Modern Techniques for Flavonoid Extraction—To Optimize or Not to Optimize?
Abstract
:1. Introduction
2. Flavonoids Classification and Sources
3. Sample Preparation and Hydrolysis
- ultrasound-assisted extraction (UAE)
- enzyme-assisted extraction (EAE)
- microwave-assisted extraction (MAE)
- pulsed electric field-assisted extraction (PEFAE)
- supercritical fluid extraction (SFE)
- liquid extraction under pressure (PLE)
- ohmic heater-assisted extraction (OHAE)
4. Selection of Variables for the Optimization of Modern Techniques for Flavonoids Extraction
4.1. Ultrasound Assisted Extraction
4.2. Microwave-Assisted Extraction
4.3. Pressurized Liquid Extraction
4.4. Supercritical Fluids Extraction
4.5. Application of Environmentally Friendly Extraction Solvents
5. Statistical and Mathematical Modeling Techniques for Optimization Flavonoid Extraction Parameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marone, D.; Mastrangelo, A.M.; Borrelli, G.M.; Mores, A.; Laidò, G.; Russo, M.A.; Ficco, D.B.M. Specialized Metabolites: Physiological and Biochemical Role in Stress Resistance, Strategies to Improve Their Accumulation, and New Applications in Crop Breeding and Management. Plant Physiol. Biochem. 2022, 172, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouradov, A.; Spangenberg, G. Flavonoids: A Metabolic Network Mediating Plants Adaptation to Their Real Estate. Front. Plant Sci. 2014, 5, 620. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Khan, H.; D’onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Argüelles, S.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as Neuroprotective Agent: Of Mice and Men. Pharmacol. Res. 2017, 128, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Budzynska, B.; Faggio, C.; Kruk-Slomka, M.; Samec, D.; Nabavi, S.F.; Sureda, A.; Devi, K.P.; Nabavi, S.M. Rutin as Neuroprotective Agent: From Bench to Bedside. Curr. Med. Chem. 2019, 26, 5152–5164. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Silva, A.S.; Reboredo-Rodríguez, P.; Sanchez-Machado, D.I.; López-Cervantes, J.; Barreca, D.; Pittala, V.; Samec, D.; Orhan, I.E.; Gulcan, H.O.; Forbes-Hernandez, T.Y.; et al. Evaluation of the Status Quo of Polyphenols Analysis: Part II—Analysis Methods and Food Processing Effects. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3219–3240. [Google Scholar] [CrossRef]
- Šamec, D.; Zeljković, S.Ć. Analytical Methods Focused on Studying Phytonutrients in Food; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128153543. [Google Scholar]
- Šamec, D.; Pierz, V.; Srividya, N.; Wüst, M.; Lange, B.M. Assessing Chemical Diversity in Psilotum Nudum (l.) Beauv., a Pantropical Whisk Fern That Has Lost Many of Its Fern-like Characters. Front. Plant Sci. 2019, 10, 868. [Google Scholar] [CrossRef]
- Jurinjak Tušek, A.; Benković, M.; Belščak Cvitanović, A.; Valinger, D.; Jurina, T.; Gajdoš Kljusurić, J. Kinetics and Thermodynamics of the Solid-Liquid Extraction Process of Total Polyphenols, Antioxidants and Extraction Yield from Asteraceae Plants. Ind. Crops Prod. 2016, 91, 205–214. [Google Scholar] [CrossRef]
- Valinger, D.; Kušen, M.; Benković, M.; Jurina, T.; Panić, M.; Radojčić Redovniković, I.; Kljusurić, J.G.; Tušek, A.J. Enhancement of the Green Extraction of Bioactive Molecules from Olea Europaea Leaves. Separations 2022, 9, 33. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; Sepúlveda, L.; Verma, D.K.; Luna-García, H.A.; Rodríguez-Durán, L.V.; Ilina, A.; Aguilar, C.N. Conventional and Emerging Extraction Processes of Flavonoids. Processes 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez De Luna, S.L.; Ramírez-Garza, R.E.; Serna Saldívar, S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Matešić, N.; Jurina, T.; Benković, M.; Panić, M.; Valinger, D.; Gajdoš Kljusurić, J.; Jurinjak Tušek, A. Microwave-Assisted Extraction of Phenolic Compounds from Cannabis sativa L.: Optimization and Kinetics Study. Sep. Sci. Technol. 2021, 56, 2047–2060. [Google Scholar] [CrossRef]
- Maran, J.P.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Artificial Neural Network and Response Surface Methodology Modeling in Mass Transfer Parameters Predictions during Osmotic Dehydration of Carica papaya L. Alex. Eng. J. 2013, 52, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Tirado-Kulieva, V.A.; Sánchez-Chero, M.; Villegasyarlequé, M.; Aguilar, G.F.V.; Carrión-Barco, G.; Santa Cruz, A.G.Y.; Sánchez-Chero, J. An Overview on the Use of Response Surface Methodology to Model and Optimize Extraction Processes in the Food Industry. Curr. Res. Nutr. Food Sci. 2021, 9, 745–754. [Google Scholar] [CrossRef]
- Alam, P.; Noman, O.M.; Herqash, R.N.; Almarfadi, O.M.; Akhtar, A.; Alqahtani, A.S. Response Surface Methodology (RSM)-Based Optimization of Ultrasound-Assisted Extraction of Sennoside A, Sennoside B, Aloe-Emodin, Emodin, and Chrysophanol from Senna Alexandrina (Aerial Parts): HPLC-UV and Antioxidant Analysis. Molecules 2022, 27, 298. [Google Scholar] [CrossRef]
- Agu, C.M.; Menkiti, M.C.; Ohale, P.E.; Ugonabo, V.I. Extraction Modeling, Kinetics, and Thermodynamics of Solvent Extraction of Irvingia Gabonensis Kernel Oil, for Possible Industrial Application. Eng. Rep. 2021, 3, e12306. [Google Scholar] [CrossRef]
- Hobbi, P.; Okoro, O.V.; Delporte, C.; Alimoradi, H.; Podstawczyk, D.; Nie, L.; Bernaerts, K.V.; Shavandi, A. Kinetic Modelling of the Solid–Liquid Extraction Process of Polyphenolic Compounds from Apple Pomace: Influence of Solvent Composition and Temperature. Bioresour. Bioprocess. 2021, 8, 114. [Google Scholar] [CrossRef]
- Dao, P.T.; Nguyen, M.V.; Tran, Q.N.; Van Lam, T. Experimental and Kinetic Modeling Studies on Extraction of Essential Oil from Vietnamese Calamondin (Citrus Microcarpa) by Hydro-Distillation Process. Iran. J. Chem. Chem. Eng. 2022; in press. [Google Scholar] [CrossRef]
- Wen, L.; Jiang, Y.; Yang, J.; Zhao, Y.; Tian, M.; Yang, B. Structure, Bioactivity, and Synthesis of Methylated Flavonoids. Ann. N. Y. Acad. Sci. 2017, 1398, 120–129. [Google Scholar] [CrossRef]
- Rauter, A.P.; Lopes, R.G.; Martins, A. C -Glycosylflavonoids: Identification, Bioactivity and Synthesis. Nat. Prod. Commun. 2007, 2, 1934578X0700201. [Google Scholar] [CrossRef]
- Kytidou, K.; Artola, M.; Overkleeft, H.S.; Aerts, J.M.F.G. Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics. Front. Plant Sci. 2020, 11, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Yang, F.; Huang, X. Proceedings of Chemistry, Pharmacology, Pharmacokinetics and Synthesis of Biflavonoids. Molecules 2021, 26, 6088. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Karalija, E.; Dahija, S.; Hassan, S.T.S. Biflavonoids: Important Contributions to the Health Benefits of Ginkgo (Ginkgo biloba L.). Plants 2022, 11, 1381. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Jian, Y.; Liu, Y.; Jiang, S.; Muhammad, D.; Wang, W. Flavanols from Nature: A Phytochemistry and Biological Activity Review. Molecules 2022, 27, 719. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; et al. Flavonoid Biosynthetic Pathways in Plants: Versatile Targets for Metabolic Engineering. Biotechnol. Adv. 2018, 38, 107316. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Soares, I.D.; Cuevas, M.S.; Crevelin, E.J.; Moraes, L.A.B.; Melo, M.P.; Oliveira, A.L.; Rodrigues, C.E.C. Pressurized Liquid Extraction of Flavanols and Alkaloids from Cocoa Bean Shell Using Ethanol as Solvent. Food Res. Int. 2018, 114, 20–29. [Google Scholar] [CrossRef]
- Hernández, M.M.; Pesquera-Alegría, C.; Manso-Martínez, C.; Menéndez, C.M. Antioxidant Capacity and Flavanol Composition of Seed Extracts from a Grenache × Tempranillo Population: Effect of Sex and Color. Ind. Crops Prod. 2020, 161, 113177. [Google Scholar] [CrossRef]
- Liu, Z.; Bruins, M.E.; de Bruijn, W.J.C.; Vincken, J.P. A Comparison of the Phenolic Composition of Old and Young Tea Leaves Reveals a Decrease in Flavanols and Phenolic Acids and an Increase in Flavonols upon Tea Leaf Maturation. J. Food Compos. Anal. 2020, 86, 103385. [Google Scholar] [CrossRef]
- Ding, T.; Cao, K.; Fang, W.; Zhu, G.; Chen, C.; Wang, X.; Wang, L. Evaluation of Phenolic Components (Anthocyanins, Flavanols, Phenolic Acids, and Flavonols) and Their Antioxidant Properties of Peach Fruits. Sci. Hortic. 2020, 268, 109365. [Google Scholar] [CrossRef]
- Cui, L.; Ma, Z.; Wang, D.; Niu, Y. Ultrasound-Assisted Extraction, Optimization, Isolation, and Antioxidant Activity Analysis of Flavonoids from Astragalus Membranaceus Stems and Leaves. Ultrason. Sonochem. 2022, 90, 106190. [Google Scholar] [CrossRef] [PubMed]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical Water Extraction of Flavanones from Defatted Orange Peel. J. Supercrit. Fluids 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Barbosa, P.D.P.M.; Ruviaro, A.R.; Martins, I.M.; Macedo, J.A.; LaPointe, G.; Macedo, G.A. Enzyme-Assisted Extraction of Flavanones from Citrus Pomace: Obtention of Natural Compounds with Anti-Virulence and Anti-Adhesive Effect against Salmonella Enterica Subsp. Enterica Serovar Typhimurium. Food Control 2021, 120, 107525. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, W.H.; Zhang, Z.H.; Liu, E.H.; Guo, L. Evaluation of Natural Deep Eutectic Solvents for the Extraction of Bioactive Flavone C-Glycosides from Flos Trollii. Microchem. J. 2019, 145, 180–186. [Google Scholar] [CrossRef]
- Zhang, H.-Q.; Liu, P.; Duan, J.-A.; Dong, L.; Shang, E.-X.; Qian, D.-W.; Xiao, P.; Zhao, M.; Li, W.-W. wen Hierarchical Extraction and Simultaneous Determination of Flavones and Triterpenes in Different Parts of Trichosanthes Kirilowii Maxim. by Ultra-High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 167, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Meng, X.; Tan, C.; Tong, Y.; Wan, M.; Wang, M.; Zhao, Y.; Deng, H.; Kong, Y.; Ma, Y. Composition and Antioxidant Activity of Anthocyanins from Aronia Melanocarpa Extracted Using an Ultrasonic-Microwave-Assisted Natural Deep Eutectic Solvent Extraction Method. Ultrason. Sonochem. 2022, 89, 106102. [Google Scholar] [CrossRef]
- Gleńsk, M.; Dudek, M.K.; Ciach, M.; Włodarczyk, M. Isolation and Structural Determination of Flavan-3-Ol Derivatives from the Polypodium Vulgare L. Rhizomes Water Extract. Nat. Prod. Res. 2021, 35, 1474–1483. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Zymone, K.; Viškelis, J.; Janulis, V. Optimisation of the Extraction of Flavonoids from Apples Using Response Surface Methodology. Ital. J. Food Sci. 2018, 30, 89–101. [Google Scholar]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B. Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef]
- Roshanak, S.; Rahimmalek, M.; Goli, S.A.H. Evaluation of Seven Different Drying Treatments in Respect to Total Flavonoid, Phenolic, Vitamin C Content, Chlorophyll, Antioxidant Activity and Color of Green Tea (Camellia sinensis or C. assamica) Leaves. J. Food Sci. Technol. 2016, 53, 721–729. [Google Scholar] [CrossRef]
- Ledesma-Escobar, C.A.; Priego-Capote, F.; Luque de Castro, M.D. Comparative Study of the Effect of Sample Pretreatment and Extraction on the Determination of Flavonoids from Lemon (Citrus limon). PLoS ONE 2016, 11, e0148056. [Google Scholar] [CrossRef] [PubMed]
- Ledesma-Escobar, C.A.; Priego-Capote, F.; Luque de Castro, M.D. Effect of Sample Pretreatment on the Extraction of Lemon (Citrus limon) Components. Talanta 2016, 153, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, X.; Wang, M.; Cao, J.; Xiao, J.; Wang, Q. Effects of Different Pretreatments on Flavonoids and Antioxidant Activity of Dryopteris Erythrosora Leave. PLoS ONE 2019, 14, e0200174. [Google Scholar] [CrossRef] [Green Version]
- Keinänen, M.; Julkunen-Tiitto, R. Effect of Sample Preparation Method on Birch ( Betula Pendula Roth) Leaf Phenolics. J. Agric. Food Chem. 1996, 44, 2724–2727. [Google Scholar] [CrossRef]
- Molina-Calle, M.; Priego-Capote, F.; de Castro, M.D.L. Development and Application of a Quantitative Method for Determination of Flavonoids in Orange Peel: Influence of Sample Pretreatment on Composition. Talanta 2015, 144, 349–355. [Google Scholar] [CrossRef]
- Pham, H.; Nguyen, V.; Vuong, Q.; Bowyer, M.; Scarlett, C. Effect of Extraction Solvents and Drying Methods on the Physicochemical and Antioxidant Properties of Helicteres Hirsuta Lour. Leaves. Technologies 2015, 3, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and Physical Properties of Blueberries, Tart Cherries, Strawberries, and Cranberries as Affected by Different Drying Methods. Food Chem. 2018, 262, 242–250. [Google Scholar] [CrossRef]
- Hamrouni-Sellami, I.; Rahali, F.Z.; Rebey, I.B.; Bourgou, S.; Limam, F.; Marzouk, B. Total Phenolics, Flavonoids, and Antioxidant Activity of Sage (Salvia officinalis L.) Plants as Affected by Different Drying Methods. Food Bioprocess Technol. 2013, 6, 806–817. [Google Scholar] [CrossRef]
- Mediani, A.; Abas, F.; Khatib, A.; Maulidiani, H.; Shaari, K.; Choi, Y.H.; Lajis, N.H. 1H-NMR-Based Metabolomics Approach to Understanding the Drying Effects on the Phytochemicals in Cosmos Caudatus. Food Res. Int. 2012, 49, 763–770. [Google Scholar] [CrossRef]
- Farag, M.; Ali, S.; Hodaya, R.; El-Seedi, H.; Sultani, H.; Laub, A.; Eissa, T.; Abou-Zaid, F.; Wessjohann, L. Phytochemical Profiles and Antimicrobial Activities of Allium Cepa Red Cv. and A. Sativum Subjected to Different Drying Methods: A Comparative MS-Based Metabolomics. Molecules 2017, 22, 761. [Google Scholar] [CrossRef]
- Periche, A.; Castelló, M.L.; Heredia, A.; Escriche, I. Effect of Different Drying Methods on the Phenolic, Flavonoid and Volatile Compounds of Stevia Rebaudiana Leaves. Flavour Fragr. J. 2016, 31, 173–177. [Google Scholar] [CrossRef]
- Rajha, H.N.; Darra, N.E.; Vorobiev, E.; Louka, N.; Maroun, R.G. An Environment Friendly, Low-Cost Extraction Process of Phenolic Compounds from Grape Byproducts. Optimization by Multi-Response Surface Methodology. Food Nutr. Sci. 2013, 4, 650–659. [Google Scholar] [CrossRef] [Green Version]
- Šamec, D.; Pavlović, I.; Radojčić Redovniković, I.; Salopek-Sondi, B. Comparative Analysis of Phytochemicals and Activity of Endogenous Enzymes Associated with Their Stability, Bioavailability and Food Quality in Five Brassicaceae Sprouts. Food Chem. 2018, 269, 96–102. [Google Scholar] [CrossRef]
- Šamec, D.; Maretić, M.; Lugarić, I.; Mešić, A.; Salopek-Sondi, B.; Duralija, B. Assessment of the Differences in the Physical, Chemical and Phytochemical Properties of Four Strawberry Cultivars Using Principal Component Analysis. Food Chem. 2016, 194, 828–834. [Google Scholar] [CrossRef]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective Extraction of Flavonoids from Lycium barbarum L. Fruits by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef]
- Mansur, A.R.; Song, N.-E.; Jang, H.W.; Lim, T.-G.; Yoo, M.; Nam, T.G. Optimizing the Ultrasound-Assisted Deep Eutectic Solvent Extraction of Flavonoids in Common Buckwheat Sprouts. Food Chem. 2019, 293, 438–445. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef]
- Nuutila, A.; Kammiovirta, K.; Oksman-Caldentey, K.-M. Comparison of Methods for the Hydrolysis of Flavonoids and Phenolic Acids from Onion and Spinach for HPLC Analysis. Food Chem. 2002, 76, 519–525. [Google Scholar] [CrossRef]
- Balli, D.; Bellumori, M.; Orlandini, S.; Cecchi, L.; Mani, E.; Pieraccini, G.; Mulinacci, N.; Innocenti, M. Optimized Hydrolytic Methods by Response Surface Methodology to Accurately Estimate the Phenols in Cereal by HPLC-DAD: The Case of Millet. Food Chem. 2020, 303, 125393. [Google Scholar] [CrossRef]
- Ricochon, G.; Muniglia, L. Influence of enzymes on the oil extraction processes in aqueous media. Ol. Corps Gras Lipides 2010, 17, 356–359. [Google Scholar] [CrossRef]
- Krakowska, A.; Rafińska, K.; Walczak, J.; Buszewski, B. Enzyme-Assisted Optimized Supercritical Fluid Extraction to Improve Medicago Sativa Polyphenolics Isolation. Ind. Crops Prod. 2018, 124, 931–940. [Google Scholar] [CrossRef]
- Ling, Y.Y.; Fun, P.S.; Yeop, A.; Yusoff, M.M.; Gimbun, J. Assessment of Maceration, Ultrasonic and Microwave Assisted Extraction for Total Phenolic Content, Total Flavonoid Content and Kaempferol Yield from Cassia Alata via Microstructures Analysis. Mater. Today Proc. 2019, 19, 1273–1279. [Google Scholar] [CrossRef]
- Charpe, T.W.; Rathod, V.K. Effect of Ethanol Concentration in Ultrasound Assisted Extraction of Glycyrrhizic Acid from Licorice Root. Iran. J. Chem. Eng. 2014, 11, 21–23. [Google Scholar]
- Bakin, I.A.; Mustafina, A.S.; Aleksenko, L.A.; Shkolnikova, M.N. Intensification of Extraction of Phytocomponents from Berry Raw Materials. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 022066. [Google Scholar] [CrossRef]
- Liao, J.; Guo, Z.; Yu, G. Process Intensification and Kinetic Studies of Ultrasound-Assisted Extraction of Flavonoids from Peanut Shells. Ultrason. Sonochem. 2021, 76, 105661. [Google Scholar] [CrossRef]
- Zimare, S.B.; Mankar, G.D.; Barmukh, R.B. Optimization of Ultrasound-Assisted Extraction of Total Phenolics and Flavonoids from the Leaves of Lobelia Nicotianifolia and Their Radical Scavenging Potential. Curr. Res. Green Sustain. Chem. 2021, 4, 100109. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of Conventional and Ultrasound Assisted Extraction of Flavonoids from Grapefruit (Citrus Paradisi L.) Solid Wastes. LWT 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Meregalli, M.M.; Puton, B.M.S.; Camera, F.D.M.; Amaral, A.U.; Zeni, J.; Cansian, R.L.; Mignoni, M.L.; Backes, G.T. Conventional and Ultrasound-Assisted Methods for Extraction of Bioactive Compounds from Red Araçá Peel (Psidium Cattleianum Sabine). Arab. J. Chem. 2020, 13, 5800–5809. [Google Scholar] [CrossRef]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds: Oleuropein, Phenolic Acids, Phenolic Alcohols and Flavonoids from Olive Leaves and Evaluation of Its Antioxidant Activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Wang, G.; Cui, Q.; Yin, L.J.; Li, Y.; Gao, M.Z.; Meng, Y.; Li, J.; Zhang, S.D.; Wang, W. Negative Pressure Cavitation Based Ultrasound-Assisted Extraction of Main Flavonoids from Flos Sophorae Immaturus and Evaluation of Its Extraction Kinetics. Sep. Purif. Technol. 2020, 244, 115805. [Google Scholar] [CrossRef]
- Saeed, R.; Ahmed, D.; Mushtaq, M. Ultrasound-Aided Enzyme-Assisted Efficient Extraction of Bioactive Compounds from Gymnema Sylvestre and Optimization as per Response Surface Methodology. Sustain. Chem. Pharm. 2022, 29, 100818. [Google Scholar] [CrossRef]
- Singla, M.; Sit, N. Application of Ultrasound in Combination with Other Technologies in Food Processing: A Review. Ultrason. Sonochem. 2021, 73, 1350–4177. [Google Scholar] [CrossRef]
- Lu, X.; Du, H.; Liu, Y.; Wang, Y.; Li, D.; Wang, L. Effect of Ultrasound-Assisted Solvent Enzymatic Extraction on Fatty Acid Profiles, Physicochemical Properties, Bioactive Compounds, and Antioxidant Activity of Elaeagnus Mollis Oil. Foods 2022, 11, 359. [Google Scholar] [CrossRef]
- Wani, K.M.; Uppaluri, R.V.S. Pulsed Ultrasound-Assisted Extraction of Bioactive Compounds from Papaya Pulp and Papaya Peel Using Response Surface Methodology: Optimization and Comparison with Hot Water Extraction. Appl. Food Res. 2022, 2, 100178. [Google Scholar] [CrossRef]
- Yadav, N.; Sharma, S.; Joys, J.S.; Kumar, S. Microwave Assisted Extraction of Bioactive Compounds: A Brief Review. J. Indian Chem. Soc. 2020, 97, 1–7. [Google Scholar]
- Routray, W.; Orsat, V. Microwave Assisted Extraction of Flavonoids: A Comprehensive Overview. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Cerdá-Bernad, D.; Baixinho, J.P.; Fernández, N.; Frutos, M.J. Evaluation of Microwave-Assisted Extraction as a Potential Green Technology for the Isolation of Bioactive Compounds from Saffron (Crocus Sativus L.) Floral By-Products. Foods 2022, 11, 2335. [Google Scholar] [CrossRef]
- Bagade, S.B.; Patil, M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef]
- Abbas, M.; Ahmed, D.; Qamar, M.T.; Ihsan, S.; Noor, Z.I. Optimization of Ultrasound-Assisted, Microwave-Assisted and Soxhlet Extraction of Bioactive Compounds from Lagenaria Siceraria: A Comparative Analysis. Bioresour. Technol. Reports 2021, 15, 100746. [Google Scholar] [CrossRef]
- Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Optimizing the Antioxidant Biocompound Recovery from Peach Waste Extraction Assisted by Ultrasounds or Microwaves. Ultrason. Sonochem. 2019, 63, 104954. [Google Scholar] [CrossRef]
- Elakremi, M.; Sillero, L.; Ayed, L.; ben Mosbah, M.; Labidi, J.; ben Salem, R.; Moussaoui, Y. Vera L.P. Leaves as a Renewable Source of Bioactive Compounds via Microwave Assisted Extraction. Sustain. Chem. Pharm. 2022, 29, 100815. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Optimization of Microwave-Assisted Extraction of Flavonoids and Antioxidants from Vernonia Amygdalina Leaf Using Response Surface Methodology. Food Bioprod. Process. 2018, 107, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of Microwave-Assisted Extraction of Polyphenols from Myrtus Communis L. Leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Darvishzadeh, P.; Orsat, V. Microwave-Assisted Extraction of Antioxidant Compounds from Russian Olive Leaves and Flowers: Optimization, HPLC Characterization and Comparison with Other Methods. J. Appl. Res. Med. Aromat. Plants 2022, 27, 100368. [Google Scholar] [CrossRef]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Fayaz, F. Microwave-Assisted Extraction of Saponin, Phenolic and Flavonoid Compounds from Trigonella Foenum-Graecum Seed Based on Two Level Factorial Design. J. Appl. Res. Med. Aromat. Plants 2019, 14, 100212. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.A.; Carvalho, A.M.; Barreiro, M.F.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Microwave-Assisted Extraction of Phenolic Acids and Flavonoids and Production of Antioxidant Ingredients from Tomato: A Nutraceutical-Oriented Optimization Study. Sep. Purif. Technol. 2016, 164, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Zhu, D.; Zhang, W.; Huai, W.; Wang, K.; Huang, X.; Zhou, L.; Fan, H. Microwave-Assisted Aqueous Two-Phase Extraction Coupled with High Performance Liquid Chromatography for Simultaneous Extraction and Determination of Four Flavonoids in Crotalaria sessiliflora L. Ind. Crops Prod. 2017, 95, 632–642. [Google Scholar] [CrossRef]
- Gu, H.; Chen, F.; Zhang, Q.; Zang, J. Application of Ionic Liquids in Vacuum Microwave-Assisted Extraction Followed by Macroporous Resin Isolation of Three Flavonoids Rutin, Hyperoside and Hesperidin from Sorbus Tianschanica Leaves. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1014, 45–55. [Google Scholar] [CrossRef]
- Liu, X.; Jing, X.; Li, G. A Process to Acquire Essential Oil by Distillation Concatenated Liquid-Liquid Extraction and Flavonoids by Solid-Liquid Extraction Simultaneously from Helichrysum Arenarium (L.) Moench Inflorescences under Ionic Liquid-Microwave Mediated. Sep. Purif. Technol. 2019, 209, 164–174. [Google Scholar] [CrossRef]
- Zhang, K.; Wong, J.W. Solvent-Based Extraction Techniques for the Determination of Pesticides in Food. In Comprehensive Sampling and Sample Preparation; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 4, pp. 245–261. ISBN 9780123813749. [Google Scholar]
- Soria, A.C.; Brokł, M.; Sanz, M.L.; Martínez-Castro, I. Sample Preparation for the Determination of Carbohydrates in Food and Beverages. In Comprehensive Sampling and Sample Preparation; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 4, pp. 213–243. ISBN 9780123813749. [Google Scholar]
- Machado, A.P.D.F.; Pasquel-Reátegui, J.L.; Barbero, G.F.; Martínez, J. Pressurized Liquid Extraction of Bioactive Compounds from Blackberry (Rubus Fruticosus L.) Residues: A Comparison with Conventional Methods. Food Res. Int. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Otero, P.; Quintana, S.E.; Reglero, G.; Fornari, T.; García-Risco, M.R. Pressurized Liquid Extraction (PLE) as an Innovative Green Technology for the Effective Enrichment of Galician Algae Extracts with High Quality Fatty Acids and Antimicrobial and Antioxidant Properties. Mar. Drugs 2018, 16, 156. [Google Scholar] [CrossRef] [Green Version]
- Primbs, T.; Genualdi, S.; Simonich, S. Solvent Selection for Pressurized Liquid Extraction of Polymeric Sorbents Used in Air Sampling. Environ. Toxicol. Chem. 2007, 27, 1267–1272. [Google Scholar] [CrossRef]
- da Silva, L.C.; Souza, M.C.; Sumere, B.R.; Silva, L.G.S.; da Cunha, D.T.; Barbero, G.F.; Bezerra, R.M.N.; Rostagno, M.A. Simultaneous Extraction and Separation of Bioactive Compounds from Apple Pomace Using Pressurized Liquids Coupled On-Line with Solid-Phase Extraction. Food Chem. 2020, 318, 126450. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. Comparative Study of Conventional and Pressurized Liquid Extraction for Recovering Bioactive Compounds from Lippia Citriodora Leaves. Food Res. Int. 2018, 109, 213–222. [Google Scholar] [CrossRef]
- Fuentes, J.A.M.; López-Salas, L.; Borrás-Linares, I.; Navarro-Alarcón, M.; Segura-Carretero, A.; Lozano-Sánchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef]
- Li, J.; Pettinato, M.; Campardelli, R.; De Marco, I.; Perego, P. High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. Appl. Sci. 2022, 12, 3642. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; García-Barreda, S.; Sánchez, S.; Morte, A.; Siles-Sánchez, M.D.L.N.; Soler-Rivas, C.; Santoyo, S.; Marco, P. Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber Aestivum and Terfezia Claveryi. Foods 2022, 11, 298. [Google Scholar] [CrossRef]
- Kamali, H.; Khodaverdi, E.; Hadizadeh, F.; Ghaziaskar, S.H. Optimization of Phenolic and Flavonoid Content and Antioxidants Capacity of Pressurized Liquid Extraction from Dracocephalum Kotschyi via Circumscribed Central Composite. J. Supercrit. Fluids 2016, 107, 307–314. [Google Scholar] [CrossRef]
- Golmakani, E.; Mohammadi, A.; Ahmadzadeh Sani, T.; Kamali, H. Phenolic and Flavonoid Content and Antioxidants Capacity of Pressurized Liquid Extraction and Perculation Method from Roots of Scutellaria Pinnatifida A. Hamilt. Subsp Alpina (Bornm) Rech. F. J. Supercrit. Fluids 2014, 95, 318–324. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Contreras, M. del M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of Phenolic Compounds and Mannitol in Olive Leaves Extracts from Six Spanish Cultivars: Extraction with the Soxhlet Method and Pressurized Liquids. Food Chem. 2020, 320, 126626. [Google Scholar] [CrossRef]
- Alves, T.P.; Triques, C.C.; Palsikowski, P.A.; da Silva, C.; Fiorese, M.L.; da Silva, E.A.; Fagundes-Klen, M.R. Improved Extraction of Bioactive Compounds from Monteverdia Aquifolia Leaves by Pressurized-Liquid and Ultrasound-Assisted Extraction: Yield and Chemical Composition. J. Supercrit. Fluids 2022, 181, 105468. [Google Scholar] [CrossRef]
- Corazza, G.O.; Bilibio, D.; Zanella, O.; Nunes, A.L.; Bender, J.P.; Carniel, N.; dos Santos, P.P.; Priamo, W.L. Pressurized Liquid Extraction of Polyphenols from Goldenberry: Influence on Antioxidant Activity and Chemical Composition. Food Bioprod. Process. 2018, 112, 63–68. [Google Scholar] [CrossRef]
- Oliveira, A.M.B.; Viganó, J.; Sanches, V.L.; Rostagno, M.A.; Martínez, J. Extraction of Potential Bioactive Compounds from Industrial Tahiti Lime (Citrus Latifólia Tan.) by-Product Using Pressurized Liquids and Ultrasound-Assisted Extraction. Food Res. Int. 2022, 157, 111381. [Google Scholar] [CrossRef] [PubMed]
- Santos, K.A.; Gonçalves, J.E.; Cardozo-Filho, L.; da Silva, E.A. Pressurized Liquid and Ultrasound-Assisted Extraction of α-Bisabolol from Candeia (Eremanthus Erythropappus) Wood. Ind. Crops Prod. 2019, 130, 428–435. [Google Scholar] [CrossRef]
- Andrade, T.A.; Hamerski, F.; López Fetzer, D.E.; Roda-Serrat, M.C.; Corazza, M.L.; Norddahl, B.; Errico, M. Ultrasound-Assisted Pressurized Liquid Extraction of Anthocyanins from Aronia Melanocarpa Pomace. Sep. Purif. Technol. 2021, 276, 119290. [Google Scholar] [CrossRef]
- Qian, Z.M.; Lu, J.; Gao, Q.P.; Li, S.P. Rapid Method for Simultaneous Determination of Flavonoid, Saponins and Polyacetylenes in Folium Ginseng and Radix Ginseng by Pressurized Liquid Extraction and High-Performance Liquid Chromatography Coupled with Diode Array Detection and Mass Spectrometry. J. Chromatogr. A 2009, 1216, 3825–3830. [Google Scholar] [CrossRef]
- Chaves, J.O.; Sanches, V.L.; Viganó, J.; de Souza Mesquita, L.M.; de Souza, M.C.; da Silva, L.C.; Acunha, T.; Faccioli, L.H.; Rostagno, M.A. Integration of Pressurized Liquid Extraction and In-Line Solid-Phase Extraction to Simultaneously Extract and Concentrate Phenolic Compounds from Lemon Peel (Citrus limon L.). Food Res. Int. 2022, 157, 111252. [Google Scholar] [CrossRef]
- Souza, M.C.; Silva, L.C.; Chaves, J.O.; Salvador, M.P.; Sanches, V.L.; da Cunha, D.T.; Foster Carneiro, T.; Rostagno, M.A. Simultaneous Extraction and Separation of Compounds from Mate (Ilex Paraguariensis) Leaves by Pressurized Liquid Extraction Coupled with Solid-Phase Extraction and in-Line UV Detection. Food Chem. Mol. Sci. 2021, 2, 100008. [Google Scholar] [CrossRef]
- Gilbert-López, B.; Barranco, A.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Development of New Green Processes for the Recovery of Bioactives from Phaeodactylum Tricornutum. Food Res. Int. 2017, 99, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Molino, A.; Mehariya, S.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.P.; Marino, T.; Chianese, S.; Balducchi, R.; Musmarra, D. Recent Developments in Supercritical Fluid Extraction of Bioactive Compounds from Microalgae: Role of Key Parameters, Technological Achievements and Challenges. J. CO2 Util. 2020, 36, 196–209. [Google Scholar] [CrossRef]
- Chaudhary, A.; Dwivedi, A.; Upadhyayula, S. Supercritical Fluids as Green Solvents. In Handbook of Greener Synthesis of Nanomaterials and Compounds: Volume 1: Fundamental Principles and Methods; Elsevier: Amsterdam, The Netherlands, 2021; pp. 891–916. ISBN 9780128219386. [Google Scholar]
- Williams, J.R.; Clifford, A.A.; Al-Saidi, S.H.R. Supercritical Fluids and Their Applications in Biotechnology and Related Areas. Appl. Biochem. Biotechnol. 2002, 22, 263–286. [Google Scholar] [CrossRef]
- Tripodo, G.; Ibáñez, E.; Cifuentes, A.; Gilbert-López, B.; Fanali, C. Optimization of Pressurized Liquid Extraction by Response Surface Methodology of Goji Berry (Lycium barbarum L.) Phenolic Bioactive Compounds. Electrophoresis 2018, 39, 1673–1682. [Google Scholar] [CrossRef] [Green Version]
- Jozwiak, A.; Brzozowski, R.; Bujnowski, Z.; Chojnacki, T.; Swiezewska, E. Application of Supercritical CO2 for Extraction of Polyisoprenoid Alcohols and Their Esters from Plant Tissues. J. Lipid Res. 2013, 54, 2023–2028. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical Fluid Extraction: Recent Advances and Applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef] [Green Version]
- Putra, N.R.; Wibobo, A.G.; Machmudah, S.; Winardi, S. Recovery of Valuable Compounds from Palm-Pressed Fiber by Using Supercritical CO2 Assisted by Ethanol: Modeling and Optimization. Sep. Sci. Technol. 2019, 55, 3126–3139. [Google Scholar] [CrossRef]
- Woźniak, L.; Marszalek, K.; Skapska, S.; Jedrzejczak, R. The Application of Supercritical Carbon Dioxide and Ethanol for the Extraction of Phenolic Compounds from Chokeberry Pomace. Appl. Sci. 2017, 7, 322. [Google Scholar] [CrossRef] [Green Version]
- He, J.Z.; Shao, P.; Liu, J.H.; Ru, Q.M. Supercritical Carbon Dioxide Extraction of Flavonoids from Pomelo (Citrus grandis (L.) Osbeck) Peel and Their Antioxidant Activity. Int. J. Mol. Sci. 2012, 13, 13065–13078. [Google Scholar] [CrossRef] [Green Version]
- Vinitha, U.G.; Sathasivam, R.; Muthuraman, M.S.; Park, S.U. Intensification of Supercritical Fluid in the Extraction of Flavonoids: A Comprehensive Review. Physiol. Mol. Plant Pathol. 2022, 118, 101815. [Google Scholar] [CrossRef]
- Liu, X.; Gao, X. IOP Conference Series: Earth and Environmental Science Optimization of Supercritical CO 2 Fluid Extraction Conditions of Flavonoids from Spina Gleditsiae You May Also like Optimization of Supercritical CO 2 Fluid Extraction of Flavonoids from Spina Gledit. IOP Conf. Ser. Earth Environ. Sci 2018, 186, 12077. [Google Scholar] [CrossRef]
- Melloul, S.; Zehioua, R.; Meniai, A.H. Supercritical CO2 Extraction of Bioactive Compounds from Local Peganum harmala Plant Seeds and Optimization of the Extraction Yield and the Antioxidant Activities. Sustain. Chem. Pharm. 2022, 28, 100729. [Google Scholar] [CrossRef]
- Martínez-Ávila, M.; Rodríguez-Rodríguez, J.; Gutiérrez Uribe, J.A.; Guajardo-Flores, D. Selective Supercritical Fluid Extraction of Non-Polar Phytochemicals from Black Beans (Phaseolus vulgaris L.) by-Products. J. Supercrit. Fluids 2022, 189, 105730. [Google Scholar] [CrossRef]
- De Aguiar, A.C.; Viganó, J.; da Silva Anthero, A.G.; Dias, A.L.B.; Hubinger, M.D.; Martínez, J. Supercritical Fluids and Fluid Mixtures to Obtain High-Value Compounds from Capsicum Peppers. Food Chem. X 2022, 13, 100228. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, P.; Yan, Y.; Huang, Y.; Bai, B.; Hou, X.; Zhang, L. Supercritical CO2 Fluid Extraction of Flavonoid Compounds from Xinjiang Jujube (Ziziphus jujuba Mill.) Leaves and Associated Biological Activities and Flavonoid Compositions. Ind. Crops Prod. 2019, 139, 111508. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Z.; Wang, G.; Ruan, X.; Wu, Q.; Luo, C.; Wu, Z.; Wei, F.; Zhao, Y.; Wang, Q. Supercritical Extraction and Antioxidant Activity of Major Ingredients in Puerariae Lobatae Root, Pinus Massoniana Needle, Citrus Reticulata Peel and Their Mixture. J. CO2 Util. 2021, 48, 101518. [Google Scholar] [CrossRef]
- Milovanovic, S.; Grzegorczyk, A.; Świątek, Ł.; Dębczak, A.; Tyskiewicz, K.; Konkol, M. Dandelion Seeds as a New and Valuable Source of Bioactive Extracts Obtained Using the Supercritical Fluid Extraction Technique. Sustain. Chem. Pharm. 2022, 29, 100796. [Google Scholar] [CrossRef]
- de Souza Correa, M.; Boschen, N.L.; Rodrigues, P.R.P.; Corazza, M.L.; de Paula Scheer, A.; Ribani, R.H. Supercritical CO2 with Co-Solvent Extraction of Blackberry (Rubus Spp. Xavante Cultivar) Seeds. J. Supercrit. Fluids 2022, 189, 105702. [Google Scholar] [CrossRef]
- Yang, Y.C.; Wang, C.S.; Wei, M.C. Kinetics and Mass Transfer Considerations for an Ultrasound-Assisted Supercritical CO2 Procedure to Produce Extracts Enriched in Flavonoids from Scutellaria Barbata. J. CO2 Util. 2019, 32, 219–231. [Google Scholar] [CrossRef]
- Végh, K.; Riethmüller, E.; Hosszú, L.; Darcsi, A.; Müller, J.; Alberti, Á.; Tóth, A.; Béni, S.; Könczöl, .; Balogh, G.T.; et al. Three Newly Identified Lipophilic Flavonoids in Tanacetum Parthenium Supercritical Fluid Extract Penetrating the Blood-Brain Barrier. J. Pharm. Biomed. Anal. 2018, 149, 488–493. [Google Scholar] [CrossRef]
- Uquiche, E.L.; Toro, M.T.; Quevedo, R.A. Supercritical Extraction with Carbon Dioxide and Co-Solvent from Leptocarpha Rivularis. J. Appl. Res. Med. Aromat. Plants 2019, 14, 100210. [Google Scholar] [CrossRef]
- Fornereto Soldan, A.C.; Arvelos, S.; Watanabe, É.O.; Hori, C.E. Supercritical Fluid Extraction of Oleoresin from Capsicum Annuum Industrial Waste. J. Clean. Prod. 2021, 297, 126593. [Google Scholar] [CrossRef]
- Argun, M.E.; Argun, M.Ş.; Arslan, F.N.; Nas, B.; Ates, H.; Tongur, S.; Cakmakcı, O. Recovery of Valuable Compounds from Orange Processing Wastes Using Supercritical Carbon Dioxide Extraction. J. Clean. Prod. 2022, 375, 134169. [Google Scholar] [CrossRef]
- Goyeneche, R.; Di Scala, K.; Ramirez, C.L.; Fanovich, M.A. Recovery of Bioactive Compounds from Beetroot Leaves by Supercritical CO2 Extraction as a Promising Bioresource. J. Supercrit. Fluids 2019, 155, 104658. [Google Scholar] [CrossRef]
- Restrepo-Serna, D.L.; Cardona Alzate, C.A. Economic Pre-Feasibility of Supercritical Fluid Extraction of Antioxidants from Fruit Residues. Sustain. Chem. Pharm. 2022, 25, 100600. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Comparison of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Modelling for Supercritical Fluid Extraction of Phytochemicals from Terminalia Chebula Pulp and Optimization Using RSM Coupled with Desirability Function (DF) and Genetic. Ind. Crops Prod. 2021, 170, 113769. [Google Scholar] [CrossRef]
- Šalić, A.; Tušek, A.; Fabek, D.; Rukavina, I.; Zelić, B. Aqueous Two-Phase Extraction of Polyphenols Using a Microchannel System—Process Optimization and Intensification. Food Technol. Biotechnol. 2011, 49, 495–501. [Google Scholar]
- Liu, C.; Liu, S.; Zhang, L.; Wang, X.; Ma, L. Partition Behavior in Aqueous Two-Phase System and Antioxidant Activity of Flavonoids from Ginkgo biloba. Appl. Sci. 2018, 8, 2058. [Google Scholar] [CrossRef] [Green Version]
- Chong, K.Y.; Stefanova, R.; Zhang, J.; Brooks, M.S.L. Aqueous Two-Phase Extraction of Bioactive Compounds from Haskap Leaves (Lonicera Caerulea): Comparison of Salt/Ethanol and Sugar/Propanol Systems. Sep. Purif. Technol. 2020, 252, 117399. [Google Scholar] [CrossRef]
- Zhu, J.; Kou, X.; Wu, C.; Fan, G.; Li, T.; Dou, J.; Shen, D. Enhanced Extraction of Bioactive Natural Products Using Ultrasound-Assisted Aqueous Two-Phase System: Application to Flavonoids Extraction from Jujube Peels. Food Chem. 2022, 395, 133530. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Qiu, Y.; Ren, H.; Ju, D.H.; Jia, H.L. Optimization of Ultrasound-Assisted Aqueous Two-Phase System Extraction of Polyphenolic Compounds from Aronia Melanocarpa Pomace by Response Surface Methodology. Prep. Biochem. Biotechnol. 2017, 47, 312–321. [Google Scholar] [CrossRef]
- Zhou, H.; Feng, X.; Yan, Y.; Meng, X.; Wu, C.; Kang, Y.; Li, Y. Optimization of an Ultrasonic-Assisted Aqueous Two-Phase Extraction Method for Four Flavonoids from Lysionotus Pauciflorus. Prep. Biochem. Biotechnol. 2022, 52, 770–782. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, H.; Zhu, C. Optimization of Ultrasonic-Assisted Aqueous Two-Phase Extraction of Flavonoids from Hawthorn Leaves Using Response Surface Methodology. J. Phys. Conf. Ser. 2022, 2329, 012041. [Google Scholar] [CrossRef]
- Li, L.; Zhang, T.; Xing, J.; Xue, B.; Luo, Z.; Liu, Z. Ethanol/Ammonium Sulfate Ultrasonic-assisted Liquid–Liquid Extraction of Flavonoids from Tibetan Sea-buckthorn Fruit. J. Food Process. Preserv. 2022, 46, e16602. [Google Scholar] [CrossRef]
- Skarpalezos, D.; Detsi, A. Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. Appl. Sci. 2019, 9, 4169. [Google Scholar] [CrossRef] [Green Version]
- Alañón, M.E.; Ivanović, M.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Choline Chloride Derivative-Based Deep Eutectic Liquids as Novel Green Alternative Solvents for Extraction of Phenolic Compounds from Olive Leaf. Arab. J. Chem. 2020, 13, 1685–1701. [Google Scholar] [CrossRef]
- Ivanović, M.; Razboršek, M.I.; Kolar, M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Kalyniukova, A.; Holuša, J.; Musiolek, D.; Sedlakova-Kadukova, J.; Płotka-Wasylka, J.; Andruch, V. Application of Deep Eutectic Solvents for Separation and Determination of Bioactive Compounds in Medicinal Plants. Ind. Crops Prod. 2021, 172, 114047. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Wang, T.; Li, Q. DES Based Efficient Extraction Method for Bioactive Coumarins from Angelica dahurica (Hoffm.) Benth. & Hook.f. Ex Franch. & Sav. Separations 2021, 9, 5. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced Extraction of Bioactive Natural Products Using Tailor-Made Deep Eutectic Solvents: Application to Flavonoid Extraction from Flos Sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Pätzold, M.; Siebenhaller, S.; Kara, S.; Liese, A.; Syldatk, C.; Holtmann, D. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends Biotechnol. 2019, 37, 943–959. [Google Scholar] [CrossRef]
- Xia, G.H.; Li, X.H.; Jiang, Y.H. Deep Eutectic Solvents as Green Media for Flavonoids Extraction from the Rhizomes of Polygonatum Odoratum. Alex. Eng. J. 2021, 60, 1991–2000. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Tan, J.N.; Du, Y.; Liu, X.; Zhang, Z. Environmentally-Friendly Extraction of Flavonoids from Cyclocarya Paliurus (Batal.) Iljinskaja Leaves with Deep Eutectic Solvents and Evaluation of Their Antioxidant Activities. Molecules 2018, 23, 2110. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Zhao, J.; Duan, H.; Guan, Y.; Zhao, L. Green and Efficient Extraction of Four Bioactive Flavonoids from Pollen Typhae by Ultrasound-Assisted Deep Eutectic Solvents Extraction. J. Pharm. Biomed. Anal. 2018, 161, 246–253. [Google Scholar] [CrossRef]
- Rashid, R.; Mohd Wani, S.; Manzoor, S.; Masoodi, F.A.; Masarat Dar, M. Green Extraction of Bioactive Compounds from Apple Pomace by Ultrasound Assisted Natural Deep Eutectic Solvent Extraction: Optimisation, Comparison and Bioactivity. Food Chem. 2022, 398, 133871. [Google Scholar] [CrossRef]
- Lei, J.; Wang, Y.; Li, W.; Fu, S.; Zhou, J.; Lu, D.; Wang, C.; Sheng, X.; Zhang, M.; Xiao, S.; et al. Natural Green Deep Eutectic Solvents-Based Eco-Friendly and Efficient Extraction of Flavonoids from Selaginella Moellendorffii: Process Optimization, Composition Identification and Biological Activity. Sep. Purif. Technol. 2022, 283, 120203. [Google Scholar] [CrossRef]
- Liu, J.Z.; Lyu, H.C.; Fu, Y.J.; Jiang, J.C.; Cui, Q. Simultaneous Extraction of Natural Organic Acid and Flavonoid Antioxidants from Hibiscus Manihot L. Flower by Tailor-Made Deep Eutectic Solvent. LWT 2022, 163, 113533. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, F.; Jian, Y.; Chernyshev, V.M.; Zhang, Y.; Wang, Z.; Yuan, Z.; Chen, X. Extraction of Flavonoids from Glycyrrhiza Residues Using Deep Eutectic Solvents and Its Molecular Mechanism. J. Mol. Liq. 2022, 363, 119848. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, S.; Hu, J.; Liu, G.; Peng, S.; Chen, H.; Jiang, Z.; Wang, T.; Ye, Q.; Zhu, H. Natural Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Total Flavonoid Compounds from Spent Sweet Potato (Ipomoea Batatas L.) Leaves: Optimization and Antioxidant and Bacteriostatic Activity. Molecules 2022, 27, 5985. [Google Scholar] [CrossRef]
- Pham, T.N.; Lam, T.D.; Nguyen, M.T.; Le, X.T.; Vo, D.V.N.; Toan, T.Q.; Vo, T.S. Effect of Various Factors on Extraction Efficiency of Total Anthocyanins from Butterfly Pea (Clitoria Ternatea L. Flowers) in Southern Vietnam. IOP Conf. Ser. Mater. Sci. Eng. 2019, 544, 012013. [Google Scholar] [CrossRef]
- Jurinjak Tušek, A.; Benković, M.; Valinger, D.; Jurina, T.; Belščak-Cvitanović, A.; Gajdoš Kljusurić, J. Optimizing Bioactive Compounds Extraction from Different Medicinal Plants and Prediction through Nonlinear and Linear Models. Ind. Crops Prod. 2018, 126, 449–458. [Google Scholar] [CrossRef]
- Šain, A.; Matešić, N.; Jurina, T.; Jurinjak Tušek, A.; Benković, M.; Valinger, D.; Gajdoš Kljusurić, J. Optimization of ethanol/water solvent extraction of bioactive components originating from industrial hemp (Cannabis sativa L.). Hrana Zdr. Boles. 2020, 9, 30–39. [Google Scholar]
- Kumari, M.; Gupta, S.K. Response Surface Methodological (RSM) Approach for Optimizing the Removal of Trihalomethanes (THMs) and Its Precursor’s by Surfactant Modified Magnetic Nanoadsorbents (SMNP)—An Endeavor to Diminish Probable Cancer Risk. Sci. Rep. 2019, 9, 18339. [Google Scholar] [CrossRef] [Green Version]
- Leyva-Jiménez, F.-J.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.D.L.L.; Lozano-Sánchez, J.; Oliver-Simancas, R.; Alañón, M.E.; Castangia, I.; Segura-Carretero, A.; Arráez-Román, D. Application of Response Surface Methodologies to Optimize High-Added Value Products Developments: Cosmetic Formulations as an Example. Antioxidants 2022, 11, 1552. [Google Scholar] [CrossRef]
- Kim, J.H.; Shin, H.K.; Seo, C.S. Optimization of the Extraction Process for the Seven Bioactive Compounds in Yukmijihwang-Tang, an Herbal Formula, Using Response Surface Methodology. Pharmacogn. Mag. 2014, 10, S606–S613. [Google Scholar] [CrossRef] [Green Version]
- Shukla, L.; Nishkam, A. Performance Optimization, Prediction, and Adequacy by Response Surfaces Methodology with Allusion to DRF Technique. ISRN Text. 2014, 2014, 34041. [Google Scholar] [CrossRef]
- Dasankoppa, F.S.; Sholapur, H.N.; Byahatti, A.; Abbas, Z.; Komal, S.K.; Subrata, K. Application of Response Surface Optimization Methodology in Designing Ordispersible Tablets of Antdiabetic Drug. J. Young Pharm. 2020, 12, 173–177. [Google Scholar] [CrossRef]
- Hazir, E.; Koc, K.H.; Hiziroglu, S. Optimization Of Sanding Parameters Using Response Surface Methodology. Maderas Cienc. Tecnol. 2017, 19, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Ranade, S.S.; Thiagarajan, P. Selection of a Design for Response Surface. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 022043. [Google Scholar] [CrossRef]
- Johnson, R.T.; Montgomery, D.C. Choice of Second-Order Response Surface Designs for Logistic and Poisson Regression Models. Int. J. Exp. Des. Process Optim. 2009, 1, 2. [Google Scholar] [CrossRef]
- Chen, X.; Jia, X.; Yang, S.; Zhang, G.; Li, A.; Du, P.; Liu, L.; Li, C. Optimization of Ultrasonic-Assisted Extraction of Flavonoids, Polysaccharides, and Eleutherosides from Acanthopanax Senticosus Using Response Surface Methodology in Development of Health Wine. LWT 2022, 165, 113725. [Google Scholar] [CrossRef]
- Shahidi, S.A. Effect of Solvent Type on Ultrasound-Assisted Extraction of Antioxidant Compounds from Ficaria Kochii: Optimization by Response Surface Methodology. Food Chem. Toxicol. 2022, 163, 112981. [Google Scholar] [CrossRef]
- Yu, M.; Wang, B.; Qi, Z.; Xin, G.; Li, W. Response Surface Method Was Used to Optimize the Ultrasonic Assisted Extraction of Flavonoids from Crinum Asiaticum. Saudi J. Biol. Sci. 2019, 26, 2079–2084. [Google Scholar] [CrossRef]
- Wani, K.M.; Uppaluri, R.V.S. Efficacy of Ultrasound-Assisted Extraction of Bioactive Constituents from Psidium Guajava Leaves. Appl. Food Res. 2022, 2, 100096. [Google Scholar] [CrossRef]
- Zhang, X.; Su, J.; Chu, X.; Wang, X. A Green Method of Extracting and Recovering Flavonoids from Acanthopanax Senticosus Using Deep Eutectic Solvents. Molecules 2022, 27, 923. [Google Scholar] [CrossRef]
- Jamshaid, S.; Ahmed, D. Optimization of Ultrasound-Assisted Extraction of Valuable Compounds from Fruit of Melia Azedarach with Glycerol-Choline Chloride Deep Eutectic Solvent. Sustain. Chem. Pharm. 2022, 29, 100827. [Google Scholar] [CrossRef]
- Oktaviyanti, N.D.; Kartini, K.; Hadiyat, M.A.; Rachmawati, E.; Wijaya, A.C.; Hayun, H.; Mun’Im, A. A Green Extraction Design for Enhancing Flavonoid Compounds from Ixora Javanica Flowers Using a Deep Eutectic Solvent: Green Extraction of Ixora Javanica. R. Soc. Open Sci. 2020, 7, 201116. [Google Scholar] [CrossRef]
- Hao, C.; Chen, L.; Dong, H.; Xing, W.; Xue, F.; Cheng, Y. Extraction of Flavonoids from Scutellariae Radix Using Ultrasound-Assisted Deep Eutectic Solvents and Evaluation of Their Anti-Inflammatory Activities. ACS Omega 2020, 5, 23140–23147. [Google Scholar] [CrossRef]
- Sharma, B.R.; Kumar, V.; Kumar, S.; Panesar, P.S. Microwave Assisted Extraction of Phytochemicals from Ficus Racemosa. Curr. Res. Green Sustain. Chem. 2020, 3, 100020. [Google Scholar] [CrossRef]
- He, Q.; Li, Y.; Zhang, P.; Zhang, A.; Wu, H. Optimisation of Microwave-Assisted Extraction of Flavonoids and Phenolics from Celery (Apium graveolens L.) Leaves by Response Surface Methodology. Czech J. Food Sci. 2016, 34, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q.; Gao, Y.; Liu, P. Optimization of Microwave-Assisted Extraction, Antioxidant Capacity, and Characterization of Total Flavonoids from the Leaves of Alpinia Oxyphylla Miq. Prep. Biochem. Biotechnol. 2020, 50, 82–90. [Google Scholar] [CrossRef]
- Xu, B.; Tao, R.; Huang, Z.; Zhu, D.; Liu, J. Process Optimization of Microwave-Assisted Extraction of Flavonoids from Salvia Plebeian Using Response Surface Methodology. J. Phys. Conf. Ser. 2020, 1578, 012222. [Google Scholar] [CrossRef]
- Weremfo, A.; Adulley, F.; Adarkwah-Yiadom, M. Simultaneous Optimization of Microwave-Assisted Extraction of Phenolic Compounds and Antioxidant Activity of Avocado (Persea americana Mill.) Seeds Using Response Surface Methodology. J. Anal. Methods Chem. 2020, 2020, 7541927. [Google Scholar] [CrossRef]
- Ašperger, D.; Gavranić, M.; Prišlin, B.; Rendulić, N.; Šikuten, I.; Marković, Z.; Babić, B.; Maletić, E.; Kontić, J.K.; Preiner, D.; et al. Optimization of Microwave-Assisted Extraction and Matrix Solid-Phase Dispersion for the Extraction of Polyphenolic Compounds from Grape Skin. Separations 2022, 9, 235. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Zabot, G.L.; Reyes, F.G.R.; Iglesias, A.H.; Martínez, J. Integration of Pressurized Liquids and Ultrasound in the Extraction of Bioactive Compounds from Passion Fruit Rinds: Impact on Phenolic Yield, Extraction Kinetics and Technical-Economic Evaluation. Innov. Food Sci. Emerg. Technol. 2021, 67, 102549. [Google Scholar] [CrossRef]
- Ouédraogo, J.C.W.; Dicko, C.; Kini, F.B.; Bonzi-Coulibaly, Y.L.; Dey, E.S. Enhanced Extraction of Flavonoids from Odontonema Strictum Leaves with Antioxidant Activity Using Supercritical Carbon Dioxide Fluid Combined with Ethanol. J. Supercrit. Fluids 2018, 131, 66–71. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Lin, S.; Wang, Z.; Wang, C.; Wang, E.; Zhang, Y. Supercritical Fluid Extraction of Flavonoids from Maydis Stigma and Its Nitrite-Scavenging Ability. Food Bioprod. Process. 2011, 89, 333–339. [Google Scholar] [CrossRef]
- Liu, X.Y.; Ou, H.; Zuo, J.; Gregersen, H. Supercritical CO2 Extraction of Total Flavonoids from Iberis Amara Assisted by Ultrasound. J. Supercrit. Fluids 2022, 184, 105581. [Google Scholar] [CrossRef]
- Arias, J.; Mejía, J.; Córdoba, Y.; Martínez, J.R.; Stashenko, E.; del Valle, J.M. Optimization of Flavonoids Extraction from Lippia Graveolens and Lippia Origanoides Chemotypes with Ethanol-Modified Supercritical CO2 after Steam Distillation. Ind. Crops Prod. 2020, 146, 112170. [Google Scholar] [CrossRef]
- Ochoa-Velasco, C.E.; Ruiz-López, I.I. Mass Transfer Modeling of the Antioxidant Extraction of Roselle Flower (Hibiscus sabdariffa). J. Food Sci. Technol. 2019, 56, 1008–1015. [Google Scholar] [CrossRef]
- Fedoryshyn, O.; Kniazieva, K.; Mylyanych, A.; Petrinа, R. Kinetics of Extraction of Phenolic Compounds and Flavonoids from Carlina Acaulis. Int. Q. J. Econ. Technol. Model. Process. 2020, 9, 3–10. [Google Scholar]
- Galgano, F.; Tolve, R.; Scarpa, T.; Caruso, M.C.; Lucini, L.; Senizza, B.; Condelli, N. Extraction Kinetics of Total Polyphenols, Flavonoids, and Condensed Tannins of Lentil Seed Coat: Comparison of Solvent and Extraction Methods. Foods 2021, 10, 1810. [Google Scholar] [CrossRef]
- Mitic, M.; Jankovic, S.; Mitic, S.; Kocic, G.; Maskovic, P.; Dukic, D. Optimization and Kinetic Modelling of Total Phenols and Flavonoids Extraction from Tilia Cordata m. Flowers. S. Afr. J. Chem. 2021, 75, 64–72. [Google Scholar] [CrossRef]
- Piwowarska, N.; González-Alvarez, J. Extraction of Antioxidants from Forestry Biomass: Kinetics and Optimization of Extraction Conditions. Biomass Bioenergy 2012, 43, 42–51. [Google Scholar] [CrossRef]
- Gerke, I.B.B.; Hamerski, F.; de Paula Scheer, A.; da Silva, V.R. Solid–Liquid Extraction of Bioactive Compounds from Yerba Mate (Ilex paraguariensis) Leaves: Experimental Study, Kinetics and Modeling. J. Food Process Eng. 2018, 41, e12892. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Mahfud, M. The Extraction of Essential Oils from Patchouli Leaves (Pogostemon cablin Benth) Using a Microwave Air-Hydrodistillation Method as a New Green Technique. RSC Adv. 2017, 7, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- PELEG, M. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci. 1988, 53, 1216–1217. [Google Scholar] [CrossRef]
- Jokić, S.; Velić, D.; Bilić, M.; Bucić-Kojić, A.; Planinić, M.; Tomas, S. Modelling of Solid-Liquid Extraction Process of Total Polyphenols from Soybeans. Czech J. Food Sci. 2010, 28, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Bee Lin, C.; Yen Leng, C. Solid-Liquid Extraction Kinetics of Total Phenolic Compounds (TPC) from Red Dates. MATEC Web Conf. 2018, 152, 01001. [Google Scholar] [CrossRef] [Green Version]
- Kaleta, A.; Górnicki, K. Evaluation of Drying Models of Apple (Var. McIntosh) Dried in a Convective Dryer. Int. J. Food Sci. Technol. 2010, 45, 891–898. [Google Scholar] [CrossRef]
- Diamante, L.M.; Ihns, R.; Savage, G.P.; Vanhanen, L. Short Communication: A New Mathematical Model for Thin Layer Drying of Fruits. Int. J. Food Sci. Technol. 2010, 45, 1956–1962. [Google Scholar] [CrossRef]
- Rakshit, M.; Srivastav, P.P.; Bhunia, K. Kinetic Modeling of Ultrasonic-assisted Extraction of Punicalagin from Pomegranate Peel. J. Food Process Eng. 2020, 43, 1956–1962. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Z.; Sun, D.-W. Kinetic Modeling of Ultrasound-Assisted Extraction of Phenolic Compounds from Grape Marc: Influence of Acoustic Energy Density and Temperature. Ultrason. Sonochem. 2014, 21, 1461–1469. [Google Scholar] [CrossRef]
- Yiğitarslan, S. Modeling of Solid-Liquid Extraction of Total Phenolics from Capsicum annium L. J. Turk. Chem. Soc. Sect. B Chem. Eng. 2017, 1, 43–60. [Google Scholar]
- Sturzoiu, A.; Stroescu, M. Empirical Models Applied for Kinetics Extraction of β β β β β-Carotene from Rosa Canina. Rev. Chim. 2011, 62, 344–348. [Google Scholar]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.V.N.; Prabhakar, S. Techniques and Modeling of Polyphenol Extraction from Food: A Review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef] [PubMed]
- Lazar, L.; Talmaciu, A.I.; Volf, I.; Popa, V.I. Kinetic Modeling of the Ultrasound-Assisted Extraction of Polyphenols from Picea Abies Bark. Ultrason. Sonochem. 2016, 32, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Yedhu Krishnan, R.; Rajan, K.S. Microwave Assisted Extraction of Flavonoids from Terminalia Bellerica: Study of Kinetics and Thermodynamics. Sep. Purif. Technol. 2016, 157, 169–178. [Google Scholar] [CrossRef]
- Palsikowski, P.A.; Besen, L.M.; Santos, K.A.; da Silva, C.; da Silva, E.A. Supercritical CO2 Oil Extraction from Bauhinia Forficata Link Subsp. Pruinosa Leaves: Composition, Antioxidant Activity and Mathematical Modeling. J. Supercrit. Fluids 2019, 153, 104588. [Google Scholar] [CrossRef]
Flavones | Flavonols | Flavan-3-ols |
---|---|---|
apigenin luteolin acacetin | kaempferol myricetin quercetin fisetin | cathechin epicatechin epigallocatechin |
Flavanone | Isoflavones | Anthocyanins |
hesperetine naringenin | genistein daidzein glycitein | cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin |
Source | Flavonoids Group | Characterized Molecules | Extraction Method |
---|---|---|---|
cocoa shell [29] | flavanols | (+)-catechin, (−)-epicatechin, procyanidine | pressurized liquid extraction |
wine grape [30] | flavanols | (+)-catechin, (−)-epicatechin, (−)-epigallocatechin | ultrasound-assisted extraction |
tea leaves [31] | flavanols | 19 molecules including epigallocatechin gallate, epigallocatechin, epicatechin gallate, epicatechin, and their corresponding stereoisomers | conventional extraction |
flavonols | 19 molecules with kaempferol, quercetin, and myricetin aglycones | ||
peach fruit [32] | anthocyanins | cyanidin-3-O-glucoside cyanidin-3-O-rutinoside | ultrasound-assisted extraction |
flavanols | catechin, epicatechin procyanidin B1 | ||
flavonols | rutin, quercetin–3–O–galactoside, quercetin–3–O–glucoside | ||
Astragalus membranaceus plant [33] | flavonols | isoquercitrin, astragalin | ultrasound-assisted extraction |
orange peel [34] | flavanones | hesperidin, nariruti | supercritical water extraction |
citrus pomace [35] | flavanones | naringin, hesperidin | enzyme-assisted extraction |
dried flowers of Trollius chinensis Bunge [36] | flavones | orientin, vitexin and 2″-O-galactopyranosylorientin | natural deep eutectic solvents extraction |
Trichosanthes kirilowii Maxim [37] | flavones | isoquercitrin, rutin, quercetin, luteoloside, luteolin, tangeretin, apigenin, apigenin-7-O-glucuronide, kaempferol, kaempferide | ultrasound-assisted extraction |
Aronia melanocarpa [38] | anthocyanins | delphinidin, cyanidin, petunidin, pelargonidin, peonidin, and malvidin | ultrasonic-microwave-assisted natural deep eutectic solvent extraction |
Polypodium vulgare L. [39] | flavanols | (+)-catechin-7-O-α-L-arabinoside, (+)-catechin-7-O-β-D -apioside | conventional extraction |
apple samples [40] | flavanols | (+)-catechin, (−)-epicatechin, procyanidin B1, procyanidin B2, procyanidin C1 | ultrasound-assisted extraction |
Sources | Drying Methods | Results |
---|---|---|
green tea (Camellia sinensis) leaves [42] | sun, shade, oven 60 °C, 80 °C and 100 °C, microwave and freeze-drying | the highest total flavonoid content was obtained in oven drying at 60 °C and 100 °C |
lemons (Citrus limon) | freeze-drying and air-drying [43] | freeze-drying provides extracts with higher amounts of flavonoids |
freeze-drying and air-drying [44] | freeze-drying is more suitable for extraction of flavanones or flavones; while air-drying was the best for flavanols | |
Dryopteris erythrosora leaves [45] | shade one day then oven-dried at 75 °C for 48 h, dried in the sun, then oven-dried at 75 °C for 48 h, oven-dried at 75 °C for 48 h | the highest flavonoids yield was from first drying the plant material in the shade and then completing the drying process in an oven at 75 °C |
birch leaves [46] | air-drying at ambient temperature, oven-drying at 40 °C and 80 °C, freeze-drying–prefreezing with liquid N2, freeze-drying–prefreezing at −18 °C, freeze-drying without prefreezing, storing frozen for 12 days without drying, and immediate extraction of fresh samples | freeze-drying of leaves frozen at −18 °C is preferred as a drying method |
orange peel [47] | fresh, oven-dried and freeze-dried peel | freeze-drying preserves the concentration of the flavonoids, while oven-dried peel presented a decrease of glycosylated flavonoids and an increase of aglycone forms |
Helicteres hirsuta Lour. Leaves [48] | hot-air drying, low-temperature-air drying, infrared drying and vacuum drying | the leaves dried under either hot-air drying at 80 °C, or vacuum drying at 50 °C yielded the highest amount of total flavonoid content |
blueberry, cherry, cranberry and strawberry [49] | hot-air drying, freeze-drying and refractance window-drying | higher levels of flavonoids were found in all the freeze-dried samples except strawberry |
Sage (Salvia officinalis L.) [50] | air-drying at shade and ambient 22 °C, drying in a hot air oven with natural convection at 45 °C and 65 °C, drying in a microwave oven at 600 W/30 g and 800 W/30 g of fresh plant; drying in an infrared moisture analyzer at 45 °C and 65 °C. | the highest total flavonoid content was determinate in the air-dried plants |
Cosmos caudatus [51] | air-, oven- and freeze-drying | the freeze-drying and air drying were the best methods for flavonoids |
Allium cepa red cv. and A. sativum [52] | microwave, air-drying, or freeze-drying | microwave and freeze-dried samples show similar profile |
Stevia rebaudiana leaves [53] | hot air-drying, freeze-drying and shade-drying | the majority of the compounds analyzed reached their maximum values with the freeze-drying method |
Extraction Method | Flavonoids Source | Design of Experiment and Modeling Method | Optimal Process Conditions | Flavonoids Extraction Yield |
---|---|---|---|---|
UAE | peanut (Arachis hypogaea L.) [67] | Single-factor experiment and RSM | particle size of 0.285 mm, solvent to solid ratio of 40 mL/g, extraction temperature of 55 °C, ultrasonic power of 120 W and ultrasonic frequency of 45 kHz and 70% ethanol as the solvent | 9.263 mg/g |
UAE | leaves of Lobelia nicotianifolia [68] | Full factorial design and RSM | 75.25% of methanol, extraction temperature 62.72 °C, and 9.44 min of extraction process. | 23.78 mg/g dry weight |
UAE | jujube peels [147] | K2HPO4 35% (w/w), ethanol 20% (w/w), solid–liquid ratio 1:30 g/mL (w/v), ultrasonic power 200 W, and extraction time 50 min | ||
NPC-UAE | flower buds of Sophora japonica L. [72] | Box–Behnken design and RSM | ethanol concentration 72%, time 16 min, liquid to solid ratio 25:1 mL/g, ultrasonic intensity 0.347 W/cm2, negative pressure −0.07 MPa and temperature 60 °C | extraction yields of rutin, nicotiflorin, narcissin, quercetin, kaempferol and isorhamnetin were 125.17, 15.02, 25.61, 51.89, 4.32 and 6.30 mg/g |
UAE | Olea europea L. leaves [71] | Single-factor experiment and RSM | extraction in ultrasonic bath frequency 37 kHz with 50% acetone for 10 min at 60 °C | 2.94 mg/g dry weight |
UAE | grapefruit peels [69] | Central composite design and RSM | extraction in ultrasonic bath frequency 40 kHz with 40% ethanol for 55 min at 25 °C | Hesperidin (0.74 mg/g dry weight) and narirutin (0.70 mg/g dry weight) were the most abundant flavonoids |
UAE | Acanthopanax senticosus [182] | Single-factor experiments and Box–Behnken design of experiments and RSM | extraction in ultrasonic bath frequency 20 kHz. Solid-to-liquid ratio of 1:10 g/mL (ethanol as the solvent), extraction time of 35 min, and power of 200 | 14.83 mg/g dry weight |
UAE | Ficaria kochii [183] | Rotatable central composite design and RSM | ratio of solvent (methanol) to raw material, 10%; extraction time, 50 min and extraction temperature, 60 °C. | 11.754 mg/g dry weight |
UAE | Crinum asiaticum [184] | Single-factor experiment and RSM | extraction in ultrasonic bath maximum power of 180 W, 60% ethanol concentration, 64 °C for extraction temperature, 1:28 (v/w) solid-to-liquid ratio with extraction time for 47 min | 1.64% |
UAE | guava (Psidium guajava L.) [185] | Face-centered design and RSM | extraction in ultrasonic bath maximum power of 250 W. Ultrasonic temperature of 62.19 °C, extraction time of 14.94 min, and loading ratio of 0.19 g/mL (water as the extraction solvent) | 288.13 mg/g |
UAE | Cyclocarya paliurus leaves [164] | Single-factor experiment and RSM | DES water content (v/v), 30%; extraction time, 30 min; temperature, 60 °C; and solid–liquid ratio, 20 mg/mL. | kaempferol (0.117 mg/g), kaempferol-7-O-α-l-rhamnoside (3.183 mg/g), quercetin (0.034 mg/g), quercetin-3-O-β-d-glucuronide (3.628 mg/g), and kaempferol-3-O-β-d-glucuronide (0.331 mg/g). |
UAE | Acanthopanax senticosus [186] | Box–Behnken design of experiments and RSM | ultrasonic power of 500 W, water content of 28%, solid–liquid ratio of 1:18 g/mL, extraction temperature of 55 °C, and extraction time of 73 min. | 23.928 mg/g |
UAE | common buckwheat (Fagopyrum esculentum) sprouts [147] | Central composite design and RSM | ultrasound power of 700 W, extraction temperature of 56 °C and extraction time of 40 min. | Recovery > 97% |
UAE | Pollen typhae [165] | Single-factor experiment and RSM | DES composed of choline chloride and 1,2-propanediol (ChPri) at 1:4 M ratio, 30% of aqueous solution, 50:1 mg/mL for solid–liquid ratio, and 35 min for extraction time | Recovery in the range of 86.87–98.89% |
UAE | Melia azedarach [187] | Box–Behnken design of experiments and RSM | temperature (46.4 °C), ultrasound amplitude (100%; 130 W power) and glycerol-choline chloride DES concentration (50%) | 21.880 mg/g |
UAE-EAE | Gymnema sylvestre [73] | Single-factor experiment and RSM | time, temperature, pH, and amount of enzyme cocktail were 150 min, 64.80 °C, 5.64, and 7.49 mL | 54.20 mg/g |
UAE | apple samples [40] | Three-level three-factor central composite design and RSM | 4.61 °C, an extraction time of 26.90 min, and ultrasonic power 480 W. | 6.58 mg/g |
UAE | Aronia melanocarpa berries [148] | Box–Behnken design of experiments and RSM | ammonium sulfate concentration of 0.320 g/mL, ethanol-water ratio of 0.71, ultrasonic time of 50 min and ultrasonic power of 200 W | 11.67 mg/g |
UAE | Lysionotus pauciflorus [149] | Single-factor experiment and RSM | 45 g ATPS (made of 30% ethanol/18% K2HPO4) in 43 °C for 30 min | four flavonoids could reach 2.56, 2.06, 3.62, and 6.28 mg/g |
UAE | hawthorn leaves [150] | Box–Behnken design of experiments and RSM | ratio of solid to liquid 1:37, ultrasonic time 40 min, ultrasonic power 360 W, ultrasonic temperature 65 °C | 2.86% |
UAE | Astragalus membranaceus steams and levaes [33] | Box–Behnken design of experiments and RSM | extraction time of 35 min, ethanol concentration of 75 %, liquid–solid ratio of 40 mL/g, and extraction temperature of 58 °C | 22.027 mg/g |
DES-UAE | Ixora javanica flowers [188] | Single-factor experiment and Box–Behnken design of experiments and RSM | extraction time of 40 min, 25% water content in DES and a solid-to-liquid ratio of 1:25 g/mL | 89.732 mg/g |
DES-UAE | Scutellaria baicalensis [189] | Box–Behnken design of experiments and RSM | molar ratio of betaine/acetic acid was 1:4, the water content was 40%, the solid/liquid ratio was 1:100 g/mL, the extraction temperature was 52 °C, and the extraction time was 23 min. | scutellarin, baicalin, baicalein, wogonoside, wogonin, and oroxylin A were 0.73 ± 0.04, 11.93 ± 0.36, 2.57 ± 0.12, 1.26 ± 0.08, 0.41 ± 0.2, and 0.17 ± 0.04%, respectively |
NADES-UAE | Selaginella moellendorffii [167] | Single-factor experiment and RSM | water content of 24%, extraction power of 260 W, liquid/solid ratio of 24:1 mL/g and extraction time of 43 min | 5.72 mg/g |
MAE-UAE | Aronia melanocarpa [38] | Box–Behnken design of experiments and RSM | microwave power was 230 W, extraction time was 367 s, extraction temperature were 52 °C. Solvent NADES | 4.456 mg/g |
MAE | Lagenaria siceraria [81] | Full factorial design of experiment and RSM | optimized power and time for TFC were 480 W and 40 s | 24.22 mg/L |
MAE | Trigonella-foenum graecum [87] | One-factor at time and RSM | 3 min irradiation time, microwave power 600 W, 60% solvent concentration, 1:10 g/mL of feed-to-solvent ratio and 70 °C temperature | |
MAE | Crotalaria sessiliflora L [89] | Single-factor experiment and RSM | ethanol concentration 32% and (NH4)2SO4 concentration 22% for formation of the ATPS, extraction temperature 80 °C, extraction time 8 min, solvent-to-material ratio 50:1. | extraction yields and recoveries ranged from 162.7 to 240.0 g/g and from 94.14% to 105.5%, respectively. |
MAE | Sorbus tianschanica leaves [90] | Factorial design and RSM | 1.0 M [C6mim][BF4], –0.08 MPa for vacuum, 19 min and 420 W for microwave irradiation time and power, and 15 mL/g for liquid–solid ratio | recovery yields more than 84.14%, 82.40% and 89.33% |
MAE | tomato [88] | 5-level full factorial Box–Behnken design and RSM | the global optimum processing conditions (t = 20 min; T = 180 °C; Et = 0%; and S/L = 45 g/L) | quercetin pentosylrutinoside (6.78 mg/g) and quercetin-3-O-rutinoside (11.7 mg/g) |
MAE | Pistacia vera L. leaves [83] | Single-factor experiment and RSM | 70 °C and 61 °C, and 5.6 and 12 min for male and female leaves | Male leaves: 82.16 mg/g Female leaves: 83.34 mg/g |
MAE | leaves of Vernonia amygdalina [84] | Face-centered central composite design and RSM | 7 min of irradiation time, 416 W of microwave power level, 100 ºC of temperature, and 0.10 g/mL of feed-to-solvent ratio | TFC = 87.05 mg/g |
MAE | Myrtus communis leaves [85] | Single-factor method and RSM | extraction time 1.04 min, ethanol proportion 42%, MW powere 500 W, liquid to solid ration 32 mL/g | 5.02 mg/g |
MAE | Russian olive leaves and flowers [86] | Two-level fractional factorial designs and RSM | solid to solvent ratio of 7.5 (w/v), citric acid molarity of 2 M, ethanol concentration of 59.8% and 66.4%, and temperature of 97.4 °C and 97.5 °C | |
MAE | Hibiscus manihot L. flower [168] | Taguchi orthogonal design and RSM | temperature 73 °C, time 20 min and liquid/solid ratio 26 mL/g | 16.704 mg/g |
MAE | Helichrysum arenarium [91] | Box–Behnken design and RSM | 5 mL/g liquid–solid ratio, 20 min microwave irradiation time and 525 W microwave irradiation power. 1.0 M [C8mim]Br was used as the solvent for the extraction | astragalin (0.83 mg/g), quercetin (0.42 mg/g), luteolin (0.62 mg/g), kaempferol (0.99 mg/g) and apigenin (0.19 mg/g) |
MAE | fruits of Ficus racemosa [190] | Central composite design and RSM | 3.5 pH, 360.55 W microwave power and 30 s time (water as the extraction solvent) | Quercetin 36.96 mg/100 mL |
MAE | Peach waste [82] | 22-factorial design and RSM | frozen samples: microwave power of 540 W and extraction time of 50 s dried samples: microwave power of 900 W and extraction time of 50 s | TF (frozen samples) = 120.47 mg/100 g TF (dried samples) = 74.75 mg/100 g |
MAE | Apium graveolens L. [191] | Box–Behnken design and RSM | microwave power of 500 W at 30 mL/g solid–solvent ratio with 75.6% (v/v) ethanol concentration | 0.62 g/100 g |
MAE | Alpinia oxyphylla [192] | Orthogonal design and RSM | ethanol concentration of 50%, solid–liquid ratio of 1:20, temperature of 70 C, and cycle index of 3 | 28.24% |
MAE | Salvia plebeian [193] | Box–Behnken design and RSM | ethanol concentration was 56%, the ratio of material to liquid was 1:30 g/mL, the extraction time was 5 min, the extraction power was 560 W | 2.38 mg/ |
MAE | avocado (Persea americana Mill.) seeds [194] | Central composite design and RSM | ethanol concentration of 58.3% (v/v), microwave power of 400 W, and extraction time of 4.8 min. | 21.84 mg/g |
MAE | sweet potato (Ipomoea batatas L.) leaves [170] | Single-factor experiments and RSM | microwave power of 470 W, extraction temperature of 54 °C, extraction time of 21 min, and solid–liquid ratio of 70 mg/mL. | 40.21 mg/g |
MAE | grape skin [195] | Box–Behnken design and RSM | solvent 60% ethanol, extraction time 5 min at 40 °C | total anthocyanins 12,545.19 mg/g |
PLE | aerial parts of Dracocephalum kotschyi [103] | Circumscribed central composite (CCC) design and RSM | temperature, pressure, static time, dynamic time, and the solvent flow rate were adjusted 74 °C, 34 bar, 11.33 min, 17.45 min, and 0.7 mL/min | 6.13 mg/g |
PLE | roots of Scutellaria pinnatifida [104] | Circumscribed central composite (CCC) design and RSM | temperature, pressure, static time, dynamic time, and the solvent flow rate were adjusted 65.8 °C, 39.2 bar, 12.9 min, 18.9 min, and 0.76 mL/min | 127.78 mg/g |
PLE | goji berry fruits [121] | Factorial experimental design and RSM | 180 °C and 86% ethanol in water | TF = 3.02 mg/g |
UAPLE | Passion fruit [196] | Single-factor experiments and RSM | 10 g/min in 68.54 min | 7.8% |
SFE-CO2 | Xinjiang jujube (Ziziphus jujuba Mill.) leaves [132] | Box–Behnken design and RSM | temperature of 52.52 °C, a pressure of 27.12 MPa, a time of 113.42 min, and a cosolvent flow rate of 0.44 mL/mi | 29.05 mg/g |
SFE-CO2 | Odontonema strictum leave [197] | Randomized design full factorial and RSM | extraction time of 270 min and a pressure of 200 bars, | 230.48 mg/g |
SFE-CO2 | Maydis stigma [198] | Box–Behnken design and RSM | a temperature of 50.88 °C, a pressure of 41.80 MPa, a co-solvent amount of 2.488 mL/g and an extraction time of 120 min with 0.4-mm particle sizes and 20% aqueous ethanol as the co-solvent | 4.24 mg/g |
UAESFE | Iberis amara [199] | Single-factor experiments and RSM | 25 MPa pressure, 46 °C temperature, 0.34 W/mL ultrasonic energy density | |
SFE-CO2 | Lippia origanoides K. and Lippia graveolens K. [200] | Fractional factorial screening design and RSM | 307 bar, 5% ethanol, 96 min and 43 g CO2/min | 55 mg/g |
SFE-CO2 | Leptocarpha rivularis leaves [138] | Box–Behnken design and RSM | temperature 60 °C, pressure 20 MPa and co-solvent (ethanol) concentration 2 wt.% | 176.6 mg/g |
SFE-CO2 | Terminalia chebula pulp [143] | Central composite rotatable design using RSM coupled with desirability function (DF) and genetic algorithm (GA) and ANN with GA | RSM-DF were 3.34 mL/min, 166.94 bar, 51.97 °C, 67.47 min, for RSM-GA were 3.23 mL/min, 172.79 bar, 52.37 °C, 68.53 min, while that for ANN-GA were 3.30 mL/min, 174.07 bar, 51.18 °C, 65.23 min. | RSM-DF 137 mg/mL RSM-GA 136.58 mg/mL ANN-GA 135.55 mg/mL |
EA-SFE | Medicago sativa leaves [63] | The response surface methodology (RSM) based on Box–Behnken design | the temperature of 68 °C, the pressure of 205 bar and 15.5% of the co-solvent addition | 3250 mg/g |
Kinetic Model | Equation | Parameters |
---|---|---|
Equilibrium-dependent model [206] | c is the concentration of the dissolved substance in the liquid phase, k is the transport coefficient and ce is the dissolved substance concentration at the equilibrium | |
Second-order model [207] | c is the concentration of the dissolved substance in the liquid phase, k is the transport coefficient and ce is the dissolved substance concentration at the equilibrium | |
Peleg’s model [208] | c(t) presents the concentration of the dissolved substance at the time t, K1 is Peleg’s rate constant (relates to extraction rate at the very beginning of the extraction process), K2 is Peleg’s capacity constant (relates to maximum dissolved substance concentration and c0 is the concentration of dissolved substance at time t = 0. | |
Page’s model [209] | k and n are Page’s model constants and c(t) represents the concentration of dissolved substance at time t | |
Logarithmic model [209] | a and b are Logarithmic model constants and c(t) represents the concentration of dissolved substance at time t | |
Ponomaryov’s model [210] | b and k are Ponomaryov’s model constants, c(t) represents the concentration at time t and ce is the equilibrium concentration | |
Lewis empirical model [211] | a is Lewis’s model constants, and c(t) represents the concentration at time t | |
Henderson and Pabis empirical model [212] | a and b are Henderson and Pabis model constants and c(t) represent the concentration at time t | |
Power-law model [213] | y represents extraction yield or final concentration, B extraction solvent constant, n diffusion exponent and t extraction time | |
Two-site kinetic model [214] | c∞ represents the maximum extracted concentration, F denotes the number of biocompounds discharged quickly, (1 − F) denoted the amount of biocompound components released gradually, k1 and k2 are first-order rate constants of rapid and slow phases | |
Mass transfer model [215] | c is concentration, t is time, D is the diffusion coefficients and x is the diffusion distance |
Extraction Method | Flavonoids Source | Kinetic Model | Model Performance |
---|---|---|---|
UAE [67] | Peanut (Arachis hypogaea L.) | Phenomenological model and Peleg’s model | the mean absolute errors (MPE) for phenomenological model in range 0.158–0.809% and for Peleg’s model in range 0.675 to 1.817% |
MEA [219] | Terminalia bellerica | Second-order kinetic model | The average absolute relative deviation (AARD) and the relative standard deviation between the experimental data and those predicted by second-order kinetics are 0.38% and 0.62%, respectively. |
MAE [91] | Helichrysum arenarium | First-order kinetic model | R2 > 0.98 |
UAE [203] | Lentils (Lens culinaris L.) | Parabolic diffusion Power law Peleg’s model Elovich’s model | RMS and SEE diminished and R2 increased in the following order: hyperbolic model → parabolic model → Elovich’s equation → power-law model. |
Conventional extraction [204] | Linden (Tilia cordata M.) flowers | Unsteady-state diffusion Film theory Ponomaryov | R2 increased in the following order Film theory -> Empirical equation of Ponomaryov -> Unsteady diffusion through plant material |
Conventional extraction (infusion) [202] | Roots of Carlina acaulis | change in the concentration of the target substance in the cell volume over time change in the concentration of the target substance in intercellular space over time material balance equation | |
PLE [29] | Cocoa shell | Peleg’s model | R2 were high in all experimental data set (0.9335–0.9930) |
UAPLE [196] | Passionfruit | Spline model two-site desorption model | Spline model> two-site desorption model |
UAE-SC CO2 [136] | Scutellaria barbata | Second-order kinetic model | R2 = 0.98 at all analyzed temperatures (T = 33, 39, 45, 52 °C) |
SFE-CO2 [220] | Brazilian orchid tree (Bauhinia forficata) | Empirical model dividing extraction process into three periods | R2 > 0.960○for analyzed extraction conditions |
SFE-CO2 [139] | Capsicum annuum pepper | Logistic and spline model | R2 > 0.99 for both models for all analyzed extraction conditions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurinjak Tušek, A.; Šamec, D.; Šalić, A. Modern Techniques for Flavonoid Extraction—To Optimize or Not to Optimize? Appl. Sci. 2022, 12, 11865. https://doi.org/10.3390/app122211865
Jurinjak Tušek A, Šamec D, Šalić A. Modern Techniques for Flavonoid Extraction—To Optimize or Not to Optimize? Applied Sciences. 2022; 12(22):11865. https://doi.org/10.3390/app122211865
Chicago/Turabian StyleJurinjak Tušek, Ana, Dunja Šamec, and Anita Šalić. 2022. "Modern Techniques for Flavonoid Extraction—To Optimize or Not to Optimize?" Applied Sciences 12, no. 22: 11865. https://doi.org/10.3390/app122211865
APA StyleJurinjak Tušek, A., Šamec, D., & Šalić, A. (2022). Modern Techniques for Flavonoid Extraction—To Optimize or Not to Optimize? Applied Sciences, 12(22), 11865. https://doi.org/10.3390/app122211865