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Abstract: In this paper, the problem of fault-tolerant control of actuators for multi-joint robots is
studied. Aiming at the jitter problem in the design of fault-tolerant control law for conventional
sliding mode controllers (SMC), a controller design method based on fractional-order sliding mode
(FSMC) theory is proposed. At first, the mathematical model of the multi-joint robot is established
and the fractional-order sliding mode surface is constructed according to the mathematical model.
Then, the robust control law is designed based on the Lyapunov function. Finally, the experiments
are carried out. Compared with the conventional sliding mode control, the experimental results show
that the multi-joint robot is more stable under the control of fractional-order sliding mode, and it can
achieve almost no jitter while tracking the reference. The steady-state error for joint1 and joint2 could
reach 0.073 radians under the control of SMC, while it is 0.015 radians under the control of FSMC.
The steady-state error data indicate that the fluctuation amplitude under FSMC is five times smaller
than SMC for the end part of the multi-joint robot under actuator gain faults. The regulation time
for joint1 and joint2 is about 0.11 s under the control of SMC, and it is around 0.04 s for FSMC. The
regulation time is reduced to one of three or four. These data show the effectiveness of the FSMC
proposed in this paper.

Keywords: fractional-order sliding mode; fault tolerance control; multi-joint robot

1. Introduction

The robot is an important achievement produced by the comprehensive development
of information science, artificial intelligence science, and modern processing and manu-
facturing technologies in the field of automatic control [1,2]. It is widely used in various
industrial fields, such as aerospace and industrial automation, and it is the object of key
development and research in countries around the world. When the robot system fails, it
is extremely important to design a fault-tolerant control law to ensure that the robot can
perform basic control functions. Because of the complex structure and powerful functions
of multi-joint robots, it is very difficult to achieve fault-tolerant control [3].

The fault-tolerant control of the robot is also divided into passive and active fault-
tolerant control from the macroscopic level. The difference between the two is whether the
controller is adjusted when the fault occurs [4]. For a passive fault-tolerant control system,
the robust controller is designed mainly based on some prior knowledge of faults in the
current system. Once the controller is designed, it will not be adjusted in real time. Active
fault-tolerant control strategies may involve switching between multiple sets of control
algorithms when a system fault occurs or correcting the gain of the controller according to
the fault information. Considering the complexity of the multi-joint robot control system
and the variety of fault types, there are few studies on the fault control of multi-joint
robots using passive fault-tolerant control, and most of the existing literature uses active
fault-tolerant control methods.
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In terms of active fault-tolerant control of the multi-joint robot, the existing research
methods can be divided into three categories, and they are data-based, redundant sensor-
based, and model-based fault-tolerant control methods [5].

The data-based fault-tolerant control method does not rely on an accurate robot
system model and realizes fault tolerance by utilizing a large amount of online data
in the process [6]. As the structure of the industrial robots gradually becomes more
complex, the amount of data generated by the system gradually becomes larger, so more
important parameters need to be fed back, which adversely affects the design of the
controller. Therefore, the fault-tolerant control method based on pattern recognition is
proposed. Under the premise that it is impossible to establish an accurate mathematical
model of a multi-joint robot, the pattern recognition method is used to control the robot’s
fault tolerance, and the typical representative is deep learning. Z. Li [7] developed a new
model predictive control (MPC) method based on visual servos. In the presence of both
kinematic and dynamic constraints, quadratic programming (QP) is used for control design,
and neural dynamic optimization techniques are used to guide a wheeled mobile robot
to move toward the desired target in a polar coordinate system. C. Yang [8] proposed an
enhanced robot skill-learning system that considers both motion generation and trajectory
tracking. It combines the Gaussian mixture model and Gaussian mixture regression to
improve the learning performance of the model. S. Li [9] used the improved neural
network for the position error accumulation and convex constraint problems in the existing
manipulator recurrent neural network controller design, and proved the effectiveness in
the position regulation and tracking control of a robot. There are still many studies on
using neural network methods to realize fault-tolerant control of multi-joint robots [10–12].
However, the neural network method needs to use the data set to train the model in advance.
M.K [13] assumes that the dynamic function of the robot is unknown, and proposes two
dual adaptive neural network control schemes. The parameters of the neural network
controller are estimated randomly in real time. The effectiveness of the controller in the
trajectory tracking problem of a differentially driven wheeled mobile robot is verified using
statistical hypothesis testing. The neural network model is used in the design process of
the robot’s fault-tolerant controller, which needs to be combined with a high-performance
computer to achieve decent results. Therefore, the neural network model is not suitable for
the control process with high dynamic performance requirements.

The fault-tolerant control of the multi-joint robot based on additional sensors improves
the stability of the robot control system by installing redundant sensors at the beginning of
the design. Georgethuruthel T. [14] uses a combination of redundant and disjoint strain
sensors to compensate for the time-varying hidden state of the system and achieves decent
static variable estimates on pneumatic actuators. Professor Rodney Brooks of MIT has
designed a class of small autonomous robot systems for outer space missions, equipped
with more than sixty sensors, which brings challenges to the structural design of the
system and reduces the payload of the robot [15]. Fault-tolerant control of robots based on
additional sensors will increase the cost of the system and limit the development of robot
miniaturization. At present, fault-tolerant control is realized by software signal processing,
which has gradually become an alternative solution [16,17].

The model-based fault-tolerant control law for a robot involves the mathematical
model of the robot in the design process so that it can predict what effect the control output
will have on the robot system and the system parameters can be tuned accordingly. The
representative of these methods includes adaptive control, optimal control, model predic-
tive and back-stepping control, etc. [18–20]. Yajie Ma develops an adaptive compensation
control scheme for two physically linked two-wheel-drive mobile robots with multiple
actuator faults [21]. Yong Xu investigates the fully distributed observer-based adaptive
fault-tolerant synchronization problem (SP) of multiagent systems with event-triggered
control mechanisms [22]. Huaguang Zhang proposed an adaptive fuzzy fault-tolerant
tracking control for partially unknown systems with actuator faults [23]. The main dis-
advantage of adaptive control is that it is difficult to ensure the global stability of the
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closed-loop system in the whole adaptive process. The other popular control method is
optimal control. Ravi used optimal planning and control schemes for real-world robotic
applications [24]. Haijun Peng researched a symplectic instantaneous optimal control
for robot trajectory tracking [25]. Considering uncertainty in optimal robot control, José
R. studied the stochastic optimal control problem with high-order cost statistics, which
promotes the application of robots [26]. The control law of optimal theory relies heavily
on the model of robots, but it is not easy to obtain an accurate model of the robot, which
limits the application of optimal control. There are many other types of research involving
fault tolerance control of the robots. Z. Jiang [27] used the equivalent replacement of the
mass-spring-damper model for the space station robot astronauts, established a viscoelastic
dynamic humanoid robot model in a microgravity environment, and initially proved its
effectiveness. Y. Chen [28] combined MPC and adaptive control to study the trajectory
tracking control problem of mobile robots and achieved good control results. Many other
model-based multi-joint control schemes are introduced in [29–31]. The advantage of
this type of control method is that the control effect is better and the performance can be
optimized, while the disadvantage is that the mathematical model of the controlled object
needs to be accurately established, and the control effect may be poor when the modelling
is not accurate.

2. Related Works

So far, the fault-tolerant control of multi-joint collaborative robots is still divided into
two types and they are model-free and model-based control law design methods, of which
proportional–integral–derivative (PID) control and MPC still account for the majority. The
above two methods are typical representatives of model-free and model-based fault-tolerant
control laws, respectively. Generally, PID controller parameters are difficult to adjust, the
parameter margin of the controller is difficult to obtain, and the dynamic process cannot
be accurately controlled [32]. As for MPC, theoretically, there is still no clear explanation
for the stability of closed-loop systems. Data-driven fault-tolerant control has become a
research hotspot in recent years, but the computational complexity and the application
cost of this method are much higher than those of other methods. For the fault-tolerant
control of multi-joint robots, advanced control algorithms still need to be studied. Sliding
mode control has a strong application prospect in the fault-tolerant control of multi-joint
collaborative robots because the design process of the control law is based on the controlled
object model, but does not rely on it strongly [33–35].

Mien Van [36] uses a fast non-singular terminal sliding mode controller for the fault-
tolerant control of the manipulator’s arm. The proposed controller can keep the integral
non-singular fast terminal sliding mode control in high robustness, fast transient response,
and finite time convergence advantages. However, its disadvantage is that the proposed
non-singular fast terminal sliding mode control law design process relies on the prior
knowledge of disturbance and uncertainty thresholds, for which it is necessary to use adap-
tive technology to estimate the upper limit of the disturbance. Huiming Wang [37] studied
the problem that the flexible actuators of flexible multi-joint collaborative robots cannot
guarantee high tracking performance under the condition of mismatched interference using
continuous sliding mode control, and it adopts the generalized proportional-integral ob-
server technique and designs a new sliding surface based on the disturbance estimation to
deal with the adverse effects of matching/mismatching time-varying disturbances. There
are still many studies on the control of multi-joint collaborative robots using conventional
low-order sliding modes. As the sliding surface of the low-order sliding mode design is
linear, the performance is difficult to guarantee [33,34]. The design of a high-order sliding
mode controller gradually enters the field of robot fault-tolerant control [36,38]. Although
the high-order sliding mode can make the control input continuous, it avoids the occurrence
of high gain switching, so that the chattering phenomenon of the low-order sliding mode
control can be suppressed. However, the high-order sliding mode also has shortcomings.
For example, it requires the prediction of the upper bound of the uncertainty of the robot
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system. There are still many difficulties in the parameter selection of the high-order sliding
mode [39].

Considering the drawbacks of the existing SMC applied to robot control under actuator
fault, in this paper, the FSMC is proposed and well designed. The main innovations are
summarized as follows, compared with common regular SMC.

(1) The fractional differential operator is introduced into the sliding mode surface
design process. From the perspective of the complex frequency domain, the differential
operator has the advantage of phase lead; thus, the response time is reduced. The realization
of the differentiation operation involves summation, so the ripples in the output voltage of
the controller are eliminated.

(2) The FSMC controller is designed and its robustness and stability are guaranteed
by the Lyapunov function, so the controller can handle a variety of serious conditions,
such as actuator constant gain fault and constant deviation fault. This can be seen in the
experiment section.

(3) Comparative experiments were carried out to compare with the conventional
sliding mode in terms of trajectory tracking error and control voltage ripple. The result
shows that there are fewer ripples in the controller output voltage, so the ripple torque is
reduced, which helps to improve the lifespan of the robot.

3. Fractional-Order Sliding Mode Controller Design

Before introducing the design process of fractional-order sliding mode control law, the
basic notation of fractional calculus is given below.

Dα
t =


dα

dtα , α> 0
1 , α= 0
τ∫
0
(dτ)−α , α< 0

(1)

In the above formula, Dα
t is called an arbitrary-order differential operator. There is

no unified solution for the value of α. The three most representative solutions are given
by GrunwaldLetnikov (GL), RiemannLiouville (RL), and Caputo [40]. From a control
and signal processing perspective, GrunwaldLetnikov expresses fractional calculus by
summing terms, so it is intuitive to implement using digital signal controllers. When
RiemannLiouville defines fractional calculus where the Laplace transform is performed,
the initial value of n fractional derivatives of the function at the initial moment needs to be
known. For the actual system, limited by the still vague concept of fractional calculus, it is
very difficult to obtain the initial value of n fractional derivatives at zero time. The Caputo
fractional operation scheme of order only needs to know the initial value of the integer
derivative, and the integer derivative has a clear physical meaning, so it is widely used in
practice and its expression is as follows.

Definition 1 ([41]). α-order Caputo fractional operation scheme is defined as follows.

Dt
α f (t) =

1
Γ(n− α)

∫ t

t0

f n(τ)

(t− τ)α+1−n dτ (2)

In the above formula, n− 1 < α < n, n ∈ Z+, Γ(n− α) is the gamma function and the
calculation expression is as follows.

Γ(x) =
∫ ∞

0
yx−1e−ydy, x > 0 (3)

It can be seen from the above formula that one of the differences between fractional
calculus and integer calculus is that fractional calculus is related to the historical state
information of the system. The fractional calculus operator Dt

α f (t) is global, but the
integer calculus is only related to the information of a limited number of points. Therefore,
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fractional calculus can achieve a more complete description of the historical process of
the model.

When designing a controller using fractional-order sliding mode theory, it must be
ensured that the system is asymptotically stable when it approaches the sliding mode
surface. Usually, Lemma 1 is used to judge whether the system is stable or not.

Lemma 1 ([42]). Assuming that the state x = 0 is the equilibrium point of the fractional non-
autonomous system, the fractional differentiation of the system state is written as

Dt
αx(t) = f (x, t) (4)

The function f (x, t) in the above formula needs to satisfy the Lipschitz condition.
Supposing that there is a Lyapunov function V(t, x(t)) such that the following for-

mula holds {
a1‖x‖ ≤ V(t, x) ≤ a2‖x‖.
V(t, x) ≤ −a3‖x‖

(5)

In Equation (5) a1, a2, and a3 are all coefficients greater than zero; the system described
by Formula (4) is said to be asymptotically stable. Usually, considering that the coefficients
a1, a2, a3 are difficult to obtain, Lemma 2 is often used to judge whether the origin is
asymptotically stable.

Lemma 2 ([42]). For a given continuous function
.
x = f (x), f (0) = 0 and x ∈ R, if there is a

continuous positive definite function V : Rn → R, a ∈ R+, β ∈ (0, 1) and there is a neighborhood
U0 ⊆ Rn of the origin such that the following formula holds

.
V(x) + aVβ(x) ≤ 0, x ∈ U0/{0} (6)

Then the origin is an equilibrium point, where the system states can be reached in a
finite time.

3.1. Multi-Joint Robot Model

This paper takes a double-joint manipulator as an example, and its physical equivalent
model is shown in Figure 1.
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Two joint position angles q1 and q2 are selected as state variables. According to
Lagrange’s theorem, the dynamic equation of the above double-joint manipulator can be
obtained as follows [42].

M(q)
..
q + B(q, q)

.
q + G(q) = T + ω (7)

In Formula (7), q = [q1, q2]
T is the state variable of the double-joint manipulator, which

represents the angle of the joint arm relative to the horizontal axis. G(q) is the gravity
term, ω is the external disturbance. M(q), B

(
q,

.
q
)
, and G(q) are the positive definite mass

matrix, Coriolis force matrix, and gravity term, respectively. The calculation expressions
are as follows. 

M(q) =
[

v + q01 + 2q02 cos(q2) q01 + q02 cos(q2)
q01 + q02 cos(q2) q01

]
B
(
q,

.
q
)
=

[
−q02

.
q2 sin(q2) −q02(

.
q1 +

.
q2) sin(q2)

q02
.
q1 sin(q2) 0

]
G(q) =

[
15g cos(q1) + 8.75g cos(q1 + q2)

8.75g cos(q1 + q2)

] (8)

where parameter v = 13.3 is the item relative to the connector of joint1, q01 = 8.98 is the
item relative to the connector of joint2, q02 = 8.75 are constants related to the joint mass
and length, and g = 9.8 m/s2 is the gravitational acceleration.

3.2. Design of Fractional-Order Sliding Mode Controller for Multi-Joint Robots

When common faults occur in the actuators of multi-joint robots, such as constant gain
and constant deviation faults, the actuators are not completely damaged at this time, so
the fractional-order sliding mode control method can be used to design the controller to
achieve fault-tolerant control.

In the design of fractional-order sliding mode control law, consider qd = [qd1, qd2]
T as

the reference of the double joints, e = [qd − q]T as the error signal matrix, and q = [q1, q2]
T

as the position angle, which is the system state variable.
The sliding mode surface for SMC is set S1 =

.
e + e, choosing the Lyapunov function

V1 with the following format.

V1 =
1
2

ST
1 S1 (9)

The SMC control law T1 could be deduced as follows.

T1 = M
[ ..
qd +

.
e + sign(S1)

]
+ B· .q + G (10)

The fractional-order sliding mode surface is designed as follows.

S2 =
.
e + Ce + Dt

αe (11)

By choosing the constant matrix C =

[
20 0
0 20

]
, derivation of the above formula can

be obtained as .
S2 = Dt

α−1e + C
.
e +

..
e

= Dt
α−1(qd − q) + C

.
e +

( ..
qd −

..
q
) (12)

In the design process of the sliding mode controller, the reaching law needs to be
designed. The design of the reaching law is varied, and the symbol function −ksgn(s) is
often used as the design criterion. Considering the chattering problem caused by the sign
function, the chattering phenomenon exists when the state of the manipulator is switched
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near the sliding mode surface. In this paper, the hyperbolic tangent function is used instead
of the sign function, and the designed reaching law T2 is as follows.

T2 = M
(

q(α−1)
d + C

.
e +

..
qd

)
+ B

(
q(α)d + Ce +

.
qd

)
+ K(q(α+1) + q)

−ω + Γ(e)tanh(S2)
(13)

where K is the converge matrix and its value was chosen as 5 ∗ I2×2, where I2×2 is the
identity matrix of dimension 2× 2. Γ(·) is the gamma function. In the algorithm implemen-
tation process, the torque has multiplied by a coefficient ρ, 0 < ρ < 1, and then added with
the offset value To f f to simulate actuator gain and deviation fault. In the simulation section,
ρ switches between 20%, 40%, and 60%, while To f f gets its value among 50 N·m, 100 N·m,
200 N·m and 300 N·m.

3.3. Proof of Stability

In order to verify whether the multi-joint robot controlled by the fractional-order
sliding mode control law is stable, it is necessary to analyze the stability theoretically.
Compared with classical calculus, fractional calculus faces two major problems, namely,
non-locality and weak singularity, which makes the research of fractional calculus very
difficult. It is also the root cause of the difficulty in the stability analysis of practical
problems using fractional calculus indirectly. Therefore, in this paper, the stability of the
fractional-order sliding mode controller is verified by the Lyapunov function from the
perspective of energy.

Set the following Lyapunov function as

V2 =
1
2

S2
T I2×2S2 (14)

where I2×2 is a positive definite constant matrix. The derivative of the above formula is

.
V2 = 1

2 S2
T

.
I2×2S2 + S2

T I2×2
.
S2

= S2
T I2×2

.
S2

= S2
T I2×2

[
Dt

α−1e + C
.
e +

..
e
]

= S2
T I2×2

[
Dt

α−1(qd − q) + C
( .
qd −

.
q
)
+
( ..
qd −

..
q
)] (15)

The output torque vector is contained in
..
q item, and the torque should keep

.
V2

negative at non-origin state.
As I2×2 is the identity matrix and combines Formula (13), the following inequality

is established.
.

V2 = S2
.
S2

= S2
(

Dt
α−1..

e + C
.
e +

..
e
)

= S2
(

Dt
α−1(−CDt

1−α .
e− εDt

1−αtanh(S2)− Dt
1−αkS2

)
+ C

.
e +

(
−CDt

1−α .
e− εDt

1−αtanh(S2)− Dt
1−αkS2

))
≤ −kS2

2 − ε|S2|
≤ 0

(16)

According to Lemma 1, the origin is the equilibrium point of the system and is
asymptotically stable.

4. Simulation and Experimental Results

This part takes the actuator fault-tolerant control of a multi-joint robot as an example
and mainly divides the fault types into two categories, namely, constant gain fault and
constant deviation fault. The dual-joint manipulator model is established in MATLAB, and
the common sliding mode and fractional-order sliding mode fault-tolerant control models
are designed, respectively.



Appl. Sci. 2022, 12, 11908 8 of 18

4.1. Control Block

The control block diagram is shown in Figure 2. Figure 2a is the proposed FSMC
system diagram and Figure 2b is the regular SMC, which is the comparison of this article.
As in regular SMC, the serial differential items d/dt do not exist compared with FSMC. The
differential operator has the function of phase lead, which could improve the response time.
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It should be noted that the control law of FSMC is expressed in (11), and for regular
SMC, it is (10).

4.2. Simulation Results

The position command of joint1 is cos(πt), and for joint2, it is sin(πt), assuming
that the multi-joint manipulator actuator has the constant gain failure, and the degree of
constant gain failure (CGF) is 60%, 40%, and 20% of the rated value, respectively. Under
the above conditions, the dynamic response curves of tracking error for both joints under
different gain states are obtained. The simulation waveforms are shown in Figure 3, where
the yellow figure under each figure is the enlarged part corresponding to the original figure.

Figure 3 shows the simulation results corresponding to the actuator constant gain fault.
The first thing we know from Figure 3a,b is that the fluctuation exists during the tracking
process using SMC, and as the CGF decreases from 60 percent to 20 percent, the fluctuation
amplitude drops from 0.073 radian to 0.017 radian for both joints. From Figure 3a–f, it
is obvious that the control effect under SMC is unsatisfactory, where the fluctuation is
its drawback. When the controller is changed to FSMC as proposed in this article, the
fluctuation disappears.

Another simulation phenomenon could be seen from Figure 3a,b, that there is vi-
bration during the transition stage of starting under the control of FSMC. As it can be
seen, when the CGF was 60 percent, the error of joint1 converged to zero rapidly once the
simulation was started, and then vibrated for three periods and then tend to be stable. A
possible explanation is that the FSMC provides stronger control output, so the response
time is reduced, and the manipulator state tends to be stable which is guaranteed by the
Lyapunov function.



Appl. Sci. 2022, 12, 11908 9 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 19 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Cont.



Appl. Sci. 2022, 12, 11908 10 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 19 
 

 
(d) 

 
(e) 

 
(f) 

Figure 3. Joint tracking error curves under different CGF. (a) Tracking error of joint1 with 60% CGF. 
(b) Tracking error of joint2 with 60% CGF. (c) Tracking error of joint1 with 40% CGF. (d) Tracking 

Figure 3. Joint tracking error curves under different CGF. (a) Tracking error of joint1 with 60% CGF.
(b) Tracking error of joint2 with 60% CGF. (c) Tracking error of joint1 with 40% CGF. (d) Tracking
error of joint2 with 40% CGF. (e) Tracking error of joint1 with 20% CGF. (f) Tracking error of joint2
with 20% CGF.



Appl. Sci. 2022, 12, 11908 11 of 18

The response time difference of FSMC and SMC under different CGF is not large, as
the controller only needs to compensate the gain of the broken actuator.

Combining Table 1 and Figure 3, it is obvious that the tracking error of the joints under
the control of FSMC is reduced about ten times for joint1 and around five times for joint2.
Additionally, the periodic vibration disappears by adopting FSMC, which could be due
to the fractional differential operator, where the integration operation reduces the steady
error. The result shows the advantage of the FSMC in the joint actuator constant gain fault.

Table 1. Maximum errors (rad) at steady state.

CGF 60% CGF 40% CGF 20%

SMC
Joint1 0.073 0.031 0.017
Joint2 0.074 0.033 0.018

FSMC
Joint1 0.007 0.002 0.001
Joint2 0.015 0.006 0.001

The constant deviation fault (CDF) of the joint actuator is also studied separately; the
fault degree is from 50 N·m to 300 N·m, and the trajectory tracking error curve of the end
of the double-joint manipulator is taken out, as shown in Figure 4.

Figure 4 shows the simulation results corresponding to the actuator constant deviation
fault. It is easy to know from Figure 3a,b and Figure 4a,b that the vibration disappears
under CDF. It can be interpreted that the constant offset fault does not change during the
whole process, which is not similar with CGF, so the effect of CDF at steady state is minor.
We also know from Figure 4a–f that the regulation time for both SMC and FSMC under CDF
remains unchanged. Additionally, the steady-state error, if given adequate time, reaches
zero, but the FSMC has the priority in the rapidity. The priority can be due to the fractional
operator, in which the integration calculation can speed up the converging process.

The dotted line in Figure 4 is the boundary of five percent error zone, and the corre-
sponding time that errors first go beyond this line is shown in Table 2.
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Figure 4. Position tracking error curves of double-joint under different CDF. (a) Tracking error of
joint1 with 50 N·m CDF. (b) Tracking error of joint2 with 50 N·m CDF. (c) Tracking error of joint1
with 100 N·m CDF. (d) Tracking error of joint2 with 100 N·m CDF. (e) Tracking error of joint1 with
200 N·m CDF. (f) Tracking error of joint2 with 200 N·m CDF. (g) Tracking error of joint1 with 300 N·m
CDF. (h) Tracking error of joint2 with 300 N·m CDF.

Table 2. Comparison table of maximum time (s) of dynamic error in different CDF.

CDF 50 N·m CDF 100 N·m CDF 200 N·m CDF 300 N·m

SMC
Joint1 0.11 0.11 0.11 0.11
Joint2 0.12 0.12 0.12 0.12

FSMC
Joint1 0.04 0.04 0.03 0.03
Joint2 0.04 0.04 0.04 0.04

From Table 2, it is very easy to see that the FSMC is about three times faster than the
SMC in terms of joint position response time, but the steady-state error of the conventional
sliding mode is close to that of the fractional-order sliding mode. Combining Figure 4 and
Table 2, we can conclude that the actuator constant offset fault has nearly no effect on the
response time and steady-state error. Furthermore, from Figures 3 and 4, we can know that
the offset fault of the actuator has more influence than the gain error in steady-state error,
from which it could be interpreted that the gain fault of the actuator could be compensated
by the gain design in FSMC and SMC controller, while the offset fault is eliminated by
increasing the regulation time.

According to the simulation results under constant gain and constant deviation sit-
uations for the double-joint manipulator, the fractional-order sliding mode has obvious
advantages for the gain or deviation fault in a wide range of fault amplitude. In particular,
it has obvious advantages in improving the response speed of the multi-joint manipulator
and reducing the steady-state error. In particular, the greater the degree of failure is, the
more prominent the advantages of FSMC can be.

A hardware experimental platform is built to investigate the control laws of FSMC
and SMC. The platform is shown in Figure 5.
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Figure 5. Robotic experimental platform.

Two experiments under extreme situations are investigated here. The first one is
the constant gain failure with 80% output torque, and the other one is constant deviation
fault where 300 N·m of the loss is included. The oscilloscope is used to capture the
experiment data.

Figure 6 shows the output voltage waveform of the double-joint manipulator using
SMC and FSMC where the output torque of the joint actuator is only 80% of the rated value.
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Figure 6 shows that under the condition of large actuator constant gain fault, the
output voltage amplitudes of the conventional sliding mode and fractional-order sliding
mode controllers are similar in steady state. However, the output voltage of the fractional
sliding mode has a fluctuation of about 10 V in amplitude. Furthermore, the voltage
waveforms of the FSMC and SMC when the joint actuator has a constant deviation fault
are shown in Figure 7.
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Figure 7 shows that under the condition of large actuator constant deviation fault, the
output voltage amplitudes of the conventional sliding mode and fractional-order sliding
mode controller are similar in steady state. However, the output voltage of the fractional
sliding mode has a fluctuation of about 20 V in amplitude.

From comprehensive analysis of Figures 6 and 7, combined with the steady-state
position error curve (shown in Figures 3 and 4), it can be summarized that since the
differential operator is introduced in the design process of the fractional sliding mode
controller, the voltage waveform shows fluctuation, which uses the phase advance effect
of the differential operator to ensure the fast tracking of the joint to the reference. The
comparative experiments show the superiority of FSMC in terms of rapidity and steady
error characteristics.

5. Conclusions

In this paper, the problem of actuator fault-tolerant control of multi-joint robots is
studied; in particular, the fault-tolerant control of actuators under constant gain fault and
constant deviation fault. The novel FSMC is designed to reduce the steady-state error under
sinusoidal references. Additionally, the response speed is improved under step reference
compared with SM. The following conclusions can be made from the experiment results.

(1) The output voltage of the FSMC is smooth and there is no fluctuation compared
with regular SMC method. There are two reasons to interpret this: the first reason is the
introduction of tanh function, while the other reason is the fractional differential operator
in the FSMC controller.

(2) The response time under step reference is reduced and the control accuracy under
sinusoidal reference are greatly improved, where the response time under CDF is improved
by three times and the maximum error under CGF is improved by ten times.

(3) The FSMC is robust under different actuator CDF and CGF, and it can achieve
smooth tracking at steady state, which is superior to regular SMC.

The comparative experiments show the superiority of FSMC in terms of rapidity and
steady error characteristics. Future research work could be focused on the control problem
of mixed faults, so the mathematic model of the multi-joint robot needs to be simplified
and tested. New control theories research applied to robots is also worth its way.
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