
Citation: Zeng, K.; Liu, J.; Jiang, Z.;

Xu, D. A Scaling Transition Method

from SGDM to SGD with 2ExpLR

Strategy. Appl. Sci. 2022, 12, 12023.

https://doi.org/10.3390/

app122312023

Academic Editor: Francesco Facchini

Received: 17 October 2022

Accepted: 21 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Scaling Transition Method from SGDM to SGD with
2ExpLR Strategy
Kun Zeng 1,2, Jinlan Liu 3, Zhixia Jiang 1,* and Dongpo Xu 3,*

1 School of Mathematics and Statistics, Changchun University of Science and Technology,
Changchun 130022, China

2 Hikvision Software Research and Development Center, Chengdu 610000, China
3 School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
* Correspondence: zhixia_jiang@126.com (Z.J.); xudp100@nenu.edu.cn (D.X.)

Abstract: In deep learning, the vanilla stochastic gradient descent (SGD) and SGD with heavy-
ball momentum (SGDM) methods have a wide range of applications due to their simplicity and
great generalization. This paper uses an exponential scaling method to realize a smooth and stable
transition from SGDM to SGD, which combines the advantages of the fast training speed of SGDM
and the accurate convergence of SGD (named TSGD). We also provide some theoretical results on the
convergence of this algorithm. At the same time, we take advantage of the learning rate warmup
strategy’s stability and the learning rate decay strategy’s high accuracy. A warmup–decay learning
rate strategy with double exponential functions is proposed (named 2ExpLR). The experimental
results on different datasets for the proposed algorithms indicate that the accuracy is improved
significantly and that the training is faster and more stable.

Keywords: gradient descent; scaling transition; artificial neural network; image classification

1. Introduction

In recent years, with the development of deep-learning technologies, many neural
network models have been proposed, such as FCNN [1], LeNet [2], LSTM [3], ResNet [4],
DensNet [5], and so on. They also have an extensive range of applications [6–8]. Most
networks, such as CNN and RNN, are supervised types of deep learning that require a
training set to teach models to yield the desired output. Gradient Descent (GD) is the most
common optimization algorithm in machine learning and deep learning, and it plays a
significant role in training.

In practical applications, the SGD (a type of GD algorithm) is one of the most dominant
algorithms because of its simplicity and low computational complexity. However, one
disadvantage of SGD is that it updates parameters only with the current gradient, which
leads to slow speeds and unstable training. Researchers have proposed new variant
algorithms to address these deficiencies.

Polyak et al. [9] proposed a heavy-ball momentum method and used the exponential
moving average (EMA) [10] to accumulate the gradient to speed up the training. Nesterov
accelerated gradient (NAG) [11] is a modification of the momentum-based update, which
uses a look-ahead step to improve the momentum term [12]. Subsequently, researchers
improved the SGDM and proposed synthesized Nesterov variants [13], PID control [14],
AccSGD [15], SGDP [16], and so on.

A series of adaptive gradient descent methods and their variants have also been
proposed. These methods scale the gradient by some form of past squared gradients,
making the learning rate automatically adapt to changes in the gradient, which can achieve
a rapid training speed with an element-wise scaling term on learning rates [17].

Appl. Sci. 2022, 12, 12023. https://doi.org/10.3390/app122312023 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312023
https://doi.org/10.3390/app122312023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6773-1444
https://orcid.org/0000-0002-9663-9743
https://doi.org/10.3390/app122312023
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312023?type=check_update&version=2

Appl. Sci. 2022, 12, 12023 2 of 13

Many algorithms produce excellent results, such as AdaGrad [18], Adam [19], and
AMSGrad [20]. In neural-network training, these methods are more stable, faster, and per-
form well on noisy and sparse gradients. Although they have made significant progress,
the generalization of adaptive gradient descent is often not as good as SGD [21]. There are
some additional issues [22,23].

First, the solution of adaptive gradient methods with second moments may fall into a
local minimum of poor generalization and even diverge in certain cases. Then, the practical
learning rates of weight vectors tend to decrease during training, which leads to sharp local
minima that do not generalize well. Therefore, some trade-off methods of transforming
Adam to SGD are proposed to obtain the advantages of both, such as Adam-Clip (p, q) [24],
AdaBound [25], AdaDB [26], GWDC [27], linear scaling AdaBound [28], and DSTAdam [29].
Can we transfer this idea to SGDM and SGD?

This study is strongly motivated by recent research on the combination of SGD and
SGDM under the QHM algorithm [30]. They gave a straightforward alteration of momen-
tum SGD, averaging a vanilla SGD step and a momentum step, and obtained good results
in experiments. It can be explained as a v− weighted average of the momentum update
step and the vanilla SGD update step, and the authors provided a recommended rule of
thumb v = 0.7. However, in many scenarios, it is not easy to find the optimal value of v.
On this basis, we conducted a more in-depth study on the combination of SGDM and SGD.

In this paper, first, we analyze the disadvantages of SGDM and SGD and propose a
scaling method to achieve a smooth and stable transition from SGDM to SGD, combining
the fast training speed of the SGDM and the high accuracy of the SGD. At the same time, we
combine the advantages of the warmup and decay strategy and propose a warmup–decay
learning rate strategy with double exponential functions. This makes the training algorithm
more stable in the early stage and more accurate in the later stage. The experimental results
show that our proposed algorithms had a faster training speed and better accuracy in the
neural network model.

2. Preliminaries

Optimization problem. f :Rn → R is the objective function, and f (θ, ζ) ∈ C1 is contin-
uously differentiable, where θ is the optimized parameter. Considering the following convex
optimization problem [31]:

min
θ∈Rn

f (θ, ζ), (1)

where ζ is a stochastic variable. Applying the gradient descent method to solve the above
minimization problem:

θt+1 = θt − ηgt, (2)

where η is the constant step size, gt is the descent direction, and θ is the parameter that
needs to be updated.

SGD. SGD uses the current gradient of the loss function to update the parameters [32]:

gt ← ∇ f (θ, ζ), (3)

where f is the loss function and ∇ f (θ, ζ) is the gradient of the loss function.
SGDM. The momentum method considers the past gradient information and uses it

to correct the direction, which speeds up the training. The update rule of the heavy-ball
momentum method [33] is

mt = βmt−1 + (1− β)∇ f (θ, ζ)
gt ← mt,

(4)

where mt is the momentum and β is the momentum factor.
Efficiency of SGD and SGDM. In convex optimization, the gradient descent method

can search the optimal global solution of the objective function by the steepest descent.
However, it has a series of zigzag paths in the iteration process, which seriously affects the

Appl. Sci. 2022, 12, 12023 3 of 13

training speed. We can explore the root of this defect using theoretical analysis. Using exact
line search to solve the convex optimization problems (1):

ϕ(λ) = f
(

θ(t) + λd(t), ζ
)

d(t) = −∇ f
(

θ(t), ζ
)

.
(5)

In order to find the minimum point along the direction d(t) from x(t), let

ϕ′(λ) = ∇ f
(

θ(t) + λtd(t), ζ
)T

d(t) = 0. (6)

Thus,

−∇ f
(

θ(t+1), ζ
)T
∇ f

(
θ(t), ζ

)
= 0. (7)

We know that d(t+1) = −∇ f
(

θ(t+1), ζ
)

and d(t) = −∇ f
(

θ(t), ζ
)

are orthogonal. This

shows that the path of the iterative sequence { f (θt, ζ)} is a zigzag. When it is close to the
minimum point, the step size of each movement will be tiny and seriously affects the speed
of convergence as shown in Figure 1a.

SGD

(a) SGD

 SGDM

(b) SGDM

Figure 1. The performances of SGD and SGDM.

Polyak et al. [9] proposed SGD with a heavy-ball momentum algorithm to mitigate
the zigzag oscillation and accelerate training. The update direction of the SGDM is the
EMA [10] of the current gradient and the past gradient to speed up the training speed and
reduce the vibration in SGD. The momentum of the SGDM is

mt =
t

∑
i=1

(1− β)βt−igi. (8)

However, in the later stage of training, there is a defect in using EMA for the gradient.
The accumulation of gradients may lead to a faster speed of momentum and not stop in time
when it is close to the optimum. This may oscillate in a region around the optimal solution
θ∗ and cannot stably converge as shown in Figure 1b. At the same time, the gradients that
are too far may have little helpful information, and the momentum can be calculated using
the gradients of the last n times, such as AdaShift [34]. The negative gradient direction of
the loss function is the optimal direction for the current parameter updating. The updating
direction is no longer the fastest descent direction when using momentum. When it is close
to the optimal solution, the stochastic gradient descent method is more accurate and is
more likely to find the optimal point.

For more information, we use the ResNet18 to train the CIFAR10 dataset, and the first
75 epochs use the SGDM algorithm (hyperparameter setting: weight_decay = 5 × 10−3,

Appl. Sci. 2022, 12, 12023 4 of 13

lr = 0.1, β = 0.9). After the 75-th epoch, we only change the updating direction from
momentum to gradient (descent direction if epoch < 76: mt else: gt, no other setting is
changed). Figure 2a shows the accuracy curve of the test set during the training. It can be
seen that, after the accuracy increases rapidly from starting and then enters the plateau
after about the 25-th epochs, the accuracy no longer increases.

After the 75-th epoch, the current gradient is used to update the parameters, showing
that the accuracy significantly improved. Figure 2b records the training loss. It can be seen
that the loss of the SGD is faster and smaller. If we combine the advantages of SGDM and
SGD in this way, the training algorithm can have both the fast training speed of SGDM and
the high accuracy of SGD.

� �� �� �� ��� ��� ��� ��� ���
���

���

��	

��

�
�
�
	
�
�
�
�

�
�
�
�

�����

����
����

(a) Test accuracy

� �� �� 	� ��� ��� ��� �	� ���

���

���

���

���

��

���

�
	
�
�
�
�
�
�
�
�
�

�����

����
����

(b) Training loss

Figure 2. The test accuracy and training loss for ResNet18 on CIFAR10.

3. TSGD Algorithm

Based on the above analysis and the basis of the QHM algorithm, we provide a middle
ground that combines preferable features from both. This includes the advantages of SGDM
with a fast training speed and of SGD with high accuracy. A scaling transition method from
SGDM to SGD is proposed—named TSGD. A scaling function ρt is introduced to gradually
scale the momentum direction to the gradient direction as the iteration, which achieves a
smooth and stable transition from SGDM to SGD. The specific algorithm is represented in
Algorithm 1.

Algorithm 1 A Scaling Transition method from SGDM to SGD (TSGD)
Input: initial parameters: θ1 ∈ F , η, β, ρ.
Initialize: m0 = 0.

1: for t = 1 to T do
2: gt = ∇ ft(θt)
3: mt = βmt−1 + (1− β)gt
4: m̂t = (mt − gt)ρt + gt
5: θt+1 = θt − ηm̂t
6: end for

In Algorithm 1, gt is the gradient of loss function, f in the t-th iteration, and mt is
the momentum. m̂t is the scaled momentum, θt is the optimized parameter, ρt is the
scaling function, and ρt ∈ [0, 1]. We provide recommended rules of the hyperparameters
ρ and β, which are ρT = 0.01 and β = 0.9, where T is the number of iterations, T =
ceil(samplesize/batchsize) ∗ epochs .

Gitman et al. [35] made a detailed convergence analysis on the general form of the
QHM algorithm. The TSGD algorithm proposed in this section conforms to the general

Appl. Sci. 2022, 12, 12023 5 of 13

form of the QHM algorithm. Therefore, the TSGD algorithm has the same convergence
conclusion as the general form of the QHM algorithm. Theorem 1 gives the convergence
theory of the TSGD algorithm based on the literature [35].

Theorem 1. Let f satisfy the condition in the literature [35]. Additionally, assume that 0 ≤ ρt ≤ 1
and the sequences {ηt} and {βt} satisfy the following conditions:

∞

∑
t=0

ηt = ∞,
∞

∑
t=0

η2
t = ∞, lim

t→∞
βt = 0, β̄

∆
= sup

t
βt < 1.

Then, the sequence {θt} that is generated by the TSGD Algorithm 1 satisfies:

lim
t→∞
‖∇ f (θt)‖ = 0.

Moreover, we have:

lim
t→∞

sup f (θt) = lim sup
t→∞,‖∇ f (θt)‖→0

f (θt).

Theorem 1 implies that TSGD can converge, which is similar to SGD-type optimiz-
ers. Through exponential decay in step 4 of the TSGD Algorithm, the updated direction
smoothly and stably transforms the momentum direction of SGDM to the gradient direction
of SGD as iterations. In the early stage of training, the number of iterations is small, ρt is
close to 1, and the updated direction is

m̂t ← mt,

which can speed up the training speed. In the later stage, with the increase of iterations,
the number of iterations is large, and ρt is close to 0. The updated direction is gradually
transformed to

m̂t ← gt.

When the iterative sequence closes to the optimal solution, gradient direction is used
to update the parameters and is more accurate. Thus, TSGD has the advantages of both
faster speed of SGDM and high accuracy of SGD. TSGD does not need to calculate the
second moment of the gradient, which saves computational resources compared to the
adaptive gradient descent method.

4. The Warmup Decay Learning Rate Strategy with Double Exponential Functions

The learning rate (LR) is a crucial hyperparameter to tune for practical training of deep
neural networks and controls the rate or speed at which the model learns each iteration [36].
If the learning rate is too large, this may cause oscillation and divergence. On the contrary,
training may progress slowly and even stop if the rate is too small. Thus, many learning rate
strategies have been proposed and appear to work well, such as warmup [4], decay [37],
restart techniques [38], and cyclic learning rates [39]. In this section, we mainly focus on
the warmup and decay strategies.

On the one hand, the idea of warmup was proposed in ResNet [4]. They used 0.01 to
warm up the training until the training error was below 80% (about 400 iterations) and then
went back to 0.1 and continued training. In the early stage of training, due to many random
parameters in the model, if a large learning rate is used, the model may be unstable and
fall into a local optimum, which is challenging to fix. Therefore, we use a small learning
rate to make the model learn certain prior knowledge and then use a large learning rate for
training when the model is more stable. It can use less aggressive learning rates at the start
of training [40]. Implementations of the warmup strategy include constant warmup [4],
linear warmup [41], and gradual warmup [40].

Appl. Sci. 2022, 12, 12023 6 of 13

On the other hand, decay is also a popular strategy in neural-network training.
The decay can speed up the training using a larger learning rate at the beginning and
can converge stably using a smaller learning rate after. Not only does this show good
results [24,25,34,42] in practical applications but also the learning rate is required to decay
in the theoretical convergence analysis, such as ηt = 1/t [43], ηt = 1/

√
t [42]. The specific

implementation of learning rate decay is as follows: step decay [26], linear attenuation [44],
exponential decay [45], etc.

To ensure better performance of the training algorithm, we combined the warmup
and decay strategies. The warmup strategy was used for a small number of iterations in
the early stage of training, and then the decay strategy was used to decrease the learning
rate gradually. In this way, the model can learn stably early on, train fast in the middle, and
converge accurately later.

First, an exponential function is used in the warmup stage to gradually increase the
learning rate from zero to the upper learning rate as shown in Figure 3a. The numerical
formula is as follows

lrwarmup = lru
(
1− ρt

1
)
. (9)

Second, an exponential function is also used in the decay stage to gradually decrease
the learning rate from the upper learning rate to the lower learning rate as shown in
Figure 3b. The numerical formula is as follows

lrdecay = (lru − lrl)ρ
t
2 + lrl . (10)

The main idea of the warmup–decay learning rate strategy is that the learning rate can
increase in the warmup stage and decrease in the decay stage. Therefore, we combine the
above two processes, and the warmup–decay learning rate strategy with double exponential
functions (2ExpLR) is proposed as shown in Figure 3c. The numerical formula is as follows

lrw−d =
(
(lru − lrl)ρ

t
1 + lrl

)(
1− ρt

2
)
. (11)

Similarly, we also provide recommended rules of the hyperparameters ρ1, ρ2 as with
ρ, that are ρT

1 = ρT
2 = lrl ∗ 10−1. Thus, ρ1, ρ2 can be easily calculated using ρ1 = ρ2 =

10(lg lrl−1)/T .
In Figure 3, we know that 2ExpLR does not need to set the transition point from

warmup to decay manually, compared with other strategies [24–26]. At the same time, we
achieve a smooth and stable transition from warmup to decay through 2ExpLR. This gives
the training algorithm a faster convergence speed and higher accuracy.

� ��� ��� ��� ��� 	��
�� ����
���

���

���

���

���

���

�
�
�
�
�
�
�
�
�
�
�
	
�

���	�����

��	���

(a) The warmup strategy

� ��� ��� ��� ��� 	��
�� ����
���

���

���

���

���

���

�
�
�
�
�
�
�
�
�
�
�
	
�

���	�����

������

(b) The decay strategy

� ��� ��� ��� ��� 	�� ��� ����
����

����

����

����

���

����

����

�
�
�
�
�
�
�
�
�
�
�
	
�

�������
	

�������

(c) The 2ExpLR strategy

Figure 3. The schematic diagrams of each learning rate strategy.

Appl. Sci. 2022, 12, 12023 7 of 13

The TSGD algorithm with the 2ExpLR strategy is described as Algorithm 2.

Algorithm 2 Scaling Transition from SGDM to SGD with 2Exp learning rate (TSGD+2ExpLR)
Input: initial parameters: θ1 ∈ F , lrl , lru, ρ, ρ1, ρ2, β, ηt.
Initialize: m0 = 0

1: for t = 1 to T do
2: gt = ∇ ft(θt)
3: mt = βmt−1 + (1− β)gt
4: m̂t = (mt − gt)ρt + gt
5: ηt =

(
(lru − lrl)ρ

t
1 + lrl

)(
1− ρt

2
)

6: θt+1 = θt − ηtm̂t
7: end for

5. Extension

The scaling transition method on the gradient can be extended to other applications.
We can abstract this scaling transition process providing a general framework for the
parameter transition from one state to another.

For example, neural networks have been widely used in many fields to solve prob-
lems. During the training process, the input data type and amount directly influence the
performance of the ANN model [46]. If the data is dirty, contains large amounts of noise,
the data size is too small, or the training time is too long, etc., the model can be affected by
overfitting [47]. Various regularization techniques have been proposed and developed for
neural networks to solve these problems. The regularization technique is used to avoid
overfitting of the network and has more parameters than the input data and is used for a
network learned with noisy inputs [48], such as L1 and L2 regularization methods.

The model has not learned any knowledge in the early stage of training, and using
regularization at this time may result in harmful effects on the model. Therefore, we can
train the model generally at the beginning and then use the regularization strategy to train
the model in the later stage. Thus, we can implement the scaling transition framework
as follows

θ = arg min
θ

1
N

N

∑
i=1

(
L(ŷi, yi) +

(
(0− λR(θ))ρt + λR(θ)

))
, (12)

where L(∗) is the loss function, N is the number of samples, ŷi is the predicted value, and
yi is the actual value. λ is a non-negative regularization parameter, R(∗) is a regularization
function, such as L2 = ‖θ‖2

2, or L1 = ‖θ‖1.

6. Experiments

In this section, to verify the performance of the proposed TSGD and TSGD+2ExpLR, we
compared them with other algorithms, including SGDM and Adam. Specifically, we used IRIS,
CASIA-FaceV5, and CIFAR classification tasks in the experiments. We set the same random
seed through PyTorch to ensure fairness. The architecture we chose for the experiments was
ResNet-18. The computational setup is shown in Table 1. Our implementation is available at
https://github.com/kunzeng/TSGD (accessed on 20 November 2022).

Table 1. The computational setup.

OS CentOS 8.3 Dataset storage location OS File system

Processor-CPU Intel Core i7-6500U CPU-Memory 32.0 GB

Processor-GPU Quadro P600 GPU-Memory 2.0 GB

Programming language Python 3.7.10 Development framework Pytorch 1.7.0

https://github.com/kunzeng/TSGD

Appl. Sci. 2022, 12, 12023 8 of 13

IRIS and BP neural network. The IRIS dataset is a classic dataset for classification,
machine learning, and data visualization. This dataset includes three iris species with
50 samples of each and some properties of each flower. An excellent way to determine the
correct learning rates is to perform experiments using a small but representative sample of
the training set, and the IRIS dataset is a good fit. Due to the small number of samples, we
used all 150 samples as the training set. The performance of each algorithm is represented
by the accuracy and loss value on the training set. We set the relevant parameters using
empirical values and a grid search: samplesize = 150, epoch = 200, batchsize = 1, lr(SGD:
0.003, SGDM: 0.05, TSGD: 0.03), up_lr = 0.5, low_lr = 0.005, rho = 0.977237, and rho1 =
rho2 = 0.962708. The experimental results show that the method achieves its expected
effect. In Figures 4 and 5, the training process of SGDM has more oscillations, and the
convergence speed of SGD is slower. However, TSGD is more stable and faster than SGDM
and SGD. It is astonishing that the TSGD+2ExpLR algorithm is stable during training and
increases accuracy quickly.

� �� �� 	�����������	����
���

���

���

���

��	

��

���

���

�
�
�
�
�
�
�
�
�
	
�
�
�

�����

�
���
�
��
��
��
��
�������	

Figure 4. The accuracy of IRIS-BP-neural-network on the training set.

� �� �� �����������������
���

���

���

��	

���

���

�
�
�
�
�
�
�
�
	
	

�����

�
���
�
��
��
��
��
�������	

Figure 5. The loss of IRIS-BP-neural-network on the training set.

CASIA-FaceV5 and ResNet18. The CASIA-FaceV5 contains 2500 color facial im-
ages of 500 subjects. All face images are 16-bit color BMP files, and the image resolu-
tion is 640*480. Typical intra-class variations include the illumination, pose, expression,
and eye-glasses imaging distance, which provides a remarkable ability to distinguish
between different algorithms. We preprocessed it for better training and reshaped it to
100 × 100. The parameters were set as: samplesize = 2500, epoch = 100, batchsize = 10,
lr = 0.1, lru = 0.5, lrl = 0.005, then T = ceil(samplesize/batchsize) * epoch = 25,000, and thus
ρ = 10(log(ρT ,10)/T) ≈ 0.999815. This is also applicable to ρ1 = ρ2 = 0.999696. The experi-

Appl. Sci. 2022, 12, 12023 9 of 13

mental results are in Figures 6 and 7. Although we can observe that the accuracy of the
TSGD algorithm does not exceed 1 Adam, it exceeds the SGD algorithm, and the training
process is more stable. The main reason may be that the CASIA-FaceV5 dataset has fewer
samples and more categories, and each category has only five samples. The Adam algo-
rithm is more suitable for this scenario. The accuracy of the TSGD+2ExpLR algorithm is
much higher than that of other algorithms. The loss value is also much lower than other
algorithms, and the training process is more stable.

� �� �� �� �� ���

���

���

���

���

���

���

�
�
�
	
�
�
�
�

�
�
�
�

�����

����	
����
�����
�����������

Figure 6. The accuracy of CASIA-FaceV5-ResNet18 on test set.

� �� �� �� �� ���

���

���

���

���

���

���

�
�
�
�
�
�
�
�
	
	

�����

����	
����
�����
�����������

Figure 7. The loss of CASIA-FaceV5-ResNet18 on training set.

Cifar10 and ResNet18. The CIFAR10 dataset was collected by Hinton et al. [49]. It
contains 60,000 color images in 10 categories, with a training set of 50,000 images and
a test set of 10,000 images. The parameters are adjusted: epoch = 200, batchsize = 128,
ρ = 0.9999411, ρ1 = ρ2 = 0.9999028, lr = 0.1, lru = 0.5, and lrl = 0.005. The other parameters
were the same as the above or were the default values recommended by the model. The
architecture we used was ResNet18, and the learning rate was divided by 10 at epoch
150 for SGDM, Adam, and TSGD.

Figure 8 shows the test accuracy curves of each optimization method. As we can
see, SGDM had the lowest accuracy and more oscillation before 150 epochs, and Adam

Appl. Sci. 2022, 12, 12023 10 of 13

had a fast speed but lower accuracy after 150 epochs. It is evident that the TSGD and
TSGD+2ExpLR had higher accuracy, and the accuracy curves were smoother and more
stable. The speed of TSGD even exceeded the speed of Adam.

Figure 9 shows the loss of different algorithms on the training set. At the beginning of
training, the loss of TSGD decreases slowly, possibly due to the small learning rate of the
warmup stage to make the model stable. However, it can be seen that the loss of the TSGD
algorithm decreases faster, and the loss is the smallest in the later stage.

� �� ��
� ��� ��� ��� �
� ���

��
	

��
�

����

����

����

���	

����

����

����

����

���	

�
�
�
	
�
�
�
�

�
�
�
�

�����

�����
����
�����
����������

Figure 8. The accuracy of Cifar10-ResNet18 on the training set.

� �	 	� �	 ��� ��	 �	� ��	 ���

���

���

���

���

���

��	

��

���

���

��

���

�
�
�
�
�
�
�
�
	
	

�����

�����
�����
�����
������������

Figure 9. The loss of Cifar10-ResNet18 on the test set.

Cifar100 and ResNet18. We also present our results for CIFAR100. The task is similar
to Cifar10; however, Cifar100 has 10 categories, and each category has 10 subcategories for a
total of 100 categories. The parameters are the same as CIFAR10. We show the performance
curves in Figures 10 and 11. It can be seen that the performances of each algorithm on
CIFAR100 are similar to those of CIFAR10. The two algorithms proposed in this paper
can hold the top two spots in all, and the curves are still smoother and more stable. In
particular, in TSGD+2ExpLR, the accuracy reaches its peak at about 100 epochs, which
reflects the effect of the warmup–decay learning rate strategy with double exponential
functions. The loss of the TSGD and TSGD+2ExpLR algorithms decreases faster and finally
has a minor loss, almost close to zero. The TSGD and TSGD+2ExpLR are considerably
improved over SGDM and Adam, with faster speed and higher accuracy.

Appl. Sci. 2022, 12, 12023 11 of 13

� �� ��
� ��� ��� ��� �
� ���
����

����

����

��	�

��	�

��
�

��
�

�
�
�
	
�
�
�
�

�
�
�
�

�����

�����
�����
�����
�����������

Figure 10. The accuracy of Cifar100-ResNet18 on the test set.

� �� �� �� ��� ��� ��� ��� ���

����

����

����

����

����

����

����

����

����

�
�
�
�
�
�
�
�
	
	

�����

���
�
�	���
����

����
������

Figure 11. The loss of Cifar100-ResNet18 on the training set.

7. Conclusions

In this paper, we combined the advantages of SGDM with a fast training speed and
SGD with high accuracy and proposed a scaling transition method from SGDM to SGD. At
the same time, we used two exponential functions to combine the warmup strategy and
decay strategy, thus, proposing the 2ExpLR strategy. This method allowed the model to
train more stably and obtain higher accuracy. The experimental results showed that the
TSGD and 2ExpLR algorithms had good performance in terms of the training speed and
generalization ability.

Author Contributions: Conceptualization, K.Z. and Z.J.; methodology, K.Z. and Z.J.; software, K.Z.;
validation, K.Z., Z.J., D.X. and J.L.; formal analysis, D.X. and J.L.; investigation, K.Z., Z.J. and D.X.;
resources, K.Z.; data curation, K.Z.; writing—original draft preparation, K.Z. and Z.J.; writing—
review and editing, D.X. and J.L.; visualization, K.Z.; supervision, Z.J.; project administration, Z.J.;
funding acquisition, Z.J. and D.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Natural Science Foundation of Jilin Province, China
(Nos.YDZJ202201ZYTS519), in part by the National Natural Science Foundation of China (No.
62176051), in part by the National Key R&D Program of China (No. 2021YFA1003400), and in
part by the Fundamental Research Funds for the Central Universities of China (No.2412020FZ024).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2022, 12, 12023 12 of 13

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the reviewers for many constructive and
insightful comments and suggestions, which have led to significant improvements on the results and
presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
2. LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a

back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 1989, 396–404.
3. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
5. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
6. Ma, L.; Zhang, Y. Research on vehicle license plate recognition technology based on deep convolutional neural networks.

Microprocess. Microsyst. 2021, 82, 103932. [CrossRef]
7. Wang, T.; Lei, Y.; Fu, Y.; Wynne, J.F.; Curran, W.J.; Liu, T.; Yang, X. A review on medical imaging synthesis using deep learning

and its clinical applications. J. Appl. Clin. Med. Phys. 2021, 22, 11–36. [CrossRef]
8. Farooq, U.; Rahim, M.S.M.; Sabir, N.; Hussain, A.; Abid, A. Advances in machine translation for sign language: Approaches,

limitations, and challenges. Neural Comput. Appl. 2021, 33, 14357–14399. [CrossRef]
9. Polyak, B.T. Some methods of speeding up the convergence of iteration methods. Ussr Comput. Math. Math. Phys. 1964, 4, 1–17.

[CrossRef]
10. Lowry, C.A.; Woodall, W.H.; Champ, C.W.; Rigdon, S.E. A multivariate exponentially weighted moving average control chart.

Technometrics 1992, 34, 46–53. [CrossRef]
11. Arnold, S.M.; Manzagol, P.A.; Babanezhad, R.; Mitliagkas, I.; Roux, N.L. Reducing the variance in online optimization by

transporting past gradients. arXiv 2019, arXiv:1906.03532.
12. Zhu, A.; Meng, Y.; Zhang, C. An improved Adam Algorithm using look-ahead. In Proceedings of the 2017 International

Conference on Deep Learning Technologies, Chengdu, China, 2–4 June 2017; pp. 19–22.
13. Lessard, L.; Recht, B.; Packard, A. Analysis and design of optimization algorithms via integral quadratic constraints. SIAM J.

Optim. 2016, 26, 57–95. [CrossRef]
14. Recht, B. The Best Things in Life are Model Free, Argmin (Personal Blog). [EB/OL], 2018. Available online: http://www.argmin.

net/2018/04/19/pid/ (accessed on 6 June 2021).
15. Kidambi, R.; Netrapalli, P.; Jain, P.; Kakade, S. On the insufficiency of existing momentum schemes for stochastic optimization. In

Proceedings of the IEEE: 2018 Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 11–16 February 2018;
pp. 1–9.

16. Heo, B.; Chun, S.; Oh, S.J.; Han, D.; Yun, S.; Kim, G.; Uh, Y.; Ha, J.W. AdamP: Slowing down the slowdown for momentum
optimizers on scale-invariant weights. In Proceedings of the International Conference on Learning Representations, Virtual, 3–7
May 2021; pp. 3–7.

17. Tang, M.; Huang, Z.; Yuan, Y.; Wang, C.; Peng, Y. A bounded scheduling method for adaptive gradient methods. Appl. Sci. 2019,
9, 3569. [CrossRef]

18. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res.
2011, 12, 2121–2159.

19. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
20. Reddi, S.J.; Kale, S.; Kumar, S. On the convergence of Adam and beyond. arXiv 2019, arXiv:1904.09237.
21. Wilson, A.C.; Roelofs, R.; Stern, M.; Srebro, N.; Recht, B. The marginal value of adaptive gradient methods in machine learning.

arXiv 2017, arXiv:1705.08292.
22. Huang, X.; Xu, R.; Zhou, H.; Wang, Z.; Liu, Z.; Li, L. ACMo: Angle-Calibrated Moment Methods for Stochastic Optimization.

arXiv 2020, arXiv:2006.07065.
23. Zhang, Z. Improved Adam optimizer for deep neural networks. In Proceedings of the IEEE: 2018 IEEE/ACM 26th International

Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2.
24. Keskar, N.S.; Socher, R. Improving generalization performance by switching from Adam to SGD. arXiv 2017, arXiv:1712.07628.
25. Luo, L.; Xiong, Y.; Liu, Y.; Sun, X. Adaptive Gradient Methods with Dynamic Bound of Learning Rate. In Proceedings of the

International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
26. Yang, L.; Cai, D. AdaDB: An adaptive gradient method with data-dependent bound. Neurocomputing 2021, 419, 183–189.

[CrossRef]

http://doi.org/10.1038/323533a0
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.micpro.2021.103932
http://dx.doi.org/10.1002/acm2.13121
http://dx.doi.org/10.1007/s00521-021-06079-3
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://dx.doi.org/10.2307/1269551
http://dx.doi.org/10.1137/15M1009597
 http://www.argmin.net/2018/04/19/pid/
 http://www.argmin.net/2018/04/19/pid/
http://dx.doi.org/10.3390/app9173569
http://dx.doi.org/10.1016/j.neucom.2020.07.070

Appl. Sci. 2022, 12, 12023 13 of 13

27. Liang, D.; Ma, F.; Li, W. New gradient-weighted adaptive gradient methods with dynamic constraints. IEEE Access 2020,
8, 110929–110942. [CrossRef]

28. Lu, Z.; Lu, M.; Liang, Y. A distributed neural network training method based on hybrid gradient computing. Scalable Comput.
Pract. Exp. 2020, 21, 323–336. [CrossRef]

29. Zeng, K.; Liu, J.; Jiang, Z.; Xu, D. A Decreasing Scaling Transition Scheme from Adam to SGD. Adv. Theory Simul. 2022, 21, 2100599.
[CrossRef]

30. Ma, J.; Yarats, D. Quasi-hyperbolic momentum and adam for deep learning. arXiv 2018, arXiv:1810.06801.
31. Savarese, P. On the Convergence of AdaBound and its Connection to SGD. arXiv 2019, arXiv:1908.04457.
32. Loizou, N.; Richtárik, P. Momentum and stochastic momentum for stochastic gradient, newton, proximal point and subspace

descent methods. Comput. Optim. Appl. 2020, 77, 653–710. [CrossRef]
33. Ghadimi, E.; Feyzmahdavian, H.R.; Johansson, M. Global convergence of the heavy-ball method for convex optimization. In

Proceedings of the IEEE 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 310–315.
34. Zhou, Z.; Zhang, Q.; Lu, G.; Wang, H.; Zhang, W.; Yu, Y. Adashift: Decorrelation and convergence of adaptive learning rate

methods. arXiv 2018, arXiv:1810.00143.
35. Gitman, I.; Lang, H.; Zhang, P.; Xiao, L. Understanding the role of momentum in stochastic gradient methods. arXiv 2019,

arXiv:1910.13962.
36. Wu, Y.; Liu, L.; Bae, J.; Chow, K.H.; Iyengar, A.; Pu, C.; Wei, W.; Yu, L.; Zhang, Q. Demystifying learning rate policies for high

accuracy training of deep neural networks. In Proceedings of the IEEE International conference on big data, Los Angeles, CA,
USA, 9–12 December 2019; pp. 1971–1980.

37. Lewkowycz, A. How to decay your learning rate. arXiv 2021, arXiv:2103.12682.
38. Loshchilov, I.; Hutter, F. SGDR: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983.
39. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE winter conference on applications

of computer vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472.
40. Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, large minibatch

SGD: Training imagenet in 1 hour. arXiv 2017, arXiv:1706.02677.
41. Xu, J.; Zhang, W.; Wang, F. A (DP)2SGD: Asynchronous Decentralized Parallel Stochastic Gradient Descent with Differential

Privacy. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 80, 3043–3052 [CrossRef]
42. Zhuang, J.; Tang, T.; Ding, Y.; Tatikonda, S.; Dvornek, N.; Papademetris, X.; Duncan, J.S. Adabelief optimizer: Adapting stepsizes

by the belief in observed gradients. arXiv 2020, arXiv:2010.07468.
43. Ramezani-Kebrya, A.; Khisti, A.; Liang, B. On the Generalization of Stochastic Gradient Descent with Momentum. arXiv 2021,

arXiv:2102.13653.
44. Cutkosky, A.; Mehta, H. Momentum improves normalized SGD. In Proceedings of the International Conference on Machine

Learning, PMLR, Virtual, 13–18 July 2020; pp. 2260–2268.
45. Li, Z.; Arora, S. An exponential learning rate schedule for deep learning. arXiv 2019, arXiv:1910.07454.
46. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
47. Hu, T.; Wang, W.; Lin, C.; Cheng, G. Regularization matters: A nonparametric perspective on overparametrized neural

network. In Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR, Virtual, 13–15 April 2021;
pp. 829–837.

48. Murugan, P.; Durairaj, S. Regularization and optimization strategies in deep convolutional neural network. arXiv 2017,
arXiv:1712.04711.

49. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical report; U. Toronto: Toronto, ON, Canada,
2009.

http://dx.doi.org/10.1109/ACCESS.2020.3002590
http://dx.doi.org/10.12694/scpe.v21i2.1727
http://dx.doi.org/10.1002/adts.202100599
http://dx.doi.org/10.1007/s10589-020-00220-z
http://dx.doi.org/10.1109/TPAMI.2021.3107796

	Introduction
	Preliminaries
	TSGD Algorithm
	The Warmup Decay Learning Rate Strategy with Double Exponential Functions
	Extension
	Experiments
	Conclusions
	References

