, it is an ideal new type of planetary probe to complete dangerous and highly unknown
tasks and has become a research hotspot in the fields of aerospace, bridge construction,
and special robots recently [4–9]. As shown in Figure 1, the planning of the exoplanet
exploration mission of the six-bar tensegrity robot was proposed in 2015 by the NASA
Ames Research Center [10].

Tensegrity structures were originally applied in the field of architecture; the cable-rod
structure is a key component of the tensegrity structures. In order to prevent collapse
and maintain the ideal shape and stiffness, the key to the cable-rod structure is to keep a
certain initial prestress. Therefore, the configuration design and shape optimization of the
tensegrity structure are particularly important, for which the force density method [11],
the dynamic relaxation method [12], the energy method [13], and iterative algorithms [14]
are widely used. Cai et al. [15,16] proposed a form-finding method for a multistress
modal tensegrity structure based on force density and grouping methods, and the spatial
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positions of nodes and cables of the tensegrity structure were obtained by minimizing
the energy function. Zhang et al. [17] proposed a stiffness matrix-based form-finding
(SMFF) method for tensegrity structures. This form-finding method easily determines
the selfequilibrated and stable configuration of a tensegrity from an arbitrary initial state.
Uzun et al. [18] proposed a form-finding method for free-form tensegrity structures by TPE
minimization using a genetic algorithm and computationally showed that it is possible to
perform form-finding for tensegrities using simple calculations when compared to other
form-finding methods.
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Figure 1. Schematic diagram of the exoplanet exploration mission [10].

Recently, due to the strong flexibility exhibited by the tensegrity structures, more and
more researchers focus on its application in the field of space exploration. NASA [19] has
developed two types of tensegrity robots for the “Titan” planetary exploration program and
conducted simulation experiments for application scenarios. Shibata et al. [20] designed
a six-bar tensegrity robot driven by BMX150 shape memory alloy (SMA) coils, described
the topological transition diagram, and proved that the robot prototype has a crawling
ability through experiments. Hirai et al. [21] designed a six-bar tensegrity robot constructed
by soft pneumatic actuators instead of cables, which realized continuous tumbling on a
flat surface.

Rovira et al. [22] developed a tensegrity robot simulation simulator; it was proved
that the tensegrity structure could roll according to the predetermined motion trajectory.
Luo et al. [23] proposed a six-bar tensioning integral robot and designed and studied the
single-step rolling method of the robot through simulation analysis. Du et al. [24] designed
a tensegrity robot and conducted continuous rolling experiments through tumbling gait
simulations to obtain the influence of the structural parameters on the robot’s rolling.

The above research fully proves that the tensegrity robot has strong motion perfor-
mance. However, gait planning for continuous motion is rarely involved. In order to
address the aforementioned issue, the gait planning of the robot’s single-step, continuous
and obstacle-avoiding rolling was designed in this work. Rolling and obstacle avoidance
experiments were performed to verify the motion performance of the robot.

The rest of this paper is organized as follows. In Section 2, the configuration and
design of the tensegrity robot via an equilibrium matrix is explained, as is the singular
value decomposition (SVD) method. In Section 3, based on the rolling principle, a topology
map of the gait planning for the single-step roll, continuous roll, and obstacle avoidance
roll is proposed. In Section 4, the development of the six-bar tensegrity robot prototype is
discussed. Experiments were carried out to verify the correctness of the configuration de-
sign and gait planning. In Section 5, the main work is summarized, and the corresponding
conclusions are drawn.
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2. Configuration Design of the Six-Bar Tensegrity Robot

In this section, to obtain the configuration parameters of the tensegrity robot, the equi-
librium matrix equations were established via the singular value decomposition method
and were verified by a tensegrity selfstress balance system. The results provide a theoretical
basis for the construction of the six-bar tensegrity robot model in the following sections.

2.1. Basic Assumption

In this paper, the following assumptions are made in tensegrity structures.

(1) The topological shape of the structure is known, and the shape is represented by a
node matrix;

(2) No external loads are considered;
(3) The selfweight of the structure is neglected;
(4) Member failure, such as yielding or buckling, is not considered;
(5) The nodes are connected by hinges.

2.2. Balance Matrix

For tensegrity structures in three-dimensional space, it is assumed that there are 4
nodes, as shown in Figure 2, and Node i is connected to the other three nodes: j, h, and k.
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When the structure is in equilibrium, any node in the structure should be force-
balanced; that is, the resultant force on Node i is 0. Thus,

→
t ji +

→
t hi +

→
j ki +

→
f =

→
0 (1)

where
→
f represents the external force vector, and

→
t ji represents the direction from Node j

to Node i. Similarly,
→
t hi and

→
t ki are not described.

In the Cartesian coordinate system, the external force vector can be divided into three
axial components: fix, fiy, and fiz, and the internal forces can be expressed by the product of
the elongation and the internal force scalar. Therefore, the equilibria of Node I in the x, y,
and z directions are expressed as

xi−xj
lij

tij +
xi−xh

lih
tih +

xi−xk
lik

tik = fix
yi−yj

lij
tij +

yi−yh
lih

tih +
yi−yk

lik
tik = fiy

zi−zj
lij

tij +
zi−zh

lih
tih +

zi−zk
lik

tik = fiz

(2)

where xi, yi, zi, xj, yj, zj, and lij represent the displacement and length of Element bij,
respectively, and Element bih and Element bik likewise.

When the cable is compressed, Equation (2) is expressed as a matrix:
xi−xj

lij
xi−xh

lih
xi−xk

lik
yi−yj

lij
yi−yh

lih
yi−yk

lik
zi−zj

lij
zi−zh

lih
zi−zk

lik




tij
tih
tik

 =


fx
fy
fz

 (3)
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If the tensegrity structure is considered in the d-dimensional space and has n nodes
and b bars, a matrix of dn × b can be obtained, as shown in Equation (4).

· · · 0 · · ·

· · ·
... · · ·

· · · xi−xj
lij

· · ·

· · · yi−yj
lij

· · ·

· · · zi−zj
lij

· · ·
· · · 0 · · ·

· · ·
... · · ·

· · · − xi−xj
lij

· · ·

· · · − yi−yj
lij

· · ·

· · · − zi−zj
lij

· · ·
· · · 0 · · ·

· · ·
... · · ·




...

tij
...

 =



...
fix
fiy
fiz
...


(4)

The above formula can be unified as:

[A]{t} = {f} (5)

where [A] is the equilibrium matrix, {t} is the internal force of each element, and {f} is the
external load of the nodes.

When the external load of the nodes is in equilibrium:

[A]{t} = 0 (6)

Solving Equation (6), the internal force density vector {t} of each element can be obtained.

2.3. Singular Value Decomposition

The vector t-satisfying Equation (6) exists in the null space of the equilibrium matrix A.
Since the equilibrium matrix A is not an invertible matrix, to obtain the ideal internal force
vector, t, it needs to be decomposed by the singular value decomposition method:

A = UσVT (7)

U =
[
u1 u2 · · · um

]
(8)

V =
[
v1 v2 · · · vn

]
(9)

σ =


σ1

. . .
σr

0

 (10)

where U is an orthogonal matrix of the order m, V is an orthogonal matrix of the order n,
and σ is a non-negative singular value of the balanced matrix A.

According to the properties of the matrix singular value decomposition, the singular
value of the balanced matrix A is the positive square root of the nonzero eigenvalues of
AAT and ATA.
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Assuming that U is the eigenvector of AAT, and V is the eigenvector of ATA, from the
properties of the matrix singular value decomposition, we can obtain the following:

Avi = UσVTvi = Uσ
[

vi · · · vrn

]Tvi

= Uσ

 vT
1
...

vT
rn

vi = Uσ



0
...
1
...
0

 =

[
σiui

0

]
(11)

The following two formulas are obtained:

Avi =

{
σiui i = 1, . . . r
0 i = r + 1, . . . rn

(12)

ATvi =

{
σiui i = 1, . . . r
0 i = r + 1, . . . rm

(13)

The matrices U and V can be divided into the following two parts:
U =

[
Ur Urm−r

]
,

Ur =
[

u1 · · · ur
]
,

Urm−r =
[

ur+1 · · · urm

] (14)


V =

[
Vr Vrm−r

]
,

Vr =
[

v1 · · · vr
]
,

Vrm−r =
[

vr+1 · · · vrm

] (15)

Combining Equations (5) and (12), the corresponding internal force vector, t, can
be obtained.

2.4. Selfstress Balance System of the Six-Bar Tensegrity Structure

In this section, the correctness of the form-finding results is verified by the selfstress
balance system, which provides a theoretical basis for the subsequent model establishment.

The selfstress system of a tensegrity can be expressed by the equilibrium equation,
such as

At = f (16)

where A is the balance matrix of the structure, t is the internal force column vector composed
of each component of the structure, and f is the component load in each direction received
by the node.

The corresponding coordination equation is

Bd = e (17)

where B is the coordination matrix, d is the node displacement vector, and e is the structural
deformation vector.

From the virtual work principle, we can obtain

B = AT (18)

It is known that the selfstress system of the tensegrity structure has b members, the
number of N free nodes, and the number of M constraint points. Then, the equilibrium
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matrix, A, is a 3N × b matrix, and the number of selfstress states and the number of
independent mechanism displacements are:

s = b− r (19)

m = 3(N −M)− r (20)

The statically indeterminate and indeterminate judgment criteria have been introduced
in detail in the literature and will not be repeated in this paper. From the definition of a
tensegrity structure, under the action of the load, the tensioned overall structure is balanced
by the selfstress between the components, and an appropriate prestress needs to be applied,
which belongs to the dynamic system. Therefore, when analyzing the tensegrity structure,
it is necessary to judge whether the structure meets the prestressing requirements through
the selfstress system.

3. Form-Finding Examples

In this section, the rationality of the method is verified by two tensegrity models,
which provides a basis for the subsequent gait planning and prototype development of the
six-bar robot.

3.1. Six-Bar Tensegrity Structure

Taking the six-bar tensegrity structure as an example, the structure has a total of
12 nodes. Each node is connected to other nodes by 4 different cables, forming a symmet-
rical icosahedron, including 8 closed equilateral triangles and 12 open isosceles triangles.
Through the form-finding analysis method in the previous section, the structural shape
and selfstress state of the structure in the stable state are solved. The nodal coordinates
and internal force distribution of the six rod elements and 24 cable elements of the six-bar
tensegrity structure are obtained, and the structure topology is shown in Figure 3.
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According to the singular value decomposition method, the internal force of each
member is obtained as follows:

T =

{
Ts = 0.1291, (s = 1, · · · , 24)
Tb = −0.3162, (b = 1, · · · , 6)

}T

(21)

Among them, Ts (s = 1, 2, . . . , 24) represents the i-th cable, and Tb (b = 1, 2, . . . , 6)
represents the i-th rod.

After analysis, the structure includes one selfstress state number and one internal
mechanism displacement number so that the structure is statically indeterminate and dy-
namically indeterminate, geometrically stable, and conforms to the definition of a tensegrity
structure. The coordinates of each node of the structure are shown in Table 1.
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Table 1. The nodal coordinates of the six-bar tensegrity structure.

Node Number x Coordinate/m y Coordinate/m z Coordinate/m

1 −0.075 0.000 0.000
2 0.0750 0.000 0.000
3 −0.150 0.000 0.168
4 −0.150 −0.134 0.101
5 0.000 −0.168 0.000
6 0.000 −0.235 0.134
7 −0.075 −0.134 0.268
8 0.075 −0.134 0.268
9 0.150 0.000 0.168
10 0.150 −0.134 0.101
11 0.000 0.101 0.134
12 0.000 0.034 0.268

According to the form-finding results, to study the stability and impact resistance of
the six-bar tensegrity structure, Kevlar and carbon fiber materials are used to construct
the cables and rods of the tensegrity model, respectively, and the joint is made of 8200 pro
resins through 3D printing. A model of the six-bar tensegrity structure is shown in Figure 4.
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3.2. Double-Layer Star-Tensegrity Structure

According to the previous form-finding method, the cable–rod length and internal
force distribution of the star-tensegrity structure were calculated. The overall topology of
the double-layer star-tensegrity structure is shown in Figure 5.
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According to the singular value decomposition method, the internal forces of the cable
members are shown in Table 2; the rod members are shown in Table 3.

Table 2. The values of the internal forces of the cables.

Element Internal Force/kN Element Internal Force/kN

1 0.203 13 0.097
2 0.203 14 0.097
3 0.203 15 0.097
4 0.203 16 0.136
5 0.203 17 0.136
6 0.203 18 0.136
7 0.168 19 0.173
8 0.168 20 0.173
9 0.168 21 0.173
10 0.147 22 0.173
11 0.147 23 0.173
12 0.147 24 0.173

Table 3. The values of the internal forces of the bars.

Element Internal Force/kN

1 0.203
2 0.203
3 0.203
4 0.203
5 0.203
6 0.203

After analysis, this structure conforms to the definition of a tensegrity structure. The
coordinates of each node of the structure are shown in Table 4. A model of the star-tensegrity
structure was established, as shown in Figure 6. The materials for its cables, rods, and joints
are the same as those used in the six-bar models.
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Table 4. The nodal coordinates of the double-layer star-tensegrity structure.

Node Number x Coordinate/m y Coordinate/m z Coordinate/m

1 0.100 0.000 0.000
2 −0.500 0.087 0.000
3 −0.050 −0.087 0.000
4 −0.017 0.099 0.200
5 −0.077 −0.064 0.200
6 0.094 −0.034 0.200
7 0.057 0.081 0.140
8 −0.100 0.009 0.140
9 0.042 −0.091 0.140
10 0.071 −0.071 0.340
11 0.026 0.097 0.340
12 −0.097 −0.026 0.340

4. Gait Planning of the Six-Bar Tensegrity Robot

In this chapter, based on the analysis of the rolling principle, the gait planning of the
single-step roll, continuous roll, and obstacle avoidance roll of the six-bar tensegrity robot was
completed, which provides a theoretical basis for the subsequent prototype experiments.

4.1. Rolling Principle Analysis

The six-bar tensegrity robot is composed of rigid rods and elastic cables. When the
length of the rod member changes, the cable member will change so that the entire structure
is deformed and the center of gravity of the robot is offset. When the projection of the
center of gravity leaves the bottom landing triangle, the robot rolls over to another triangle
landing state along the direction of the center of gravity offset.

First, the center of gravity (CG) is projected onto the open triangular plane at the
bottom of the structure, and for each projected surface, the distance between the projected
point of the center of gravity and the three sides of a closed triangle is measured, as shown
in Figure 7.
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If the projected point of the center of gravity can move beyond a side to the outside of
the triangle, the distance is measured as a negative value, and this distance also becomes
the gravitational moment, which can be calculated through Equation (22):

Ti,j = G
Li,j × Lcg,i

Li,j
(i, j) ∈ [1, 12] (22)

where Ti,j is the gravitational moment projected from the center of gravity to the (i, j) side;
G is the robot gravity; Li,j is the (i, j) side vector; Lcg,i is the center of gravity line vector
with i, and ||Li,j|| is the length of the (i, j) side.
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According to the above analysis, it can be concluded that when the gravity moment of
the robot is greater than 0, the center of gravity of the robot is located in the bottom triangle
and cannot roll; when the gravity moment of the robot is equal to 0, the center of gravity is
on the edge of the triangle and is in a critical state; when the gravitational moment of the
robot is less than 0, the center of gravity of the robot deviates from the bottom triangle to
achieve rollover, and the smaller the value of the gravitational moment is, the more easily
the robot rolls.

4.2. Single-Step Roll

The six-bar tensegrity is a symmetrical icosahedron, including 8 closed equilateral
triangles and 12 open isosceles triangles. For the convenience of description, an equilateral
triangle is called a closed triangle and is represented by the letter C (close); an isosceles
triangle is called an open triangle and is represented by the letter O (open).

According to the rolling principle of the robot, the continuous rolling path of this robot
can be regarded as the change between 20 triangles. In this paper, the gait planning of the
robot prototype is carried out in a closed triangle landing method. The rolling gait can be
divided into three types:

CO denotes a closed triangle to an open triangle;
OC denotes an open triangle to a closed triangle;
OO denotes an open triangle to an open triangle.

The motion gait planning of the closed triangle landing is shown in Figure 8. The
robot can deform itself to offset the center of gravity. When the center of gravity crosses a
line to reach another triangle, the robot rolls.
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Figure 8. Locomotion gait planning.

The center of gravity change of the CO-step was calculated through MATLAB software
to verify the correctness of the rolling principle. As shown in Figure 9, the empty green
circles, red stars, and thin dotted lines represent the node positions, the center of gravity,
and the moving direction of the center of gravity, respectively. The red dotted line represents
the tumbling edge. The change in the COC-step center of gravity is shown in Figure 10.
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The gait planning of the six-bar tensegrity robot is the path planning of selecting the
appropriate rolling gait many times according to the landing method, which finally reaches
the target point. In addition, due to the large value of the gravitational moment of the
OO-step, the robot rolls with difficulty; thus, the OO-step is not chosen in this paper during
the rolling process.

4.3. Continuous Roll

Since the adjacent triangles of the closed triangle are all open triangles, which can
better achieve locomotion, the closed triangle is chosen in this paper for continuous gait
planning. Since the continuous roll is composed of multiple OC, CO, or COC steps, it will
not be repeated in this section.

After analysis, the closed triangle can achieve the basic linear locomotion of the robot
through six COC steps, as shown in Figure 11, and can also achieve the robot’s basic
steering movement through four COC steps, as shown in Figure 12.

Based on this, a continuous locomotion calculation example is set up in this section
from the initial state of a closed triangle landing locomotion to the end state of a closed
triangle. As shown in Figure 13, the initial point is a red dot, and the end point is a blue
dot. Different colored polylines represent different gaits.
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4.4. Obstacle Avoidance Roll

In order to further verify the gait of the above analysis, locomotion experiments and a
target points were set up. In order to verify the ability of the robot to move to any target,
an obstacle was set at the line connecting the two dots. Figure 14 is the obstacle avoidance
gait planning diagram. The initial point is the red dot; the end point is the yellow dot; the
blue polyline is the imagined gait, and the brown strip is the set obstacle.
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5. Prototype Development of the Six-Bar Tensegrity Robot

Based on the previous configuration design, the six-bar tensegrity robot prototype
was developed to verify the rationality of the previous configuration. According to the gait
planning, a prototype experiment was carried out, which provided the experimental basis
for the follow-up kinematic analysis and trajectory planning.

5.1. Prototype Development of the Six-Bar Tensegrity Robot

In order to achieve the locomotion control of the robot, the control system of the
six-bar tensegrity robot was designed. Among others, the main control chip uses the
STM32F103C8T6 minimum system board, which has high adaptability, stable performance,
and low power consumption; the motor drive module TB6612FNG can control two linear
motors as the drive module; the MP1584EN chip is used as the power supply step-down
voltage regulator module, and the HC-05 Bluetooth module is used as the signal input of
the robot prototype controller. The controller of the robot prototype is shown in Figure 15.
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Figure 15. The controller of the six-bar tensegrity robot.

According to the experiment, a miniature electric push rod is selected to simulate
the rod member. The push rod has two control modes: a position-blocking switch and
position-negative feedback adjustment. When the push rod reaches the limit position,
the blocking switch is triggered, and the power supply is cut off. Through the negative
feedback of the position, the telescopic part of the push rod can be controlled, and precise
control of the push rod can be achieved. The maximum thrust of the electric push rod is
22 N, and the driving force provided by it can achieve the rolling of the robot.

The cable members in this prototype use Kevlar cables and cylindrical stainless-steel
springs that vary with the length of the rod members. The use of rod and cable components
meets the needs of the robot prototype.

In this section, the original length of the rod member of the robot prototype is 300 mm.
According to the form-finding structure above, the length of the cable member and the
rod spacing can be obtained to build the six-bar tensegrity robot prototype. In order to
reduce the influence of uneven mass distribution at both ends of the linear push rod motor,
each group of parallel linear push rod motors adopts positive and negative installations. In
order to study the motion mode of the six-bar tensegrity robot and verify its movability, the
prototype of the six-bar tensegrity robot is manufactured by electric actuators, Kevlar cables,
and 3D-printed joints. The joint is designed as an arc-integrated shape that differs from the
structural model, which plays a role in protecting the electric actuators and enhances its
motion performance, as shown in Figure 16. The robot prototype basically maintains the
shape of the six-bar tensegrity structure in a static state, and there is no obvious deformation.
The basic parameters are shown in Table 5.
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Table 5. The basic parameters of the robot prototype.

Items Value

Original length of electric push rod (mm) 300
Maximum length of electric push rod (mm) 350

Shortest length of electric push rod (mm) 200
Telescopic speed range (mm/s) 20

Rod Spacing (mm) 150
Cable length (mm) 183.7

Electric push rod mass (kg) 0.11
Battery mass (kg) 0.17

Controller mass (kg) 0.03
Total mass of robot prototype (kg) 1.27

5.2. Single-Step Roll Experiment

The robot prototype in Figure 16 is in an open triangle landing state. When the
length of one or two rod members is controlled through Keil5 software programming, the
single-step rolling locomotion of the CO- or OC-step of the six-bar tensegrity robot can be
achieved. When the robot touches the ground in a closed triangle, Rod 2 and Rod 6 are
shortened by 50 mm at the same time. At this time, the structure of the robot is seriously
deformed. When the rod members of the original lengths are restored, the robot prototype
becomes balanced, and the robot prototype achieves the rolling locomotion of the CO-step.
The actual rolling process is shown in Figure 17. When the robot touches the ground in an
open triangle, Rod 1 and Rod 6 are shortened by 30 mm at the same time. Then, the rod
members are restored to their original lengths. Subsequently, the robot prototype achieves
the rolling locomotion of the OC-step. The actual rolling process is shown in Figure 18.
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5.3. Continuous Roll Experiment

Based on the single-step roll experiment, the experiment of continuous locomotion of
the robot prototype is discussed in this section. According to the previous gait analysis,
controlling different motors can make the robot accomplish continuous locomotion and
verify the coordination and mobility of the robot.

As shown in Figure 13, the red and blue lines only need to go through 11 COC
steps to reach the designated position, which is shorter than those of other paths. In this
paper, the blue path is selected for verification. The actual locomotion process is shown
in Figure 19. In the figure, the red dots represent the starting point and the endpoint, the
orange triangles represent the gravity center position of the closed triangles of the robot
prototype, and the yellow circles represent the gravity center position of the open triangles
of the robot prototype.
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5.4. Obstacle Avoidance Roll Experiment

According to the above experimental contents, to further verify the robot locomotion
performance, the robot is controlled to complete obstacle avoidance according to the gait
planning in Figure 14, and the actual obstacle avoidance rolling locomotion process of the
robot prototype is shown in Figure 20. Among them, the red dots represent the starting
point and the endpoint, the orange triangles represent the gravity center position of the
closed triangle of the robot prototype, the yellow circles represent the gravity center position
of the open triangles of the robot prototype, and the wooden blocks represent obstacles or
dangerous areas.

During the experiment, it was found that there is a difference between the actual
locomotion gait and the planning gait. This difference may be caused by the quality and
load of the robot itself. We tried to reduce the imbalance of the load on the robot structure
and place the load on the robot centroid location as much as possible.
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In this paper, by establishing an equilibrium matrix, the singular value decomposition
method was used to obtain the configuration design of a six-bar tensegrity robot, which
is also suitable for the form-finding of an asymmetric tensegrity structure. Based on the
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