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Abstract: X-ray security inspection processes have a low degree of automation, long detection times,
and are subject to misjudgment due to occlusion. To address these problems, this paper proposes a
multi-objective intelligent recognition method for X-ray images based on the YOLO deep learning
network and an optimized transformer structure (YOLO-T). We also construct the GDXray-Expanded
X-ray detection dataset, which contains multiple types of dangerous goods. Using this dataset, we
evaluated several versions of the YOLO deep learning network model and compared the results to
those of the proposed YOLO-T model. The proposed YOLO-T method demonstrated higher accuracy
for multitarget and hidden-target detection tasks. On the GDXray-Expanded dataset, the maximum
mAP of the proposed YOLO-T model was 97.73%, which is 7.66%, 16.47%, and 7.11% higher than that
obtained by the YOLO v2, YOLO v3, and YOLO v4 models, respectively. Thus, we believe that the
proposed YOLO-T network has good application prospects in X-ray security inspection technologies.
In all kinds of security detection scenarios using X-ray security detectors, the model proposed in this
paper can quickly and accurately identify dangerous goods, which has broad application value.

Keywords: X-ray; object detection; occlusion; YOLO; transformer; deep learning

1. Introduction

X-ray technology has been widely used in security inspection processes, which are es-
sential to ensure public safety [1–3]. In these processes, perspective images can be obtained
by scanning luggage or other containers using intense X-ray penetration, and it is possible
to determine whether there is contraband inside the container without unpacking the
contents. This method improves the speed of security inspection dramatically and is widely
used in various locations, e.g., airports, bus stations, and high-speed railway stations [4,5].
X-ray security inspection image data have the following characteristics. (1) The irregularity
of the shooting background, especially when the background is similar to the prohibited
goods, will seriously interfere with object identification. (2) Objects in luggage are typically
placed randomly, and overlapping occlusion increases recognition difficulty. (3) Different
contraband come in diverse sizes, and the sizes of the same or similar types of contraband
can also differ. Note that the image obtained by transmission scanning will be distorted,
and the angle of placing the articles will change, which introduces significant difficulties
in terms of effective object identification. Currently, most security inspection work relies
heavily on human visual discrimination, and staff typically only have a few seconds to
perform inspections. At peak operation times, staff can easily be affected by environmental
noise, fatigue, and other factors, which lead to a high rate of missing prohibited goods
and potential safety hazards. As deep learning technology has been used in the security
detection field in recent years [6,7], the use of a deep learning target recognition network
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can improve the automation of security inspection processes significantly and is of great
significance to improve the inspection efficiency and recognition accuracy.

X-ray security inspection contraband detection is performed to locate and classify
contraband in the image. Generally, traditional machine learning target detection methods
use sliding windows to locate target objects [8,9], and classifiers are employed to identify
the target objects. Unfortunately, the feature extraction ability of such methods is weak,
it is difficult to capture detailed information about the target, and detection is poor for
contraband objects that are blocked and placed at different angles. However, the network
structure of the deep learning target detection algorithm is deep, and the location and
classification accuracies can be improved by fusing different features between the network’s
layers. Currently, deep learning target detection algorithms can be divided into two-stage
and one-stage detection algorithms. Two-stage algorithms are represented by the R-CNN
method [10], which first selects several candidate regions using independent algorithms.
Then, the features of the candidate regions are extracted through networks. Finally, this
method locates and classifies feature vectors using support vector machines and regressors.
(2) A one-stage algorithm transforms the target detection task into a regression problem
and predicts the target using an end-to-end network. This technique is sufficiently fast
to realize real-time detection. YOLO [11] and SSD [12] are representative examples of
one-stage detection algorithms.

Deep learning technology has recently been used in X-ray security inspection pro-
cesses. Akcay et al. first introduced deep learning technology to baggage classification of
X-ray images, verified that deep learning is more suitable than other methods for X-ray im-
age classification tasks, and proposed an anomaly detection model that uses a conditional
generation countermeasure network to train a large number of X-ray images without con-
traband so that when the contraband appears, it will be marked as an abnormal condition
in the image. On this basis, anomaly detection is performed on images with contraband,
and good results have been achieved in several studies [13–16]. In addition, Gaus et al. [17]
employed a two-stage detection method with a double CNN structure to find the region
of interest in the image, to obtain the corresponding location information, and then to
classify the anomaly. Here, the detection accuracy was improved slightly by combining
target detection and anomaly detection techniques. However, the network structure of this
method was complex, detection speed was slow, and it was difficult to distinguish objects
with similar shapes. Contraband hidden in suitcases are generally small, e.g., guns and
knives, and detecting small dangerous objects is challenging. In addition, an X-ray image
differs from a color image, and the details and color information of this kind of data are
lost. Thus, most deep learning network models do not recognize overlapping objects effec-
tively. Thus, Liu et al. [18] proposed a front and back background segmentation method to
remove most of the background containing useless information according to the brightness
differences between the front and back scenes of the X-ray image. Hassan et al. [19] used
the contour information of the object in the X-ray image, generated a series of tensors using
cascade structure tensor technology, provided target suggestions, and then conducted
target detection using a convolution neural network based on the contour information and
candidate targets. Note that implementing an attention module can also effectively solve
the occlusion problem. Li et al. [20] combined a semantic segmentation network with the
mask R-CNN, where they took the semantic segmentation result as the soft attention mask
of the mask R-CNN, which improved the detection accuracy of overlapping objects. In
addition, Zhang et al. [21] proposed the XMC R-CNN model. They used the X-ray material
classifier and organic and inorganic stripping algorithm for the first time to solve the
problem of overlapping contraband in X-ray images. Although many previous studies have
investigated the occlusion and overlap of targets in X-ray images, recognition accuracy and
computation speed still limit the application of such technology in the security detection
field. In summary, further research is required to develop deep learning networks that
exhibit high recognition accuracy, good stability, and fast detection speeds.
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Given that traditional machine learning algorithms cannot handle the increasingly
complex security environment. Based on an existing deep learning target detection network
under the YOLO framework, we propose an innovative YOLO-T network structure to
detect dangerous small-scale goods under complex environmental conditions, e.g., multiple
targets and occlusion. The proposed YOLO-T model provides a complete method for target
identification of dangerous goods based on X-ray images in the security inspection field.
Through our experiments, the detection accuracy of the YOLO-T network reached 97.73%,
and the best results were obtained in the comparison experiments with various networks
in YOLO series. In addition, the proposed model solves the problems of difficulty and low
precision when detecting small target objects in the security inspection field and improves
the detection efficiency. From the perspective of practical application, public transport and
airports are equipped with X-ray security detectors. The use of the depth learning model
can quickly and accurately identify dangerous goods from the images taken by the X-ray
security detector. When the flow of people is large and the safety detection task is heavy,
rapid and automatic detection of dangerous goods is of great significance.

This article’s structure is as follows. The first part introduces the research status of X-
ray image security detection. The second part introduces the basic principle of the YOLO-T
method. In the third part, a comparative experiment is carried out between the YOLO-T
method and other methods. The last part is the summary and prospect of the full research.

2. Principle and Method
2.1. Object Detection Based on YOLO Deep Learning Network

The primary principle of the YOLO technique is to divide an image into a 7× 7 grid. If the
center of an object falls in a grid, the grid is responsible for predicting the object. Here, each
grid must predict two bounding boxes, and each bounding box predicts (x, y, w, h) and the
confidence level, where (x, y) represents the position of the center point of the bounding box,
and (w, h) represents the width and height of the bounding box after normalization relative
to the entire image. The confidence level includes the probability that the bounding box
will contain the target Pr(object) and the accuracy of the bounding box (the intersection ratio
of the prediction box and the actual box) IOUtruth

pred , i.e., con f idence = Pr(object)× IOUtruth
pred .

Note that a high confidence level indicates that there is a target in the bounding box and that
the position is accurate. In contrast, a low confidence level indicates that there may be no
target or, if there is a target, there is a large position deviation. In addition, each grid must
predict the target categories, and the probability of each category is denoted P(Ci|object).
Initially, 20 categories can be predicted. Finally, the predicted object information is a
7 × 7 × 30 tensor. The prediction frame and category information extracted from it are
processed by non-maximum suppression to output the prediction result for the given image.

The network structure of YOLO is motivated by the GoogleNet model. The YOLO
network comprises 24 convolution layers, four max-pooling layers, and two fully connected
layers. The convolution layer of 3 × 3 is connected after the restoration layer of 1 × 1 to
replace the GoogleNet’s Inception module. The YOLO network structure is illustrated
in Figure 1.

YOLO employs the mean square error as the loss function, which comprises the
positioning loss, confidence loss, and classification loss. Here, the positioning loss is used
to measure the bounding box’s central coordinate error and the bounding box’s width and
height error. Note that smaller target bounding boxes are disturbed by deviations caused
by positioning loss. To make the model pay focus to the bounding box containing the target,
the confidence loss weight of the bounding box containing the target is typically set to 1,
and the confidence loss weight of a bounding box without the target is 0.5. After setting
the above parameters, the classification loss is calculated only when targets are present in
the grid. Here, each grid has multiple bounding boxes but corresponds to only a single
category; thus, only the box with the giant IOU of the ground truth is selected for training.
The loss function is divided into the following three expressions.

Positioning loss formula:
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Classification loss formula:
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(pi(c)− p̂i(c))

2 (3)

Here, S represents the grid, and B represents the number of prediction boxes; 1 is an
indicating function with only two values, i.e., 0 and 1. If a target is present in grid i, 1obj

i is

set to 1; otherwise, it is set to 0. 1obj
ij indicates that the jth prediction box in grid i predicts

the grid. The (xi, yi) coordinates represent the center of the box relative to the bounds of
the grid cell, and (x̂i, ŷi) represents the position coordinate of the corresponding actual box.
In addition, wi,hi,ŵi,ĥi represent the width and height of the prediction box and the actual
box relative to the entire image. Ci is the confidence score.

Based on the above principles, the YOLO v2 network comprises the DarkNet-19
feature extraction and detection network. YOLO v3 employs the DarkNet-53 CNN as the
backbone network. To avoid the gradient vanishing problem caused by the deep structure
of the network, the network draws lessons from the structure of the residual network and
the feature pyramid network concept. The YOLO v4 network comprises a backbone, a
neck, and a head structure, where CSPDarkNet-53 is employed as the backbone network.
In other words, the YOLO v4 network implements cross-stage partial connections based on
DarkNet-53. Currently, the abovementioned YOLO network models are widely used in
target-detection tasks [22–24].
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2.2. Build YOLO-T Target Detection Network

The transformer structure was proposed by Google’s deep learning team [25]. It is an
encoder–decoder network structure based on an attention mechanism, as shown in Figure 2.
The so-called coding transforms the input sequence into a fixed length vector, and the
decoding process converts the previously generated fixed vector into an output sequence.
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Sequence data (vector) are input, position encoding is performed, and then, the
encoder is entered after splicing. The location coding processes are expressed as follows.

PE(pos,2i) = sin

(
pos

10, 000
2i

dmodel

)
(4)

PE(pos,2i+1) = cos

(
pos

10, 000
2i

dmodel

)
(5)

Here, dmodel represents the total dimension of the input vector, pos represents the
position in the vector, and i represents the number of dimensions in the vector. The
parameter 10,000 here is the specified parameter in the location coding formula. Specifically,
it refers to the geometric series from 2π to 10, 000× 2π formed by wavelength in the process
of trigonometric function operation, which is related to the series expansion.

The encoder block shown in Figure 2 comprises six stacked encoders, and each encoder
comprises a multi-head self-attention module and a fully connected feedforward neural
network. Note that the attention model was first employed in the machine translation field
and has played an important role in computer vision tasks in recent years. A schematic
diagram of the attention concept is shown in Figure 3.

As shown in Figure 3, the elements in the source comprise a series of key and value
data pairs. Given an element query in the target, the weight of the value corresponding
to each key is obtained by calculating the similarity between the query and each key. The
value is then weighted and summed to obtain the final attention value. Here, the greater
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the weight, the more focus on its corresponding value. Using the attention mechanism, we
can filter out essential information from a large amount of data while ignoring unimportant
information. The calculation of the attention mechanism is expressed as follows.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (6)

Here, dk represents the dimension of K. Note that the self-attention mechanism only
uses a single set of Q, K, V to calculate the attention value, while the multi-head self-
attention mechanism uses multiple sets of Q, K, V to calculate the attention value. Finally,
the resulting multiple matrices are spliced as follows.

MultiHead(Q, K, V) = Concat(head1, . . . , headi,)Wo (7)

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(8)

Here, QWQ
i , KWK

i , VWV
i is the mapping weight matrix of Q, K, V in the i-th multi-head

attention mechanism, and Wo is the weight matrix.
The matrix X output by the multi-head attention module is input to the feedforward

fully connected neural network after residual and normalization. The calculation formula
is given as follows.

FFN(X) = max(0, XW1 + b1)W2 + b2 (9)

Through the feedforward neural network, matrix X changes back to the dimension
before the input encoder and enters the decoder. Six decoders are stacked on the decoder
block. Each decoder has more masked multi-head attention than the encoder block. In
practice, some values are masked to not affect the updating parameters. This is done to
block the following information. For a sequence, at time t, the decoder output should only
depend on the output before t, and the information after t must be hidden. After a linear
transformation process, the output of the decoder obtains the probability distribution of
the output through the SoftMax function, and the prediction with the most significant
corresponding probability is selected as the final prediction result.
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The full name of the proposed YOLO-T network is YOLO-Transformer. As a deep
learning network designed specifically for the X-ray security detection task, the main
structure of the proposed YOLO-T network is shown in Figure 4. When designing the
network, we replaced the DarkNet-53 network as the backbone in the YOLO v3 network
with Swin transformer structure [26] while retaining the neck and head parts of YOLO v3.
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Figure 4. Schematic diagram of YOLO-Transformer network structure.

As shown in Figure 4, the network structure of the Swin transformer backbone is the
key to the entire YOLO-T network. First, the input H ×W × 3 image is divided into equal
size nonoverlapping N ×

(
P2 × 3

)
patches through the patch partition module. The patch

of each
(

P2 × 3
)

is recorded as a patch token, with a total of N patch tokens. Here, P is 4, and
the flattened dimension of each patch is 48, N = H

4 ×
W
4 . Then, linear embedding projects

the H
4 ×

W
4 × 48 tensor to any dimension C to obtain a tensor of dimension H

4 ×
W
4 ×C. It is

then sent to several shifted window transformer blocks (STB) with improved self attention.
The first STB and the linear embedding layer form stage 1. As the network depth increases,
the number of operation tokens through the patch-merging layer decreases gradually. After
the first patch is merged and spliced, the number of patch tokens is reduced to one-quarter
of the original, i.e., N = H

8 ×
W
8 , and the dimension becomes 4C. The dimension is reduced

to 2C through a linear layer and then sent to an STB in stage 2 for feature conversion. After
each stage, the number of channels is expanded twice, and then, the H

32 ×
W
32 × 8C tensor

is output. The above discussion focuses on the backbone part of this network. We take
a 448× 448× 3 data image input as an example to show the network structure. Then,
the remaining neck and head parts of the network maintain the basic YOLO structure, as
shown in Figure 4. It takes the RGB image as an example. For detecting single-channel
X-ray images, the number of image channels is changed to one during training.

The STB structure in each stage is shown in Figure 5 [26]. It retains other parts of the
classical transformer structure and replaces the standard multi-head self-attention (MSA)
module with the multi-head self-attention modules W-MSA and SW-MSA based on the
shift window. The STB comprises an MSA module based on the shift window. Each MSA
module and each multilayer perceptron (MLP) uses the LayerNorm (LN) previous layer,
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and all use the residual connection. The STBs with shift window division are calculated
as follows.

ẑl = W−MSA
(

LN
(

zl−1
))

+ zl−1 (10)

zl = MLP
(

LN
(

ẑl
))

+ ẑl (11)

ẑl+1 = SW−MSA
(

LN
(

zl
))

+ zl (12)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (13)

Here, ẑl represents the (S)W-MSA module output characteristics of the l-th block, and
zl represents the MLP module output characteristics of the l-th block.
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Different from the existing structure, we couple this structure with YOLO structure
and apply its migration to the target detection of X-ray images. This part of the work is
mainly reflected in the actual program structure and preparation. After our subsequent
experiments, we found that this structure can effectively suppress the false detection
problem caused by overlapping and background interference in the detection process.
In summary, to the best of our knowledge, the proposed YOLO-T network is the first to
integrate the attention mechanism and transform structure for application in the X-ray
security detection field. By designing several improved self-attention STB structures, the
proposed YOLO-T network has higher resource utilization efficiency, greatly improved
processing speed compared to traditional YOLO series networks, and it effectively solves
the problem of X-ray image target detection under interference from various environmental
conditions. In addition, the transformer structure can be divided into multiple blocks
(similar to the CNN), and feature information of different resolutions can be extracted
between blocks at different levels; thus, the proposed YOLO-T network exhibits high
accuracy and fast detection speed in the multitarget detection task. In summary, the
proposed YOLO-T network obtains better detection results when applied to X-ray image
target detection than to conventional traditional YOLO networks.

3. X-ray Image Recognition Experiment
3.1. Experimental Dataset

Most deep learning object detection models are based on optical color images. Public
optical image datasets are easy to obtain, and the production costs of such datasets are low;
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however, it is challenging to obtain X-ray images. Current, X-ray datasets applicable to the
detection of contraband include the GDXray and SIXray datasets [27,28].

The GDXray dataset was the first public large-scale dataset of X-ray images (8150 X-ray
baggage images). The GDXray dataset contains images of guns, swords, and other blade
contraband. The data in the GDXray dataset are grayscale images, in which the target
contour is clear and easy to distinguish, the background is simple, and object overlap and
occlusion are less. Example images from the GDXray dataset are shown in Figure 6a.
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The SIXray dataset contains more than one million X-ray images, including six types
of targets, i.e., guns, knives, wrenches, pliers, scissors, and hammers, and 8929 marked
images containing these targets. The stacking randomness of the target objects is quite large
in the SIXray dataset, the image backgrounds are complex, and there are instances of severe
overlap and occlusion. Example images from the SIXray dataset are shown in Figure 6b.

In this study, we created the GDXray-Expanded dataset. This dataset is integrated
according to the real-world dangerous goods encountered during the security inspections
at stations and airports in mainland China, primarily including guns, scissors, knives,
and four types of explosives of different shapes and sizes. It is also the primary dataset
mainly used in our experiments. Example images from the GDXray-Expanded dataset are
shown in Figure 7. X-ray transmission experiments obtained the GDXray-Expanded dataset
images. There are few dangerous species in the GDXray dataset, the image background
is simple, and there are almost no occlusion and overlap between objects, which is not
conducive to detection in the actual security inspection scene; thus, we took a large number
of images ourselves. Fundamentally, considering that the GDXray dataset is a real gray
image dataset, it is completely consistent with the real situation of the security camera.
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Our experiment was based on the basic principles of X-ray transmission imaging. The
experimental system comprised an X-ray source and a detector. Here, the X-ray source uses
electrons to bombard a tungsten target to generate continuous and characteristic X-rays
with an energy of 30–120 keV. More specifically, we use amorphous silicon detectors here.
Amorphous silicon detectors are mainly composed of a scintillator, light sensing panel and
charge readout circuit. When the X-ray is incident, the scintillator converts the attenuated
X-ray passing through the object into visible light and then converts the visible light into an
electrical signal through the amorphous silicon photodiode sensor array, forming a storage
charge on the capacitance of the photodiode itself. After that, the control circuit scans and
reads out the storage charge of each pixel, outputs digital signals after signal amplification
and A/D conversion, and transmits them to the computer for image processing to form an
X-ray image. To carry out our X-ray transmission experiment, it was necessary to place the
target object in the front of the flat panel detector and set the exposure time of the radiation
source to obtain a high-resolution two-dimensional grayscale image. Figure 8a,b show
the set-up for penetration imaging and the experimental system, respectively. During this
experiment, the X-ray source voltage was set to 120 kV, and the detector integration time
was 1 s.
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3.2. Data Preparation and Preprocessing

The target dangerous goods include gun, scissors, knives, and several types of explo-
sives. According to the shape, explosives are divided into four categories, i.e., grenade-
handle (GH), grenade-normal (GN), grenade-rectangle (GR), and grenade-tube (GT). The
shapes of the seven dangerous goods are shown in Figure 9. We selected 1158 knife images,
1056 gun images, and 64 scissors images from the GDXray dataset. In addition, grayscale
images of explosives were taken from the laboratory. Considering the limited number of
images taken in the laboratory and the complexity of the background of the actual security
inspection scene, we selected 138 background images that did not contain the target from
the GDXray dataset and took many complex background images without the target to
be tested. Here, we used image fusion technology to fuse a single dangerous good with
the background image, and the resulting fused grayscale image was very similar to the
real image. We also applied image enhancement techniques, e.g., vertical flip, horizontal
flip, brightness adjustment, and Gaussian noise, to expand the dataset to 10,000 images.
The dataset was divided into training and test sets at a ratio of 3:1. The training and
test sets both contained the seven types of items to be tested. Note that the experimental
GDXray-Expanded dataset was constructed to facilitate training of deep learning models.
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3.3. Experimental Environment

The hardware environment used in this experiment is summarized as follows. The
experiments were run on a personal computer with an Intel Core i7-11800 h CPU with
32 GB of memory and a 512 GB solid state disk. The graphics card was an NVIDIA GeForce
RTX3090 with 24 GB of video memory. The software environment is summarized as follows.
The operating system was Windows 10. Python 3.8 was used as the primary programming
language, the Darknet and PyTorch deep learning frameworks were used to train the
network, and the OpenCV library was used for visual processing. Darknet is an open
source deep learning framework developed by Joseph Redmon, the author of YOLO. For
information about Darknet, refer to the link: https://pjreddie.com/darknet/ (accessed on
19 October 2022)

The training parameters of the deep learning networks were set as follows. YOLO
v2, YOLO v3, and YOLO v4 were trained and tested using the Darknet framework, the
batch size was set to 16, momentum was set to 0.9, and the weight decay was set to 0.0005.
Comparison was made by changing the learning rate (0.001, 0.003, 0.005) and the number of
iterations (9000, 14,000). The proposed YOLO-T was trained and tested using the PyTorch
framework. Here, the learning rate was set to 0.0001, the batch size was set to 16, and
the number of epochs was set to 500. The optimizer used for training the model was
Adam with decoupled weight decay (AdamW). It is an improved algorithm based on the
regularization of Adam + L2. L2 regularization needs to add a regularization term to loss,
to calculate the gradient, and then to back-propagate. AdamW directly adds the gradient
of the regularization term to back-propagation, which improves the calculation efficiency.

3.4. Object Intelligent Identification Process Based on YOLO-T

The flow of the experimental methodology is illustrated in Figure 10. As can be seen,
the experimental process includes three main parts, i.e., (1) dataset preprocessing and data
enhancement, (2) training the YOLO network, and (3) testing the trained model. (1) In
the dataset preprocessing and data enhancement process, the marked X-ray dangerous
goods dataset was initially divided into training and testing sets at a ratio of 3:1. Then, the
training data were enhanced using various techniques, e.g., mosaic enhancement, vertical
and horizontal flipping, and brightness adjustment. (2) The YOLO network model was
then trained. Here, the input image was adjusted to a specific resolution, and the adjusted
image was input to the YOLO v2, YOLO v3, YOLO v4, and YOLO-T network models to
train the dataset to obtain the dangerous goods detection model. (3) Then, we performed
dangerous goods identification and evaluated each model on the test set.

https://pjreddie.com/darknet/
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4. Experimental Results and Discussion
4.1. YOLO Recognition under Different Learning Rates and Iterations

We trained the YOLO v2, YOLO v3, and YOLO v4 network models on the GDXray-
Expanded dataset using different learning rates and numbers of iterations. Here, 18 experi-
mental models were used to evaluate the corresponding test set, and the detection accuracy
and mAP of the seven kinds of dangerous goods were calculated and compared.

As shown in Figure 11, the detection accuracy of YOLO v2 for each type of dangerous
goods under different learning rates and iterations was approximately 90% and relatively
stable. However, the mAP value of YOLO v2 was slightly lower than that of YOLO v4 when
the learning rate was set to 0.001, and it demonstrated the best performance in all cases in
terms of mAP. Thus, the YOLO v2 network model exhibited the best overall performance.
As shown in Figure 11c,d, when the learning rate was set to 0.003, the overall effect of YOLO
v3 and YOLO v4 was general, especially since the detection accuracy for GH explosives
and scissors was low. As shown in Figure 11e,f, when the learning rate was set to 0.005, the
convergence effect of the YOLO v3 and YOLO v4 models was poor. The mAP of the three
network models was 90.07% for YOLO v2 (Figure 11f), 81.26% for YOLO v3 (Figure 11d),
and 90.62% for YOLO v4 (Figure 11a). However, in terms of parameter adjustment, we
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observed significant fluctuation in the accuracy of the YOLO v4 network model. Thus, we
determined that the YOLO v2 network model demonstrated the best overall performance.
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4.2. Comparison of Effects of Various Networks in Dangerous Goods Target Detection

To more intuitively compare the detection effects of the YOLO v2, YOLO v3, and
YOLO v4 network models on the seven types of dangerous goods, the model obtained after
training was used to test the images in the test set. As described in Section 4.1, we selected
the three models corresponding to the maximum mAP to evaluate and compare the actual
test results.

The highest mAP values obtained by the YOLO v2, YOLO v3, and YOLO v4 models
were 90.07%, 81.26%, and 90.62%, respectively. We compared the test results of six groups.
In Figure 12, the red circles mark dangerous goods that were missed. For example, as shown
in Figure 12a, YOLO v3 did not detect the scissors and GN, and in Figure 12b, YOLO v3 did
not detect the partially obscured GN. Figure 12c shows the side view of Figure 12b. From
this perspective, the three explosives (i.e., GH, GR, GN) are highly overlapped, and the
three network models did not detect the severely occluded explosive (GR). In addition, the
characteristics of scissors are not apparent due to placement position, which also affected
model performance; thus, the obtained confidence scores were low. In Figure 12d, the
explosive (GR) on the lower right side of the image was not recognized by the YOLO v3
and YOLO v4 models, multiple targets were missed by the YOLO v3 model, and there was
a false detection (GH) by the YOLO v4 model. In Figure 12e, the location box of the scissors
obtained by the YOLO v2 and YOLO v4 models is inaccurate. Here, the YOLO v3 model
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did not detect the gun and scissors, and in Figure 12f, only the gun was detected by the
YOLO v3 model, and the YOLO v4 model did not detect one pair of scissors and gun.
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4.3. YOLO-T Deep Learning Network Target Recognition

The proposed YOLO-T network was trained on the GDXray-Expanded dataset. The
detection accuracies and mAP values for all types of dangerous goods obtained by the
proposed YOLO-T network are shown in Table 1. Table 1 also shows the highest detection
accuracies of YOLO v2, YOLO v3, and YOLO v4 (Section 4.1). As can be seen, the detection
accuracy of the proposed YOLO-T network for a single type of dangerous goods was
greater than 95%, which is greatly improved compared with YOLO v3. This proves that
using a transformer model as the backbone is better than the DarkNet-53 network in the
original YOLO v3 when detecting grayscale images in the X-Ray security inspection task.
From the perspective of comprehensive mAP indicators, the proposed YOLO-T network
model demonstrates high competitiveness.

Table 1. Comparison of accuracy of different deep learning networks.

Net-Name GN GH GT GR Gun Scissors Knife mAP

YOLO v2 0.9014 0.9039 0.9043 0.9091 0.9081 0.8707 0.9075 0.9007
YOLO v3 0.7007 0.8008 0.7993 0.9083 0.9013 0.6895 0.8881 0.8126
YOLO v4 0.8876 0.8994 0.9085 0.9221 0.9080 0.8472 0.9708 0.9062
YOLO-T 0.9741 0.9633 0.9841 0.9872 0.9880 0.9512 0.9891 0.9773

The trained model was used to detect some one-to-one images corresponding to those
in Section 4.2. The results are shown in Figure 13. As can be seen, no dangerous goods
are not missed, and the location box is very close to the actual position of the objects. In
addition, the partially occluded explosive GN in Figure 13a,b was effectively detected. In
addition, the severely occluded explosive GR in Figure 13c was well detected. As shown
in Figure 13d, the confusion of scissors was improved, and in Figure 13f, the cross-placed
scissors were also distinguished accurately.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 18 
 

4.3. YOLO-T Deep Learning Network Target Recognition 
The proposed YOLO-T network was trained on the GDXray-Expanded dataset. The 

detection accuracies and mAP values for all types of dangerous goods obtained by the 
proposed YOLO-T network are shown in Table 1. Table 1 also shows the highest detection 
accuracies of YOLO v2, YOLO v3, and YOLO v4 (Section 4.1). As can be seen, the detection 
accuracy of the proposed YOLO-T network for a single type of dangerous goods was 
greater than 95%, which is greatly improved compared with YOLO v3. This proves that 
using a transformer model as the backbone is better than the DarkNet-53 network in the 
original YOLO v3 when detecting grayscale images in the X-Ray security inspection task. 
From the perspective of comprehensive mAP indicators, the proposed YOLO-T network 
model demonstrates high competitiveness. 

Table 1. Comparison of accuracy of different deep learning networks. 

Net-Name GN GH GT GR Gun Scissors Knife mAP 
YOLO v2 0.9014 0.9039 0.9043 0.9091 0.9081 0.8707 0.9075 0.9007 
YOLO v3 0.7007 0.8008 0.7993 0.9083 0.9013 0.6895 0.8881 0.8126 
YOLO v4 0.8876 0.8994 0.9085 0.9221 0.9080 0.8472 0.9708 0.9062 
YOLO-T 0.9741 0.9633 0.9841 0.9872 0.9880 0.9512 0.9891 0.9773 

The trained model was used to detect some one-to-one images corresponding to 
those in Section 4.2. The results are shown in Figure 13. As can be seen, no dangerous 
goods are not missed, and the location box is very close to the actual position of the objects. 
In addition, the partially occluded explosive GN in Figure 13a,b was effectively detected. 
In addition, the severely occluded explosive GR in Figure 13c was well detected. As shown 
in Figure 13d, the confusion of scissors was improved, and in Figure 13f, the cross-placed 
scissors were also distinguished accurately. 

 
Figure 13. Detection results obtained by proposed YOLO-T network model: (a) test image 1; (b) 
test image 2; (c) test image 3; (d) test image 4; (e) test image 5; (f) test image 6. 

Figure 13. Detection results obtained by proposed YOLO-T network model: (a) test image 1; (b) test
image 2; (c) test image 3; (d) test image 4; (e) test image 5; (f) test image 6.



Appl. Sci. 2022, 12, 11848 16 of 18

Compared to the detection results of the YOLO network models, the detection accu-
racy of the proposed YOLO-T network was improved significantly relative to the detection
of every type of dangerous good. This proves that the proposed YOLO-T network effec-
tively addresses problems related to occlusion and multitarget recognition of X-ray security
inspection images. The proposed network realizes accurate identification and target detec-
tion of dangerous goods in X-ray images. In addition, the transformer model used as the
network backbone employs an attention mechanism rather than a convolution operation to
extract features from the images, which effectively improves the detection performance for
severely occluded and overlapping targets in X-ray images of dangerous goods.

Here, we do not compare the training time of different types of models, because the
training time is generally long and is affected by hardware devices. Compared with the
training time, the detection time performance of these models is more important in actual
detection. Therefore, we compared the detection time of different models for dangerous
goods here. As shown in Figure 14, we tested the detection time of different methods
under the same test dataset from Figure 13a–f. Through this experiment, we found that
the average time spent by the YOLO v2 method to detect the target of dangerous goods is
the shortest, followed by the YOLO-T method, and the YOLO v4 method takes the longest
time. According to our previous discussion, the complexity of the YOLO v2 network is
the lowest, and the relatively simple network structure saves a lot of time for the detection
target. Nevertheless, the YOLO-T method proposed in this paper has the best performance
and achieved competitive experimental results in the test of detection time. Considering
that the complexity of the YOLO-T method is not lower than the YOLO v3/v4 method, the
results show that YOLO-T method has better detection efficiency. In actual engineering
applications, the testing time within 30 milliseconds is acceptable. Therefore, the above
discussion can show that the YOLO-T method has the advantage of high efficiency in the
field of dangerous goods target detection.
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Figure 14. Detection time experiment results obtained by different methods.

5. Conclusions

In this paper, we proposed the YOLO-T network model to address current limita-
tions in neural network-based X-ray security detection. In addition, we described the
GDXray-Expanded dataset, which was constructed specifically for the target task. Through
experiments, the following conclusions are drawn in this paper.

(1) Among the existing YOLO series of deep learning networks, under the background of
X-ray security inspection, the deep learning network processing effect of YOLO v2
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version is the best, and the optimization of subsequent versions has not significantly
improved the detection effect in this research field.

(2) The proposed YOLO-T deep learning network was evaluated experimentally and
was compared to existing YOLO network models, which are limited in terms of oc-
clusion recognition and multitarget detection. We found that the proposed YOLO-T
network solves these problems by introducing a transformer structure. The YOLO-T
deep learning network was able to accurately detect seven different types of danger-
ous goods.

(3) The YOLO-T deep learning network proposed in this paper can not only detect the
seven types of dangerous goods mentioned in GDXray-Expanded. This method can be
used to quickly and automatically detect dangerous goods in actual security detection
scenarios, which has high engineering application value.

In the future, we plan to study the recognition of dual-energy pseudocolor images and
establish a recognition module that can be employed in security inspection equipment.
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