Hemp Seed Oil Extraction and Stable Emulsion Formulation with Hemp Protein Isolates
Abstract
:1. Introduction
2. Material and Methods
2.1. Raw Material and Samples Pre-Treatment
2.2. Soxhlet Extraction
2.3. Supercritical CO2 Extraction (CO2-SFE)
2.4. Determination of Fatty Acids Compositions
2.4.1. Oil Sample Preparation
2.4.2. Mass Spectrometry
2.5. Emulsion
2.5.1. Emulsions Preparation
2.5.2. Emulsion Morphology and Determination of Droplet Size
2.5.3. ζ-Potential Measurements
2.5.4. Rheological Characterization
3. Results and Discussion
3.1. Comparison of SFE-CO2 Extraction and Solvent Extraction
3.2. LD TOF MS Analysis of Hemp Seed Oil
3.3. Droplet Size Distribution of Emulsions
3.4. Rheology and ζ-Potential Emulsions Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorrentino, G. Introduction to Emerging Industrial Applications of Cannabis (Cannabis Sativa L.). Rend. Lincei Sci. Fis. Nat. 2021, 32, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.A.; Andres, M.; Cole, M.; Cowley, J.M.; Augustin, M.A. Industrial Hemp Seed: From the Field to Value-Added Food Ingredients. J. Cannabis Res. 2022, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.; Casciano, F.; Babini, E.; Gianotti, A. Chapter 10—Industrial Hemp Foods and Beverages and Product Properties. In Industrial Hemp; Pojić, M., Tiwari, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 219–246. ISBN 978-0-323-90910-5. [Google Scholar]
- Devi, V.; Khanam, S. Comparative Study of Different Extraction Processes for Hemp (Cannabis Sativa) Seed Oil Considering Physical, Chemical and Industrial-Scale Economic Aspects. J. Clean. Prod. 2019, 207, 645–657. [Google Scholar] [CrossRef]
- Teh, S.-S.; Birch, J. Physicochemical and Quality Characteristics of Cold-Pressed Hemp, Flax and Canola Seed Oils. J. Food Compos. Anal. 2013, 30, 26–31. [Google Scholar] [CrossRef]
- Laskoś, K.; Pisulewska, E.; Waligórski, P.; Janowiak, F.; Janeczko, A.; Sadura, I.; Polaszczyk, S.; Czyczyło-Mysza, I.M. Herbal Additives Substantially Modify Antioxidant Properties and Tocopherol Content of Cold-Pressed Oils. Antioxidants 2021, 10, 781. [Google Scholar] [CrossRef] [PubMed]
- Atalay, S.; Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2019, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- da Porto, C.; Natolino, A.; Decorti, D. Effect of Ultrasound Pre-Treatment of Hemp (Cannabis Sativa L.) Seed on Supercritical CO2 Extraction of Oil. J. Food Sci. Technol 2015, 52, 1748–1753. [Google Scholar] [CrossRef] [Green Version]
- Aachary, A.A.; Liang, J.; Hydamaka, A.; Eskin, N.A.M.; Thiyam-Holländer, U. A New Ultrasound-Assisted Bleaching Technique for Impacting Chlorophyll Content of Cold-Pressed Hempseed Oil. LWT Food Sci. Technol. 2016, 72, 439–446. [Google Scholar] [CrossRef]
- da Porto, C.; Decorti, D.; Tubaro, F. Fatty Acid Composition and Oxidation Stability of Hemp (Cannabis Sativa L.) Seed Oil Extracted by Supercritical Carbon Dioxide. Ind. Crops Prod. 2012, 36, 401–404. [Google Scholar] [CrossRef]
- da Porto, C.; Decorti, D.; Natolino, A. Separation of Aroma Compounds from Industrial Hemp Inflorescences (Cannabis Sativa L.) by Supercritical CO2 Extraction and on-Line Fractionation. Ind. Crops Prod. 2014, 58, 99–103. [Google Scholar] [CrossRef]
- Liu, X.; Ou, H.; Xiang, Z.; Gregersen, H. Ultrasound Pretreatment Combined with Supercritical CO2 Extraction of Iberis Amara Seed Oil. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100265. [Google Scholar] [CrossRef]
- Li, X.; Shi, J.; Scanlon, M.; Xue, S.J.; Lu, J. Effects of Pretreatments on Physicochemical and Structural Properties of Proteins Isolated from Canola Seeds after Oil Extraction by Supercritical-CO2 Process. LWT 2021, 137, 110415. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Zeng, Q.-X.; An, Q.I.; Zeng, Q.-Z.; Jian, L.-X.; Zhu, Z.-W. Ultrasonic Extraction of Hempseed Oil. J. Food Process. Eng. 2012, 35, 76–90. [Google Scholar] [CrossRef]
- Mileti, O.; Baldino, N.; Carmona, J.A.; Lupi, F.R.; Muñoz, J.; Gabriele, D. Shear and Dilatational Rheological Properties of Vegetable Proteins at the Air/Water Interface. Food Hydrocoll. 2022, 126, 107472. [Google Scholar] [CrossRef]
- Kahraman, O.; Kahraman, O.; Petersen, G.E.; Fields, C. Physicochemical and Functional Modifications of Hemp Protein Concentrate by the Application of Ultrasonication and PH Shifting Treatments. Foods 2022, 11, 587. [Google Scholar] [CrossRef]
- Dapčević-Hadnađev, T.; Dizdar, M.; Pojić, M.; Krstonošić, V.; Zychowski, L.M.; Hadnađev, M. Emulsifying Properties of Hemp Proteins: Effect of Isolation Technique. Food Hydrocoll. 2019, 89, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, S.H.M.; Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Baldino, N.; Carnevale, I.; Laitano, F.; Lupi, F.; Curcio, S.; Gabriele, D. Formulation of Bread Model Doughs with Resistant Starch, Vegetable Proteins and Transglutaminase. Eur. Food Res. Technol. 2020, 246, 397–408. [Google Scholar] [CrossRef]
- Chuang, C.-C.; Ye, A.; Anema, S.G.; Loveday, S.M. Concentrated Pickering Emulsions Stabilised by Hemp Globulin–Caseinate Nanoparticles: Tuning the Rheological Properties by Adjusting the Hemp Globulin : Caseinate Ratio. Food Funct. 2020, 11, 10193–10204. [Google Scholar] [CrossRef]
- Tang, C.H.; Ten, Z.; Wang, X.S.; Yang, X.Q. Physicochemical and Functional Properties of Hemp (Cannabis Sativa L.) Protein Isolate. J. Agric. Food Chem. 2006, 54, 8945–8950. [Google Scholar] [CrossRef]
- Sosa-Herrera, M.G.; Berli, C.L.A.; Martínez-Padilla, L.P. Physicochemical and Rheological Properties of Oil-in-Water Emulsions Prepared with Sodium Caseinate/Gellan Gum Mixtures. Food Hydrocoll. 2008, 22, 934–942. [Google Scholar] [CrossRef]
- Wang, X.S.; Tang, C.H.; Yang, X.Q.; Gao, W.R. Characterization, Amino Acid Composition and in Vitro Digestibility of Hemp (Cannabis Sativa L.) Proteins. Food Chem. 2008, 107, 11–18. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, D.; Lin, T.; Jin, Q.; Wu, J.; Chen, C.; Huang, H. Complexing Hemp Seed Protein with Pectin for Improved Emulsion Stability. J. Food Sci. 2021, 86, 3137–3147. [Google Scholar] [CrossRef] [PubMed]
- Mikulcová, V.; Kašpárková, V.; Humpolíček, P.; Buňková, L. Formulation, Characterization and Properties of Hemp Seed Oil and Its Emulsions. Molecules 2017, 22, 700. [Google Scholar] [CrossRef] [Green Version]
- Ganzevles, R.A.; Cohen Stuart, M.A.; van Vliet, T.; de Jongh, H.H.J. Use of Polysaccharides to Control Protein Adsorption to the Air-Water Interface. Food Hydrocoll. 2006, 20, 872–878. [Google Scholar] [CrossRef]
- Steiger, M.; Asmussen, S. Crystallization of Sodium Sulfate Phases in Porous Materials: The Phase Diagram Na2SO4–H2O and the Generation of Stress. Geochim. Cosmochim. Acta 2008, 72, 4291–4306. [Google Scholar] [CrossRef]
- Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; et al. LMSD: LIPID MAPS Structure Database. Nucleic Acids Res. 2007, 35, D527–D532. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2004. [Google Scholar]
- McClements, D.J. Chapter 4—Biopolymers in Food Emulsions. In Modern Biopolymer Science; Kasapis, S., Norton, I.T., Ubbink, J.B., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 129–166. ISBN 978-0-12-374195-0. [Google Scholar]
- Seta, L.; Baldino, N.; Gabriele, D.; Lupi, F.R.; de Cindio, B. The Influence of Carrageenan on Interfacial Properties and Short-Term Stability of Milk Whey Proteins Emulsions. Food Hydrocoll. 2013, 32, 373–382. [Google Scholar] [CrossRef]
- Lupi, F.; de Santo, M.; Ciuchi, F.; Baldino, N.; Gabriele, D. A Rheological Modelling and Microscopic Analysis of Bigels. Rheol. Acta 2017, 56, 753–763. [Google Scholar] [CrossRef]
- Cano-Sarmiento, C.; Téllez-Medina, D.I.; Viveros-Contreras, R.; Cornejo-Mazón, M.; Figueroa-Hernández, C.Y.; García-Armenta, E.; Alamilla-Beltrán, L.; García, H.S.; Gutiérrez-López, G.F. Zeta Potential of Food Matrices. Food Eng. Rev. 2018, 10, 113–138. [Google Scholar] [CrossRef]
- Noshad, M.; Mohebbi, M.; Koocheki, A.; Shahidi, F. Influence of Interfacial Engineering on Stability of Emulsions Stabilized with Soy Protein Isolate. J. Dispers. Sci. Technol 2016, 37, 56–65. [Google Scholar] [CrossRef]
- Ivanovs, K.; Blumberga, D. Extraction of Fish Oil Using Green Extraction Methods: A Short Review. Energy Procedia 2017, 128, 477–483. [Google Scholar] [CrossRef]
- Aiello, A.; Pizzolongo, F.; Scognamiglio, G.; Romano, A.; Masi, P.; Romano, R. Effects of Supercritical and Liquid Carbon Dioxide Extraction on Hemp (Cannabis Sativa L.) Seed Oil. Int. J. Food Sci. Technol. 2020, 55, 2472–2480. [Google Scholar] [CrossRef]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed Composition of Ten Industrial Hemp Cultivars Approved for Production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Indelicato, S.; Bongiorno, D.; Ceraulo, L.; Emmanuello, C.; Mazzotti, F.; Siciliano, C.; Piazzese, D. One-Pot Analysis: A New Integrated Methodology for Determination of TAG and FA Determination through LC/MS and in-Silico Saponification. Food Anal. Methods 2018, 11, 873–882. [Google Scholar] [CrossRef]
- Calvano, C.D.; Palmisano, F.; Zambonin, C.G. Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Triacylglycerols in Oils. Rapid Commun. Mass Spectrom. 2005, 19, 1315–1320. [Google Scholar] [CrossRef]
- Oomah, B.D.; Busson, M.; Godfrey, D.V.; Drover, J.C.G. Characteristics of Hemp (Cannabis Sativa L.) Seed Oil. Food Chem. 2002, 76, 33–43. [Google Scholar] [CrossRef]
- Alonso-Esteban, J.I.; González-Fernández, M.J.; Fabrikov, D.; de Cortes Sánchez-Mata, M.; Torija-Isasa, E.; Guil-Guerrero, J.L. Fatty Acids and Minor Functional Compounds of Hemp (Cannabis Sativa L.) Seeds and Other Cannabaceae Species. J. Food Compos. Anal. 2023, 115, 104962. [Google Scholar] [CrossRef]
- Baldino, N.; Mileti, O.; Lupi, F.; Gabriele, D. Chapter 1—Interfacial Rheology of Food: Protein as a Model Food. In Advances in Food Rheology and Its Applications, 2nd ed.; Ahmed, J., Basu, S., Eds.; Woodhead Publishing: Cambridge, UK, 2023; pp. 3–26. ISBN 978-0-12-823983-4. [Google Scholar]
Sample ID | Pre-Treatment Type | Type of Extraction |
---|---|---|
HS_SFE | - | SFE-CO2 |
HS_SFE _10U | 10 min ultrasounds | SFE-CO2 |
HS_SFE _20U | 20 min ultrasounds | SFE-CO2 |
HS _SFE_40U | 40 min ultrasounds | SFE-CO2 |
HS_S | - | Soxhlet extraction |
Emulsion ID | H (% w/w) | Hemp Seed Oil (% w/w) | W (% w/w) | G (% w/w) | NaCl (% w/w) | CaCl2 (% w/w) |
---|---|---|---|---|---|---|
H_1.5 | 3.20 | 5 | 91.69 | - | 0.1 | 0.01 |
H_2 | 4.26 | 5 | 90.63 | - | 0.1 | 0.01 |
H_3 | 6.38 | 5 | 88.51 | - | 0.1 | 0.01 |
H_2_G | 4.26 | 5 | 90.58 | 0.05 | 0.1 | 0.01 |
HS_SFE | HS_SFE_10U | HS_SFE_20U | HS_SFE_40U | HS_S | |
---|---|---|---|---|---|
Monounsaturated of | 11.74 ± 0.04 | 11.8 ± 0.2 | 11.71 ± 0.07 | 11.54 ± 0.04 | 11.5 ± 0.2 |
Oleic acid (C18:1) | 11.74 ± 0.04 | 11.8 ± 0.2 | 11.71 ± 0.07 | 11.54 ± 0.04 | 11.5 ± 0.2 |
PUFA sum of | 81.71 | 80.67 | 81.46 | 81.29 | 81.77 |
Linoleic acid (C18:2) | 59.88 ± 0.09 | 59.37 ± 0.05 | 59.6 ± 0.3 | 59.79 ± 0.08 | 59.86 ± 0.08 |
alfa-linolenic gamma-linolenic (C18:3) | 21.8 ± 0.2 | 21.3 ± 0.2 | 21.8 ± 0.2 | 21.51 ± 0.06 | 21.91 ± 0.01 |
ω-6/ω-3 ratio | 2.74 | 2.79 | 2.73 | 2.78 | 2.73 |
Saturated | 7.18 ± 0.03 | 7.5 ± 0.1 | 7.18 ± 0.04 | 7.28 ± 0.07 | 7.28 ± 0.05 |
PUFA sum/saturated | 11.39 | 10.7 | 11.35 | 11.16 | 11.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldino, N.; Carnevale, I.; Mileti, O.; Aiello, D.; Lupi, F.R.; Napoli, A.; Gabriele, D. Hemp Seed Oil Extraction and Stable Emulsion Formulation with Hemp Protein Isolates. Appl. Sci. 2022, 12, 11921. https://doi.org/10.3390/app122311921
Baldino N, Carnevale I, Mileti O, Aiello D, Lupi FR, Napoli A, Gabriele D. Hemp Seed Oil Extraction and Stable Emulsion Formulation with Hemp Protein Isolates. Applied Sciences. 2022; 12(23):11921. https://doi.org/10.3390/app122311921
Chicago/Turabian StyleBaldino, Noemi, Ilaria Carnevale, Olga Mileti, Donatella Aiello, Francesca R. Lupi, Anna Napoli, and Domenico Gabriele. 2022. "Hemp Seed Oil Extraction and Stable Emulsion Formulation with Hemp Protein Isolates" Applied Sciences 12, no. 23: 11921. https://doi.org/10.3390/app122311921
APA StyleBaldino, N., Carnevale, I., Mileti, O., Aiello, D., Lupi, F. R., Napoli, A., & Gabriele, D. (2022). Hemp Seed Oil Extraction and Stable Emulsion Formulation with Hemp Protein Isolates. Applied Sciences, 12(23), 11921. https://doi.org/10.3390/app122311921