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Abstract: A hybrid power modulator is presented for the radio frequency (RF) power amplifiers
of 5th generation mobile communication technology (5G) new radio (NR) applications. A hybrid
power modulator utilizing a two-level switching converter and a broadband and high-efficiency
linear amplifier is presented. A further improvement in the efficiency of the circuit is achieved by
using an optimized supply voltage of the two-level switching converters of 4.5 V. In this way, the
overall efficiency is improved by more than 5% compared to using a 5 V supply voltage. The linear
amplifier consists of four stages. In order to improve bandwidth and circuit stability, a compensation
circuit is added to the linear amplifier that eliminates the poles of the main amplifier by introducing
additional zeros, indirectly pushing the pole distribution out of the bandwidth. Using this approach,
the linear amplifier achieves a 3-dB bandwidth of 180 MHz and an efficiency of 51%. The hybrid
power modulator achieves a maximum output power of 2.4 W and an efficiency of 86% when tracking
a 100 MHz 5G-NR signal under a 4 Ω load in a 180 nm CMOS package.

Keywords: power modulator; efficiency; broadband; envelope tracking technology

1. Introduction

In communication systems, the power amplifier is the most critical component but
also the most energy-consuming component. Therefore, the performance of the designed
power amplifier directly affects the performance of the entire system [1–4]. Up to now,
envelope tracking technology (ET) [4–7] has been the main technology used to improve
the efficiency of power amplifiers. The basic architecture of ET technology is shown in
Figure 1. The baseband signal is up-converted after delay correction as the input signal
of the power amplifier. The baseband signal of the other channel is used as the input
signal of the power modulator after envelope detection and envelope processing. The
power supply modulator is the key to ET technology, and its output voltage should track
the input signal of the envelope well. The power supply modulator has high conversion
efficiency to improve the efficiency of the entire power amplifier system. In order to
enhance the efficiency and bandwidth of power supply modulators, various methods
have been proposed. Power supply modulators come in three main forms, switching
converters [8–10], linear amplifiers [11–15], and hybrid power modulators [16–22]. When
switching converters process relatively wide information, the frequency of the switching
transistor of the switching converter is required to be 5–6 times that of the processing
envelope signals. This increases losses and reduces efficiency. Wide band-gap device
technology has been proposed to improve the efficiency of switching converters [23–25].
Multi-phase structure and multi-level structure have also been achieved [26,27]. For linear
amplifiers, it is easy to introduce losses and decrease the efficiency with the increase of
peak-to-average ratio. The hybrid power supply modulator mainly includes switching
converters, linear amplifiers, and controllers. This structure makes switching converters
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process information to improve efficiency, while the linear amplifiers process information
to improve linearity. In order to improve efficiency, the controller is a tradeoff between
efficiency and bandwidth. The hybrid power supply modulator has more advantages
than other structures. The characteristics of linear amplifiers in hybrid power supply
modulators are wide band, small output impedance, high gain, and large swing [28–30].
The common control methods are PWM control [31] and hysteretic control [32]. Switching
converter structures are multi-phase [31,33] or multi-level [34]. Controlling multilevel
switching converters is a challenge. More levels need more complicated circuits to be
designed [35]. In [16], the bandwidth of a dual-mode hybrid power supply modulator,
which consists of a hybrid power modulator and an average power tracking, is limited to
40 MHz. In [31], a hybrid power modulator composed of a class-AB linear amplifier and a
two-phase switching converter is proposed, but it only tracks 4 MHz rectified sine waves.
In [36], an ac-coupling of the outputs of the linear amplifier is proposed to improve the
efficiency of a hybrid power supply modulator; however, the output method requires a
large coupling capacitance, resulting in increased area. In [37], tracking and controlling the
current of a linear amplifier optimizes the current distribution which results in limiting
bandwidth. It can be seen from the studies cited above, although different structures have
been tried in attempts to implement power supply modulators, it is challenging to design a
highly efficient and wide bandwidth hybrid power supply modulator.
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Figure 1. Basic block diagram of envelope tracking. 
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In communication systems based on envelope tracking technology, a mismatch be-
tween the envelope and the phase reduces Error Vector Magnitude (EVM). Thus, it is
also important to increase the bandwidth of a hybrid power modulator. In this paper, an
efficiency-86% hybrid power modulator for 5G New Radio (NR) is proposed. A current-
mirror amplifier with current reuse is introduced, which is followed by a class-AB buffer.
Compared to other linear amplifiers, this method achieves a wide bandwidth and high
efficiency by introducing extra zeros. It optimizes the voltage value to improve its effi-
ciency without multi-phase or multi-level switching converters. In the second section, the
technology and methods of realizing hybrid power supply modulators are discussed. In
the third, the results are analyzed. In the final section, the conclusions are reported.

2. Technology and Methods

The hybrid power supply modulator is mainly divided into three parts, a switching
converter, a linear amplifier, and a hysteresis comparator, as shown in Figure 2. The linear
amplifier realizes the linear amplification of the envelope signal, and mainly consists of
operational amplifiers and push-pull circuits. The linear amplifier mainly provides voltage
and a small current to the power modulator, as shown in Figure 3. The output stage adopts
a class-AB structure. The class-AB structure has three advantages: first, the power transistor
in the structure is in a micro-conduction state, and the power consumption is small in this
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state; second, the output of the first stage amplifier can track the input signal better; and,
third, the bias mode of the class-AB type allows the transistor to have a larger current
output capability [38].
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Figure 3. The key waveform of current through a hybrid power modulator.

The switching converter is directly controlled by the hysteresis comparator. When the
envelope signal is in the low-frequency band, the switching converter is turned on and
off to provide current to the power supply modulator. The linear amplifier mainly deals
with high-frequency signals. In Figure 2, module A is the linear amplifier, module B is the
hysteresis comparator, and module C is the switching converter. iout = isw + ilinear, where
ilinear is the output current of the linear amplifier, isw is the current of switching converter,
and iout is the current of the whole circuit, as shown in Figure 3.

When the input signal (vip) frequency is low, the slew rate of the switching converter
SRisw is much higher than the slew rate of SRiload [39], and the switching converter can
track the input signal. The linear amplifier cancels the ripple from the switching converter.
When the input signal (vip) is high frequency, the slew rate of the switching converter SRisw
is lower than the slew rate of SRiload; when this happens, the switching converter cannot
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track the input signal, and the linear amplifiers provide a high slew rate of SRilinear to track
the high-frequency signal assisting the switching converter.

2.1. The Structure of the Linear Amplifier

In the process of designing a hybrid power modulator, the output resistance of the
linear amplifier should be very low to drive the following circuits. Its high voltage gain
ensures tracking accuracy. The wide bandwidth of the linear amplifier is required for quick
response. The unit gain bandwidth requires a large loss current while increasing the linear
stage bandwidth, and a large current consumption. How to meet the requirements of the
linear amplifier is also a key point.

The current-mirror amplifier with current reuse is based on a current mirror oper-
ational trans-conductance amplifier (OTA) as shown in Figure 4. An additional control
circuit is added to increase the output current, as shown in Figure 5. In static conditions, the
static currents of M3 and M4 are shunted by adding two transistors M12 and M13, which
reduces the output current and indirectly increases the output impedance. The magnitudes
of the current flowing through M12 and M13 are controlled by the detection input differen-
tial voltage of M10, M11, M14, and M15. The output impedance, gain, and slew rate of a
current-mirror amplifier with current reuse are better than those for a current-mirror OTA
under the same working conditions. Therefore, this structure of a current-mirror amplifier
with current reuse is more suitable for the design of linear amplifiers.
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The stability of a linear amplifier depends primarily on the distribution of poles and
zeros. The phase margin (PM) is referred to as a unique parameter for a closed-loop
system. A good phase margin can make the system more stable. How to ensure that
the linear amplifier has suitable stability is also a key issue in the study of power supply
modulator chips. One approach to accomplishing this is to introduce a compensation
circuit to move poles into the system to stabilize the whole system. Utilizing traditional
Miller compensation [13], the main idea is to reduce the bandwidth in exchange for the
improvement of the phase margin. In this paper, a phase enhancement method in the main
amplifier is used to improve the stability of the linear amplifier [14,15].

In this paper, two zeros are introduced by using negative feedback and positive
feedback resistor-capacitor links. Two zeros are used to cancel the original two poles in the
main amplifier, thereby indirectly pushing the frequency of the secondary poles out of the
bandwidth range as shown in Figure 6. This increases the bandwidth and phase margin. As
the frequency of the zero is entirely determined by the passive component values, zero-pole
cancelation can be easily achieved [15]. The second pole (P2) can be eliminated by adjusting
the first zero (Z1) with the sum of R1 and R2. The second zero (Z2) can then be tuned to the
frequency of the third pole (P3) [15].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 13 
 

P1 P1

P2

P2

Amplitude

Frequency

Z1 Z2

Miler 

Compensation

Extra zeros 

Compensation

P1

P2

 

Figure 6. Frequency response for Miller compensation and the proposed compensation. 

In order to make full use of the power supply voltage and reduce power consump-

tion, the output stage needs to provide a large current and a small quiescent current. The 

output stage adopts class-AB amplifier architecture after compromise M53 and M54 are 

used to form a floating voltage source to fix the gate voltage to make the output stage 

work in class-AB mode. As for the compensation of the secondary amplifier and the class-

AB amplifier, since the pole of the main amplifier is offset by the introduced zero point, 

the main pole of the secondary amplifier becomes the main pole of the whole circuit. As 

the transistor of the class-AB amplifier is large, it can be used as compensatory capaci-

tance. At the same time, because the output load resistance of the class-AB amplifier is 

small, and the drain resistance of the power amplifier is only about 4 ohms, the high-

frequency pole will move to high frequency. Therefore, it is not necessary to compensate 

again. In summary, the final design of the main part of the linear amplifier is shown in 

Figure 7. 

Vin1Vin2

VDD

M1 M2

M3 M4

M5

M7 M8M9 M9

Vb

M10 M11

M12 M13M14 M15

C1

R1

C2R2

Vb2

Vlinear

Vb1
C2R2

R1

C1

1 K1 K2 K3

Main amplifier secondary Class AB

 

Figure 7. Circuit diagram of the linear amplifier. 

2.2. The Switching Converter and the Hysteresis Comparator 

The hysteresis comparator plays an essential role in achieving high efficiency as 

shown in Figure 8. Hysteresis control has the advantages of fast response speed, no need 

for an additional stable compensation circuit, simple implementation, and a small area. 

By detecting the output current between the linear amplifier and the switching converter, 

the linear amplifier is indirectly controlled by the hysteresis comparator to generate addi-

tional output current to offset the amplification error current that is generated by the 

switching converter. 

Figure 6. Frequency response for Miller compensation and the proposed compensation.

This paper assumes that C1 = C1 = C [16].

Z1 ≈ − 1
C(R1 + R2)

(1)

Z2 ≈ − R1 + R2

C(R1R2)
(2)

P1 ≈ − 1
(CL + 2C)ro4 + 2Cro3

(3)

P2 ≈ − (CL + 2C)ro4 + 2Cro3

2CLCro4ro3 + C2(4ro4ro3)
(4)

P3 ≈ − 2CL + 4C
CLC(R1 + R2)

(5)

In order to make full use of the power supply voltage and reduce power consumption,
the output stage needs to provide a large current and a small quiescent current. The output
stage adopts class-AB amplifier architecture after compromise M53 and M54 are used to
form a floating voltage source to fix the gate voltage to make the output stage work in
class-AB mode. As for the compensation of the secondary amplifier and the class-AB
amplifier, since the pole of the main amplifier is offset by the introduced zero point, the
main pole of the secondary amplifier becomes the main pole of the whole circuit. As the
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transistor of the class-AB amplifier is large, it can be used as compensatory capacitance. At
the same time, because the output load resistance of the class-AB amplifier is small, and the
drain resistance of the power amplifier is only about 4 ohms, the high-frequency pole will
move to high frequency. Therefore, it is not necessary to compensate again. In summary,
the final design of the main part of the linear amplifier is shown in Figure 7.
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2.2. The Switching Converter and the Hysteresis Comparator

The hysteresis comparator plays an essential role in achieving high efficiency as
shown in Figure 8. Hysteresis control has the advantages of fast response speed, no
need for an additional stable compensation circuit, simple implementation, and a small
area. By detecting the output current between the linear amplifier and the switching
converter, the linear amplifier is indirectly controlled by the hysteresis comparator to
generate additional output current to offset the amplification error current that is generated
by the switching converter.
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Figure 8. The control logic of the hysteresis comparator.

When the detection current is too small, the switching frequency will become higher,
which results in a larger switching loss. When the detection current is too large, the
switching frequency will become smaller, which results in more current being provided by
the linear stage and worse linearity. Therefore, the circuit parameters (Rsense, L, h) need to
be optimized to achieve a circuit design of high efficiency and high linearity. Rsense is the
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current sensing resistor, L is a filter inductance, h is the hysteresis width, and, as shown in
Equations (6)–(11), the switching converter fsw is related to Rsense, L, h, Vdd, and Vout.

∆iSW = −∆ilinear (6)

∆iSW = k1T1 =
Vdd − Vout

L
T1 (7)

∆ilinear =
Vsense

Rsense
(8)

T1 =
2V

Rsense(Vdd − Vout)
L (9)

T2 =
2h

RsenseVout
(10)

fSW =
Rsense(Vdd − Vout)

2VddhL
(11)

The hysteresis comparator includes an input stage amplifier, pre-judgment, and an
output stage. The prediction gain is improved by the cross-connection of the positive
feedback transistors, M40, and M41. Assuming that ip is much greater than in, M39 and
M41 are turned on and M40 and M42 are turned off, as shown in Figure 9. The width-to-
length ratio of M39 and M42 is α; while the width-to-length ratio of M40 and M41 is β. The
current of M41 is the mirror of the current of M39. As shown in Equation (13), wherein gm
is the trans-conductance of the transistor M34, when α is not equal to β, the comparator
functions as a hysteresis comparator. The upper corner voltage of the comparator is Vh, the
lower corner voltage is Vl , and Ib is the current of M36 [20].

ip =
α

β
in (12)

Vh =
Ib
gm

β
α − 1
β
α + 1

, when β ≥ α (13)

Vh = −V1 (14)
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The efficiency of the power supply modulator also depends on the application. For
broadband applications, the hysteresis width should be minimized—although this is the
opposite for narrowband applications in some cases because a small hysteresis bandwidth
will cause a higher switching frequency and more losses [39]. How to improve the efficiency
of power supply modulators with different input signals has become a focus of research. In
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order to solve this problem, some researchers have changed the controllers or the number
of switching converters. In this paper, optimizing the supply voltage of the switching
converters improves efficiency. Optimizing the supply voltage in steps of ∆V (V1 − Vn)
indirectly increases the switching frequency [15], as shown in Figure 10. In Figure 10, the
reference voltage VDD2min is defined as the average value of 2*vip, ti (i = 1, 2, . . . ) is the
time period of i, and Wt (t = 1, 2, . . . ) is a series of subsections of the output of the linear
amplifier.
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3. Results and Discussion

All circuits as shown in Figure 11 are fabricated in a 0.18 µm Complementary Metal
Oxide Semiconductor (CMOS) technology package. Circuits are simulated by Cadence
software.
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The simulation of the closed-loop performance of the linear amplifier is shown in
Figure 12. Figure 12a shows the case of Miller compensation of the closed-loop performance.
It shows a twice gain frequency of 32 MHz and a phase margin of 60◦; thus, the GBW is
about 64 MHz. Figure 12b shows the case for compensation of the closed-loop performance
using positive feedback to introduce extra zeros. This shows a twice gain frequency of
117 MHz and a phase margin of 42◦; thus, the GBW is about 234 MHz. At 100 MHz,
the phase margin is about 60◦. Meanwhile, the 3-dB bandwidth of the linear amplifier
simulated is about 180 MHz, as shown in Figure 13. Compared to the Miller compensation
approach, this method is better.
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Figure 13. The 3-dB bandwidth of the linear amplifier.

The instantaneous simulation of the hybrid power modulator is carried out, in which
the input signal is a 5G-NR signal with a bandwidth of 100 MHz. The results show that the
average power efficiency of the linear amplifier is 51%.

Transient simulation of the hybrid power modulator is also carried out, in which the
input signal is vip, the output current is iout, the output voltage of switching converters
is Vsw, and the output current through the inductor L is isw, Rload = 7 Ω, as shown in
Figure 14. The different VDD2 and different Rload on the output efficiency are shown in
Figure 15.
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A comparison of the performance of the hybrid power modulator proposed in this
work and modulators reported in the literature is shown in Table 1. Hybrid power modula-
tors consist principally of linear amplifiers, switching converters, and controllers. Optimiz-
ing the performance of each module reduces losses and improves bandwidth. To achieve
this, changing the level number of the switching converter is a research trend [40]. The
method by which the controller controls the switching converters by changing the way that
voltage is detected [39,41–44] is also the focus of research to improve efficiency.
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Table 1. Comparison of power supply modulators.

[41] [42] [43] [44] [39] This Work

Year 2013 2015 2017 2018 2020 2022

Technology (µm) 0.18 0.18 0.18 0.18 0.18 0.18

Structure hybrid hybrid hybrid hybrid hybrid hybrid

Supply (V) 5.5 5 3.6 2.7–4.2 3.6 5,4.5

Bandwidth (MHz) 20 20 10 20 40 100

Signal LTE 16QAM/LTE LTE/QPSK LTE LTE-A OFDM

Efficiency (%) 83 75.9 83 78–86 85 86

Output power (W) 0.67 0.4 >0.3 1 2.5 2.4

PAPR (dB) 6.7 7.5 7.24 NA NA 8

Core area (mm2) NA 1.4 1.1 0.78 0.6 NA

Chip area (mm2) 1.47 NA NA NA 2.25 1.44

4. Conclusions

In this paper, the linear amplifier compensation circuit of a hybrid power modulator
is improved by introducing extra zeros. Compared with an approach based on Miller
compensation, this method results in an improved gain bandwidth product. A further
improvement in efficiency is achieved by using an optimized supply voltage of the two-
level switching converter of 4.5 V. The maximum efficiency of the hybrid power supply
modulator is 86%, and the output power is 2.4 W in a 0.18-µm CMOS package.

Author Contributions: X.C. and X.Q. conceived and designed the experiments; X.C. and Y.L. per-
formed the experiments; X.L. and T.W. analyzed the data; X.C. wrote the paper. All authors have
read and agreed to the published version of the manuscript.
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Application Research Dean Fund No. ZK2005BN003.
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