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Abstract: For CFD liquid sloshing simulations, fine computational mesh resolutions are typically
required to model the flow within small flow passages or orifices found in fuel tanks. This work
presents a method of replacing the fine computational mesh elements within orifices with large
one-dimensional mesh elements that integrate seamlessly with standard finite volume computational
elements with the intended advantage of reducing the overall computational cost of CFD simulations.
These one-dimensional elements conserve mass and momentum for two-phase flow in incompressible
Volume-Of-Fluid CFD. Instead of fully resolving the momentum diffusion term, empirical correlations
are used to account for the viscous losses within the orifices for both two- and three-dimensional
simulations. The one-dimensional orifice elements are developed and validated against analytical and
experimental results using the finite volume CFD code ELEMENTAL®. Furthermore, these elements
are tested in a violent sloshing simulation and compared with full-resolution numerical results as
well as experimental results. The elements are shown to decrease computational cost significantly by
reducing the number of computational elements as well as increasing the simulation time step sizes
(due to an increase in element sizes).

Keywords: two-phase; slosh; Volume-Of-Fluid; orifice; 1D elements; sloshing wing dynamics (SLOWD)

1. Introduction

Slosh is a term that often refers to a seemingly chaotic flow of two fluids, usually a
liquid and a gas, within a containment structure such as a tank. Common occurrences
of slosh are within the fuel tanks of passenger vehicles [1], commercial aircraft [2–4],
spacecraft [5,6] or in tanker vessels transporting liquefied natural gas [7,8]. The resulting
slosh forces are an important consideration in the structural design of tanks as well as the
dynamics and control of the vehicles carrying them [4,9].

Due to the inherent non-linearities involved, numerical methods are widely used to
study slosh loads. These include Smoothed Particle Hydrodynamics (SPH) [10], Finite
Difference Method (FDM) [11], Finite Element Method (FEM) [12] and Boundary Element
Method (BEM) [13]. In this work, we focus on the Finite Volume method [14] with a
Volume-Of-Fluid (VOF) [15] approach to model two-phase, immiscible fluid flow in the
fuel tank slosh loads problem [3].

Baffle structures are often found inside tanks and serve to suppress the fuel slosh
loads [16], to act as structural elements [2] or both. Openings in these structures, referred to
generally as orifices in this work, can significantly increase computational cost in numerical
simulations due to the small geometrical scales [17–22]. In addition to small mesh elements,
orifices are often the location of high-velocity flow, as fluid is accelerated from one side
of the tank to another through a constricting passage. Therefore, the computational cost
is increased by both the requirement for more mesh elements and more time steps, since
the allowable time step size is decreased in orifices by stability constraints such as the
Courant–Friedrichs–Lewy (CFL) condition [23] or viscous diffusion in the case of explicit
time integration schemes [24].
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An approach to overcome this cost is to model orifice or channel flow instead of directly
discretizing and solving the governing Navier–Stokes equations. Ozhan [25] developed a
subgrid pressure jump model for use in the development of automotive catalytic converters,
replacing small monolithic substrates with a subgrid model coupled to the full solution
of the Navier–Stokes equations in the diffuser and outlet nozzle. Porter [26] added to the
work of Ozhan by resolving the full Navier–Stokes equations within the inlet section of
the monolithic substrate channels while using the pressure loss model for the downstream
section (where flow is fully developed). This allows the numerical model to capture the
additional losses due to developing flow in the monolithic substrate channels.

Another approach is the coupling of 3D CFD meshes with 1D network codes [27], in
which the 1D code is used to model flow in long tubes while the 3D CFD code models
the remainder of the flow domain. These methods require a coupling mechanism to
communicate between the network code and 3D CFD code.

In this work, we further the methodology of Ozhan [25] and Porter [26] for constant
cross-sectional orifices. In our method, we propose to embed the orifice element as part of
the mesh. This allows the user to simply modify the mesh in orifice areas by drastically
reducing the amount of mesh elements in these regions. A single equation is solved for
momentum conservation in the entire domain with different treatment of certain terms in
the bulk flow and 1D flow within the orifice. We further expand the 1D model to account
for two-phase loss effects by applying existing semi-empirical correlations for flow losses.
Another novel aspect of this work is giving careful attention to the VOF advection method
to ensure sharp tracking of the liquid–gas interface within the 1D orifice elements. The
development and validation of the above is performed in the multi-physics CFD code
ELEMENTAL® [19,28–30], which is developed by the Industrial CFD (InCFD) Research
Group at the University of Cape Town.

2. Materials and Methods

In this section, we will briefly introduce orifice flow loss physics (Section 2.1) and
the semi-empirical correlations we use to model this. We will then present the govern-
ing equations of our problem (Section 2.2) and the numerical method we use to solve it
(Section 2.3).

2.1. Orifice Flow Losses

Figure 1 shows a schematic representation of the contracting and expanding flow
within a long orifice, defined as orifices in which the length L to hydraulic diameter DH
ratio is greater than 1.4, i.e., L

DH
> 1.4. The hydraulic diameter is defined as

DH =
4Ao

Pw
, (1)

where Ao is the orifice cross-sectional area and Pw is the wetted perimeter. The point xu
is at the inlet to the orifice and xd is at the exit to the orifice where the flow is reattached
to the orifice wall, as shown. The vena contracta is the location at which the main fluid
stream cross-sectional area is smallest, which is at position xc. Flow through orifices up to
the vena contracta is nearly reversible [31]. Flow losses mainly occur downstream of the
vena contracta with the majority being downstream of the orifice exit in the downstream jet.
In the case of short orifices ( L

DH
< 1.4), the losses within the orifice are negligible [32,33].

For long orifices ( L
DH

> 1.4), the flow reattaches to the orifice wall downstream of the vena
contracta and, even though the majority of losses still occur downstream of the orifice,
significant flow losses occur within the orifice [34].

This work focuses on modeling the viscous flow losses and corresponding orifice mass
flow rate within long orifices for two-phase flow by using one-dimensional, finite volume
cells in orifice cavities. The flow outside the orifice is meshed, discretized and solved with
the usual numerical discretization. Therefore, we place the onus to account for the losses
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occurring downstream of the orifice on the existing 2D/3D CFD model, as would be the
case in a fully resolved simulation.

xc, Ac xd, Adxu, Au
ũ

L
DH

Figure 1. Contracting and expanding flow in a long orifice.

The average velocity and pressure over the orifice cross-section (normal to the flow
direction) are denoted ũ and p̃, respectively. To these, we add subscripts that refer to the
point where the cross-sectional average velocity or pressure is taken (upstream, down-
stream or at the vena contracta). Note that the orifices considered in this work all have
constant cross-sectional areas; therefore, we simply refer to the orifice cross-sectional area,
Ao = Au = Ad. Ac is the cross-sectional area of the vena contracta.

The pressure loss in one-dimensional flow analyses are generally written in the form [35]

∆ p̃ = Cρũ2 , (2)

where ρ is the density of the fluid and C is some loss coefficient, determined as a function of
the flow conditions and boundary geometry. The effects that contribute to the vast majority
of pressure losses through orifices can be placed in three categories. These are viscous
losses, flow losses (venturi such as contraction and expansion) and fluid mixing (two-phase
flow). These effects are discussed in the following subsections, with a general equation for
the loss coefficient given in Section 2.1.4. Note that the entrance losses due to developing
flow (as in the case of pipes and ducts) in long orifices can be considered negligible due to
the relatively small length-to-diameter ratios [36] and are excluded in this work.

2.1.1. Viscous Losses

The pressure loss along the length L of a long orifice due to viscous effects (including
the wall friction) is written in a generic form, assuming isothermal flow, as

∆pvisc =
K f L
DH

ρ̃ũ2

2
, (3)

where K f is the dimensionless Darcy–Weisbach Friction Factor, L is the length of the orifice
section and DH is the hydraulic diameter [37]. The empirical equation by Avci [38] will be
used in this work to determine K f since it is valid over all Reynolds numbers up to 108 and
is suitable “for the entire range of the Moody chart, that is valid for laminar, transitional
and fully turbulent regions” [38]. Furthermore, a smooth surface will be assumed, as is
the case in the problems modeled in this work. Avci has a general empirical equation for
problems with non-zero surface roughness, which can be implemented and used similarly
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as the smooth relation used here. The empirical equation by Avci [38] for smooth surfaces
is given by

K f =
6.4(

ln
(

1
Re

))2.4 +

 64
Re
− 6.4(

ln
(

1
Re

))2.4

e−(
Re

2560 )
8

. (4)

2.1.2. Flow Contraction and Expansion Losses

The pressure differential due to venturi such as contracting and expanding flow within
the orifice is given as [34]

∆pcont + ∆pexp = Kcont
ρ̃uũ2

2
+ Kexp

ρ̃dũ2

2
, (5)

with

Kcont =

(
1
σ2

c
− 1
)

, (6)

Kexp =

(
2− 2

σc

)
, (7)

and
σc =

Ac

Ao
≈ π

π + 2
= 0.611 , (8)

where ρ̃u and ρ̃d are the average fluid density within the orifice—upstream and downstream,
respectively—of the vena contracta and σc is the contraction coefficient, which in this work
is approximated using Milne-Thompson’s method [39] and further motivated by [35,40,41].
Note that, since the orifices considered in this work are all of constant cross-sectional
area, the average velocity ũ = ũu = ũd. Equation (6) is derived from the energy flux
equation assuming steady state and constant enthalpy [31], while Equation (7) is derived
from the steady state momentum flux equation [34,35]. Using the approximate value of σc
in Equation (8), Kcont = 1.679 and Kexp = −1.273. The relatively larger positive value of
Kcont shows how the fluid in the orifice is accelerated (and, therefore, the pressure reduced)
without any losses up to the vena contracta. Similarly, the relatively smaller negative value
of Kexp shows how only some of the pressure is recovered during expansion.

2.1.3. Two-Phase Flow Losses

For two-phase flow, additional losses occur through the orifice. We use the separated
flow model [35,42], which takes the total pressure drop over a pipe section or orifice for a
single-phase flow and adds a two-phase multiplier φ2 (determined experimentally). This
multiplier accounts for mixing effects and is calculated at every time step according to the
flow conditions.

A multiplier coefficient is calculated for viscous losses as well as for contracting and
expanding losses. The Baroczy–Chisolm method [35] is used to determine the two-phase
multiplier for viscous losses, and the method of Kojasoy [34] (based on the Baroczy–Chisolm
method) is used to determine the two-phase losses due to contracting and expanding flow.

For the Baroczy–Chisolm method [35], the dryness fraction is defined as

x =
ρgũg Ag

ρl ũl Al + ρgũg Ag
, (9)

indicating the ratio of the mass flow rate of the gas to the liquid–gas mixture, where the
subscripts l and g are used to distinguish between the liquid and gas phase, respectively.
Further, Al and Ag are the cross-sectional areas of the orifice occupied by the liquid and
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gas, respectively. The void fraction ξ is the ratio between the volume of the orifice occupied
by the gas Vg to the total orifice volume Vlg:

ξ =
Vg

Vlg
. (10)

In general, we employ the subscript lg to indicate the two-phase mixture. The mass
velocity G is used extensively in one-dimensional two-phase flow literature and is given as

G = ρl ũl
1− ξ

1− x
= ρgũg

ξ

x
. (11)

Finally, the physical property coefficient is given as

Γ2 =
∆pg0

∆pl0
, (12)

where subscripts g0 and l0 refer to the gas or liquid phase, respectively, if it were to flow
through the orifice at the mixture’s mass flow rate.

The total pressure differential due to viscous effects of the two-phase mixture ∆plg is
given as

∆plg = φ2
l0∆pl0 . (13)

The two-phase multiplier, using the Baroczy–Chisolm method, is defined as

φ2
l0 = 1 + (Γ2 − 1)(Bx(1− x) + x2) , (14)

where the coefficient B can be found in Table 1 [35] and the physical property coefficient
Γ can be determined using Equation (12). ∆pl0 and ∆pg0 are found using Equation (3) for
the liquid

∆pl0 =
K f l0L
DH

G2

2ρl
(15)

and gas phase

∆pg0 =
K f g0L

DH

G2

2ρg
, (16)

with the mass velocity G calculated using (11). K f g0 and K f l0 are found using Equation (4).
Note that the Reynolds number in Equation (4) is, for two-phase flow problems, deter-
mined as

Re =
GDH

µ̃u
, (17)

where µ̃u is the viscosity of the respective phase being dealt with. Since the two-phase
effects are accounted for separately, the hydraulic diameter DH is calculated using the full
perimeter of the orifice.

Table 1. Values of B in the Baroczy–Chisolm method.

Γ G
(

kg
m2s

)
B

Γ ≤ 9.5

G ≤ 500 4.8

500 < G < 1900 2400
G

G ≥ 1900 55
G0.5

9.5 < Γ < 28
G ≤ 600 520

ΓG0.5

G > 600 21
Γ

Γ ≥ 28 15000
Γ2G0.5
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Finally, assuming that the liquid and gas velocities are the same, the total two-phase
viscous pressure differential is calculated, using Equations (13)–(15), as

∆pvisc = φ2
l0visc∆pl0visc = φ2

l0visc
K f l0L
DH

G2

2ρl
. (18)

Chisolm [35] and Kojasoy [34] developed methods to expand the application of two-
phase multipliers to obstructions such as orifices in pipes and ducts. These methods are
used only to determine the two-phase multiplier for the pressure difference due to the
contraction and expansion caused by orifices. The two-phase multiplier due to the effects
of an obstruction such as an orifice is given as [35]

φ2
ori f =

(
1 +

(
ρl
ρg
− 1
)
(Bori f x(1− x) + x2)

)
, (19)

where the dryness fraction x is as defined previously;

Bori f =
1

Sn , (20)

with n determined experimentally; and the velocity ratio or slip ratio S is defined as

S =

(
1 + x

(
ρl
ρg
− 1
)) 1

2
. (21)

Kojasoy [34] approximated n = 0 downstream of the vena contracta since the expand-
ing flow is well mixed and n = 0.15 upstream of the vena contracta for long orifices. This
approximation is further motivated by [34,43].

Finally, in this work, the total two-phase pressure differential due to contracting and
expanding flow, respectively, are calculated using Equations (13) and (19)–(21), as

∆pcont = φ2
l0cont∆pl0cont =

(
1 +

(
ρl
ρg
− 1
)(

1
S0.15 x(1− x) + x2

))
Kcont

G2

2ρl
(22)

and

∆pexp = φ2
l0exp∆pl0exp =

(
1 +

(
ρl
ρg
− 1
)
(x(1− x) + x2)

)
Kexp

G2

2ρl
, (23)

where Kcont and Kexp are defined in Equations (6) and (7).

2.1.4. Total Two-Phase Losses within Orifices

The total pressure differential over a long orifice accounting for two-phase flow in this
work is, therefore, modeled by adding loss terms in Equations (18), (22) and (23) such that

∆ptotal = ∆pvisc + ∆pcont + ∆pexp

= φ2
l0visc

K f l0L
DH

G2

2ρl
+ φ2

l0contKcont
G2

2ρl
+ φ2

l0expKexp
G2

2ρl
(24)

= C
G2

ρl
,

where C represents a global loss coefficient

C =
φ2

l0visc
K f l0L
DH

+ φ2
l0contKcont + φ2

l0expKexp

2
. (25)

The form of Equation (25) allows users to input alternative models for the loss coeffi-
cient, if required.
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2.2. Fluid Governing Equations
2.2.1. Conservation Equations in a Non-Inertial Reference Frame

Consider a fluid volume V(t) shown in Figure 2. V(t) is enclosed by a surface A(t)
with outward pointing unit normal vector n. The volume is located in a non-inertial
reference frame (x-y-z); contains a fluid with density ρ and viscosity µ; and is subject to
a force, which is divided into a surface force F|A and a body force F|V . The non-inertial
reference frame (x-y-z) is free to move relative to some inertial reference frame (X-Y-Z). In
this work, we will only consider the linear translation of the non-inertial reference frame.

Y

X

V(t)
dV

dA

dF|V

dF|A

n

x

y

A

B

F

z

Z

aB

Figure 2. Fluid volume in a non-inertial reference frame system.

The general momentum conservation equation for a fluid in the non-inertial reference
frame system described above can be written as

∂ρu
∂t

+∇ · (ρu⊗ u) +∇p−∇ · µ(∇u +∇uT) (26)

= ρ(g − aB) ,

where p is the static pressure, u is the velocity of the fluid relative to the non-inertial
reference frame (x-y-z) and g is the body force acceleration due to gravity expressed as
−9.81 m/s2 in the positive Y-direction. aB is the linear acceleration of the non-inertial
reference frame relative to X-Y-Z. The conservation of mass for an incompressible fluid is
given by

∇ · u = 0 . (27)

The mass and momentum conservation equations are known as the incompressible
Navier–Stokes equations. For CFD simulations in this work, the tank is fixed to the non-
inertial reference frame x-y-z, which undergoes a time-varying acceleration aB.

2.2.2. Orifice Flow Loss Model

We now seek to expand the momentum conservation Equation (26) to describe both
the bulk flow as well as orifice flow losses as per Equation (24). Consider an orifice with
diameter DH and length L, as shown in Figure 3. The orifice is fixed in the x-y-z reference
frame, which is subjected to an acceleration aB while the pressures at the inflow and outflow
coordinates x1 and x2 are denoted by p1 and p2, respectively. In this case, ∆ptotal = p2 − p1.
Unit vector nO indicates the 1D direction vector of the flow within the orifice in the x-y-z
reference frame. The viscous term in the above momentum equation is now expanded to
include the orifice loss model as follows:

∇ · µ(∇u +∇uT) =
(
∇ · µ(∇u +∇uT)

)
(1− HO)−

Cρũ2
O

L
HOnO , (28)



Appl. Sci. 2022, 12, 11909 8 of 20

where nO is the unit normal vector along the orifice in the direction of the flow and HO is a
Heaviside function with value 1 within the orifice and 0 elsewhere.

A

B x

y

z

Y

X

Z

a

x1, p1
nO x2, p2

Figure 3. Orifice within non-inertial reference frame system.

Combining Equations (26) and (28) gives the momentum conservation equation for
two-phase incompressible flow in both bulk and orifice regions as follows:

∂ρu
∂t

+∇ · (ρu⊗ u) +∇p−
(
∇ · µ(∇u +∇uT)

)
(1− HO) +

Cρũ2
O

L
HOnO (29)

≈ ρg − ρaB ,

where the nomenclature is as previously defined.

2.3. Numerical Method

The numerical method applied to solve the fluid governing Equations (27) and (29) is
described next.

2.3.1. Brief Overview of Vertex-Centered VOF Method

ELEMENTAL® uses a vertex-centered finite volume [44] fractional-step scheme [19]
such that the control volumes are formed as a geometric dual to the cells. In the case
of two-phase flow, the fluids are assumed immiscible. A one-fluid formulation [45] is
used so that the same set of equations is solved everywhere in the computational domain,
regardless of the phase or phases present in the computational cell. To track the phases, the
VOF equation is based on

∂Hα

∂t
+∇ · uHα = 0 , (30)

where Hα is a Heaviside function having a value of 1 in the liquid phase and 0 in the
gas phase. The volume fraction or Volume-Of-Fluid, αi, is the average value of Hα in
computational cell Vi such that

αi =
1
Vi

∫
V

HαdV . (31)

This means that α = 1 for a cell completely filled with liquid and α = 0 for a cell
completely filled with gas. The advection of α, the second term in (30), is calculated using
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the CICSAM interface capturing scheme [46]. The density and viscosity of the fluid in each
cell are calculated using an arithmetic average and are given by

ρ = αρ1 + (1− α)ρ0 (32)

and
µ = αµ1 + (1− α)µ0 , (33)

where subscripts 1 and 0 denote the liquid and gas, respectively. The mass and momentum
Equations (26) and (27) are solved using a split projection method [19].

2.3.2. Spatial Discretization of Diffusive Term

Figure 4 shows 2D meshes containing orifice elements: a structured mesh on the left
and an unstructured mesh on the right. The dual-cell control volumes are demarcated
with dotted lines. Nodes that do not form part of the boundary nor boundary elements
are termed interior nodes (e.g., D and G). The orifice boundary nodes are denoted as
OCi and the internal orifice nodes as OAi and OBi for left- and right-hand side orifice
nodes, respectively.

OB2

G OC1

I OA1

D OA2

M OA3

Q OC2

OC3

OB1

OB3

OC4

G

OA OB

H

J

K P

OC1

OC2

D

OC3

OC4

Figure 4. Structured mesh with multiple orifice element pairs (left) and unstructured mesh with
three orifice element pairs (right).

The diffusive term for an interior node, e.g., D, is discretized as usual:

∇ · µ
(
∇u +∇uT

)∣∣∣
D
=

1
VD

∑
f εAD

(
µ
(
∇u +∇uT

)
· Γ
)∣∣∣

f
,

where VD is the volume of the dual cell at node D, AD is the surface (in dotted lines in the
figure) enclosing VD and the subscript f indicates a specific face section of AD. Γ is the
outward pointing normal vector of the face with magnitude equal to the area of the face.
The gradient at the face is calculated using the compact stencil formulation [47].

In the case where the discretization takes place at the orifice nodes, Equation (28) is
used to calculate the viscous losses through the orifice. Here, the diffusion contribution at
any orifice node (e.g., OA, OB or OC1) is replaced with the empirical loss term by setting
HO = 1. As an example, the diffusion term at node OA on the right-hand side of Figure 4
would be computed as follows:

∇ · µ
(
∇u +∇uT

)
=

1
VOA

(
µ
(
∇u +∇uT

)
· Γ
∣∣∣

fG−OA

+ µ
(
∇u +∇uT

)
· Γ
∣∣∣

fD−OA

(34)

+ µ
(
∇u +∇uT

)
· Γ
∣∣∣

fP−OA

−VOA

Cρũ2
O

L
nO

)
.
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Here, the subscript fG−OA refers to the face connecting nodes G and OA. Note that the
empirical loss term accounts for the contributions of the faces connecting OC1, OC2 and OB to OA.

2.3.3. Numerical Calculation of Orifice Loss Coefficient

The loss coefficient C in the discretized diffusion equation can be determined using
Equation (25), repeated here for readability:

C =
φ2

l0visc
K f l0L
DH

+ φ2
l0contKcont + φ2

l0expKexp

2
.

Since only nodal values of the fluid and flow properties are known, the equations from
Section 2.1 must be discretized appropriately. This section gives an overview of how the
loss coefficient is determined numerically.

The volume flow rate of each phase (e.g., air and water) at orifice nodes i, V̇gi and V̇li ,
are, respectively, calculated at every time step as

V̇gi = ∑
Ai

((1− αi)Ai(u · nO))|Ai
(35)

and
V̇li = ∑

Ai

(αi Ai(u · nO))|Ai
, (36)

where Ai is the area of each of the faces connecting orifice nodes from opposite sides. With
reference to Figure 4, these are the faces connecting OA1 and OB1, OA2 and OB2, etc. Further,
αi is the VOF value at the cell face as calculated by CICSAM and nO is a unit normal along
the orifice in the direction of the average flow. The dryness fraction and mass velocity from
Equations (9) and (11) are calculated numerically as

xi =
ρgV̇gi

ρlV̇li + ρgV̇gi

(37)

and

Gi =
ρlV̇li + ρgV̇gi

Ai
, (38)

respectively.
The friction loss coefficient K f l0 is calculated using Equation (4), where the Reynolds

number is determined from the mixture mass velocity Gi and the liquid viscosity µli . The
expansion and contraction loss coefficients are given in Equations (6) to (8). Finally, the
two-phase multipliers in Equation (25) are calculated using Equations (14), (22) and (23).

2.3.4. CICSAM Correction for Orifice Elements

A key assumption inherent to the CICSAM method is that the vertex is located at the
volume centroid. On stretched meshes, this is not the case when using the vertex-centered
FV scheme. Since there is a significant amount of stretching introduced in the mesh at orifice
cells in this work, the aforementioned assumption introduces a particularly large error.
Figure 5 shows a zoomed image of the left of Figure 4, with orifice element cells/volumes
in dashed lines and nodes in black dots. Notice the large disparity between the nodes
positioned at x1 and x2 and the centroid locations of the corresponding cells, which are
indicated with the ×’s (x∗1 and x∗2). Therefore, for CICSAM to calculate VOF fluxes at the
surfaces that bound these cells, the positions of the centroids of the orifice element cells (x∗1
and x∗2) are used instead of the nodal positions of those cells (x1 and x2). The efficacy of
this correction is demonstrated next.
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x1 x2x∗1 x∗2

Figure 5. Nodes in orifice region (x1 to x2) with their cell volumes, where the ×’s indicate the actual
centroid of the cell volume.

3. Results

The one-dimensional orifice elements have been implemented into the ELEMENTAL®code.
The basic implementation was validated using various test cases.

3.1. VOF Advection Test Case

The first test-case assesses if the liquid–gas interface is propagated sharply in 1D orifice
elements via the CICSAM scheme (Section 2.3.4). For this purpose, a liquid packet (Fluid 1)
is propagated in a channel at a constant velocity of 1 m/s, as shown in Figure 6. The flow is
inviscid with slip boundary conditions at the top and bottom boundaries, while the channel
contains embedded 1D elements, as depicted in Figure 7. The results in this figure show
the fluid interface before and after passing through the one-dimensional orifice elements,
both with and without the proposed CICSAM modification. In the case where the centroid
locations are not corrected, it can be seen that the interface smears considerably while
passing through the one-dimensional orifice elements. However, with the modification
applied, the fluid interface remains sharp and matches the expected position (white dotted
lines), thus validating the proposed method.

h

x

y

u(y)

Fluid 1Fluid 0
Figure 6. Sharp fluid interface test case.

1D Element Section

Figure 7. Fluid interface plot before Fluid 1 (red) traveled through the one-dimensional orifice
elements (top). Fluid interface plot after Fluid 1 (red) traveled through the one-dimensional orifice
elements without (middle) and with (bottom) the changes to CICSAM.



Appl. Sci. 2022, 12, 11909 12 of 20

3.2. Violent Slosh Test Case Results

The remainder of the validation work will be focused on a baffled tank undergoing
violent slosh as detailed in [48]. As shown in Figure 8, the baffles are placed centrally
and contain three long orifices. The tank is subjected to sinusoidal acceleration in the
x-direction, which is ramped up over the first 25% of the simulation. The resulting slosh-
induced pressures at points p1 and p2 were measured and reported. The 75% fill case
is modeled via 2D CFD simulations using ELEMENTAL®. To evaluate the efficacy of
the developed orifice element model, the simulations were conducted both with and
without the one-dimensional orifice elements followed by comparing the predicted pressure
difference between the pressure probes to the measured values. The experimental results
are confidential; therefore, time and pressure difference values are normalized with their
respective maximum values.

baffles

p1 p2

x

y

Figure 8. Cross-section of tank showing position of baffles and pressure sensors of violent slosh
test case.

3.2.1. Full-Resolution Simulation Results

A numerical simulation of the experiment is performed, where the 2D governing equa-
tions are discretized over the full fluid volume (including the volume inside the orifices).
The computational mesh is shown in Figure 9 and is similar to an earlier publication [19].
Note the relatively small computational element sizes required in and around the orifices.
Figure 10 shows the local Reynolds numbers of the flow within the respective orifices over
time. Note that the Reynolds number is calculated with the velocity being the average
velocity in the orifice and the length scale being the height of the orifice. Comparison of the
flow pressure differentials will be presented next along with 1D orifice mesh results.

Figure 9. Full-resolution computational mesh of violent slosh test case.
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Figure 10. Reynolds number of flow in each orifice over time of violent slosh test case.

3.2.2. Results Using 1D Orifice Element Model

The results for cases where the computational mesh in the orifices are replaced with
one-dimensional orifice elements are presented now. Three different computational meshes
with different numbers of orifice elements (see Table 2) are used and shown in Figure 11.
Zoomed images of the mesh around the orifice areas are shown in Figure 12. Note that, for
the top orifice, all three meshes have three orifice elements in the vertical direction since
the flow passage is very small.

Table 2. Number of one-dimensional orifice elements in each computational mesh.

No. of Orifice Elements

Top Orifice Middle Orifice Bottom Orifice

Mesh A 3 7 8

Mesh B 3 4 4

Mesh C 3 3 3

The measured experimental as well as the numerically calculated full-resolution
simulation pressure difference, p1 − p2, are compared with that of the one-dimensional
orifice element model simulations in Figures 13 and 14. The flow rate over time through
each orifice in the one-dimensional orifice element model is plotted and compared with
the full-resolution simulation results in Figures 15–17. The total mass in the left-hand side
of the tank over time for each simulation is plotted in Figure 18. Additionally, the relative
mass difference in the left-hand side of the tank of the one-dimensional orifice element
model simulations compared with the full-resolution simulation are shown in Figure 19 for
Meshes A to C. Here, the relative mass difference is given by mF−mO

mF
, where mF and mO are,

respectively, the masses in the left-hand side of the tank calculated with full resolution and
the one-dimensional orifice element model simulations.
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Mesh A

Mesh B

Mesh C
Figure 11. Computational meshes for one-dimensional orifice element model simulations of violent
slosh test case.

Mesh A Mesh B Mesh C
Figure 12. Computational meshes around orifices for one-dimensional orifice element model simula-
tions of violent slosh test case.
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Figure 13. Comparison of pressure difference, p1 − p2, of violent slosh test case.
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Figure 14. Enlarged comparison of pressure difference, p1 − p2, of violent slosh test case.
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Figure 15. Flow rate through bottom orifice in violent slosh test case using one-dimensional orifice
element model.
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Figure 16. Flow rate through middle orifice in violent slosh test case using one-dimensional orifice
element model.
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Figure 17. Flow rate through top orifice in violent slosh test case using one-dimensional orifice
element model.
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Figure 18. Mass of fluid on left half of tank of violent slosh test case.
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Figure 19. Relative mass difference in left-hand side of the tank of one-dimensional orifice element
model simulation to full-resolution simulation of the violent slosh test case.

4. Discussion

Figures 13 and 14 show the pressure difference over the tank walls calculated using the
one-dimensional orifice element model with each computational mesh. It can be seen that
the results are in good agreement with both the experimental and full-resolution numerical
results. Another metric to consider when evaluating the one-dimensional orifice element
model is the flow rates through the orifices.

The flow rates through the orifices (Figures 15–17) using the one-dimensional orifice
element model for both Mesh A and Mesh B are in reasonable agreement with the full-
resolution model for the first 25% of the simulation (Mesh C results are slightly lower).
This also correlates with the similarity in the position of liquid–gas interface between the
meshes during this period, as shown on the left of Figure 20. From this point onward, the
slosh becomes particularly chaotic and the differences in interface position between the
different mesh coarseness levels grow more pronounced, as shown on the right of Figure 20.
This is reflected in the larger differences in flow rate predicted through the orifices in the
latter part of the simulation. Despite this, the overall amount of liquid contained in the
two compartments is still predicted with reasonable accuracy. This is evident from the
total mass in the left tank (Figures 18 and 19) being similar in the one-dimensional element
model simulations and the full-resolution simulation.

t
tmax

= 0.2 t
tmax

= 0.4

Full
Resolution
Mesh

Mesh C

Figure 20. Free surface at time t
tmax

= 0.2 (left) and t
tmax

= 0.4 (right) on the full-resolution mesh (top)
and Mesh C (bottom) of violent slosh test case.

The computational cost of the full-resolution CFD simulation and the one-dimensional
element model simulations are presented in Table 3. Note that serial calculations were
performed in all cases due to the small mesh sizes. As per the table, the one-dimensional
element model requires less mesh nodes. This also requires less time steps to complete the
same simulation due to the larger allowable time-step sizes (larger elements).
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Table 3. Comparison of computational cost of full-resolution and one-dimensional element model
simulations of violent slosh test case.

Full Resolution 1D Element Model

Mesh A Mesh B Mesh C

No of Nodes 3757 3458 3173 2263

Time Steps 154,606 129,170 131,062 130,958

CPU Time 67,786 s 58,540 s 46,892 s 33,286 s

It is interesting to note that Meshes B and C require slightly more time steps than
Mesh A, even though the majority of the mesh element sizes are much larger. This can be
attributed to the high flow velocities through the top orifice. The average velocity over
time through the top orifice is six times the velocity through the middle and bottom orifices.
All three meshes have similarly sized elements around the top orifice; therefore, the time
step sizes are limited by those elements. Importantly, the one-dimensional element model
simulations all require less CPU time, without any significant loss in the accuracy of the
pressure differential over the tank walls or the relative mass difference in the tanks. Mesh C
achieves the largest speed-up factor of 2 compared with the full-resolution model.

5. Conclusions

In this work, a method to replace fine computational mesh elements within long
orifices with one-dimensional elements is presented; this is to gain computational speed
when modeling violent slosh in baffled tanks. The one-dimensional orifice element model
was implemented into the finite volume VOF code ELEMENTAL®, and integrated seamlessly
in the computational mesh with standard finite volume elements for two-phase flow. To
achieve this, special consideration had to be taken with regard to discretization of the
CICSAM-based VOF advection scheme. Two-dimensional simulations using full-resolution
CFD and different meshes using the 1D orifice elements were compared with experimental
results of pressure differences across an accelerated baffled tank. The one-dimensional
orifice element model was found to decrease the simulation CPU time by up to 50% while
still achieving high accuracy in predicted tank pressures.
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