A Collection of Best Practices for the Collection and Analysis of Bioacoustic Data
Abstract
:1. Introduction
2. Species Identification
3. Population Structure
4. Ecosystem Biodiversity
5. Signal Structure and Evolution: Cultural Effects
6. Signal Structure and Evolution: Ecological Effects
7. Predator–Prey Relationships
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Bradbury, J.W.; Vehrencamp, S.L. Principles of Animal Communication, 2nd ed.; Oxford University Press: Sunderland, MA, USA, 2011. [Google Scholar]
- Lammers, M.O.; Oswald, J.N. Analyzing the Acoustic Communication of Dolphins. In Dolphin Communication and Cognition: Past, Present, and Future; MIT Press: Cambridge, MA, USA, 2015; pp. 107–137. [Google Scholar]
- Searcy, W.N.S. The Evolution of Animal Communication and Deception in Signaling Systems; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Furmankiewicz, J.; Ruczynksi, I.; Urban, R.; Jones, G. Social Calls Provide Tree-Dwelling Bats with Information about the Location of Conspecifics at Roosts. Ethology 2011, 117, 480–489. [Google Scholar] [CrossRef]
- Mouterde, S.C. From Vocal Ot Neural Encoding: A Transversal Investigation of Information Transmission at Long Distance in Birds. In Coding Strategies in Vertebrate Acoustic Communication; Aubin, T., Mathevon, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 203–229. [Google Scholar]
- Zuberbühler, K.; Noë, R.; Seyfarth, R.M. Diana Monkey Long-Distance Calls: Messages for Conspecifics and Predators. Anim. Behav. 1997, 53, 589–604. [Google Scholar] [CrossRef] [Green Version]
- Denzinger, A.; Tschapka, M.; Schnitzler, H.U. The Role of Echolocation Strategies for Niche Differentiation in Bats. Can. J. Zool. 2018, 96, 171–181. [Google Scholar] [CrossRef]
- Forsman, K.A.; Malmquist, M.G. Evidence for Echolocation in the Common Shrew, Sorex Araneus. J. Zool. 1988, 216, 655–662. [Google Scholar] [CrossRef]
- Jensen, M.E.; Moss, C.F.; Surlykke, A. Echolocating Bats Can Use Acoustic Landmarks for Spatial Orientation. J. Exp. Biol. 2005, 208, 4399–4410. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Madsen, P.T.; Zimmer, W.M.; de Soto, N.A.; Tyack, P.L. Beaked Whales Echolocate on Prey. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271 (Suppl. S6), S383–S386. [Google Scholar] [CrossRef]
- Moss, C.F.; Surlykke, A. Probing the Natural Scene by Echolocation in Bats. Front. Behav. Neurosci. 2010, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Garland, E.C.; Goldizen, A.W.; Lilley, M.S.; Rekdahl, M.L.; Garrigue, C.; Constantine, R.; Hauser, N.D.; Poole, M.M.; Robbins, J.; Noad, M.J. Population Structure of Humpback Whales in the Western and Central South Pacific Ocean as Determined by Vocal Exchange among Populations. Conserv. Biol. 2015, 29, 1198–1207. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Granados, C.; Traba, J. Estimating Bird Density Using Passive Acoustic Monitoring: A Review of Methods and Suggestions for Further Research. Ibis 2021, 163, 765–783. [Google Scholar] [CrossRef]
- Dos Santos Protázio, A.; Albuquerque, R.L.; Falkenberg, L.M.; Mesquita, D.O. Acoustic Ecology of an Anuran Assemblage in the Arid Caatinga of Northeastern Brazil. J. Nat. Hist. 2015, 49, 957–976. [Google Scholar] [CrossRef]
- Moore, B.L.; Connor, R.C.; Allen, S.J.; Krützen, M.; King, S.L. Acoustic Coordination by Allied Male Dolphins in a Cooperative Context. Proc. R. Soc. B 2020, 287, 20192944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymański, P.; Olszowiak, K.; Wheeldon, A.; Budka, M.; Osiejuk, T.S. Passive Acoustic Monitoring Gives New Insight into Year-Round Duetting Behaviour of a Tropical Songbird. Ecol. Indic. 2021, 122, 107271. [Google Scholar] [CrossRef]
- Caiger, P.E.; Dean, M.J.; DeAngelis, A.I.; Hatch, L.T.; Rice, A.N.; Stanley, J.A.; Tholke, C.; Zemeckis, D.R.; Van Parijs, S.M. A Decade of Monitoring Atlantic Cod Gadus Morhua Spawning Aggregations in Massachusetts Bay Using Passive Acoustics. Mar. Ecol. Prog. Ser. 2020, 635, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Granados, C.; Schuchmann, K.L. Passive Acoustic Monitoring of the Diel and Annual Vocal Behavior of the Black and Gold Howler Monkey. Am. J. Primatol. 2021, 83, e23241. [Google Scholar] [CrossRef] [PubMed]
- Picciulin, M.; Kéver, L.; Parmentier, E.; Bolgan, M. Listening to the Unseen: Passive Acoustic Monitoring Reveals the Presence of a Cryptic Fish Species. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 29, 202–210. [Google Scholar] [CrossRef]
- Gasco, A.; Ferro, H.F.; Monticelli, P.F. The Communicative Life of a Social Carnivore: Acoustic Repertoire of the Ring-Tailed Coati (Nasua Nasua). Bioacoustics 2019, 28, 459–487. [Google Scholar] [CrossRef]
- Kershenbaum, A.; Freeberg, T.M.; Gammon, D.E. Estimating Vocal Repertoire Size Is Like Collecting Coupons: A Theoretical Framework with Heterogeneity in Signal Abundance. J. Theor. Biol. 2015, 373, 1–11. [Google Scholar] [CrossRef]
- Moron, J.R.; Alves, L.C.P.; de Assis, C.V.; Garcia, F.C.; Andriolo, A. Clymene Dolphin (Stenella Clymene) Whistles in the Southwest Atlantic Ocean. J. Acoust. Soc. Am. 2018, 144, 1952. [Google Scholar] [CrossRef]
- Tanimoto, A.M.; Hart, P.J.; Pack, A.A.; Switzer, R. Vocal Repertoire and Signal Characteristics of ‘Alalā, the Hawaiian Crow (Corvus Hawaiiensis). Wilson J. Ornithol. 2017, 129, 25–35. [Google Scholar] [CrossRef]
- Cowlishaw, G. Song Function in Gibbons. Behaviour 1992, 121, 131–153. [Google Scholar] [CrossRef]
- Umeed, R.; Niemeyer Attademo, F.L.; Bezerra, B. The Influence of Age and Sex on the Vocal Repertoire of the Antillean Manatee (Trichechus Manatus Manatus) and Their Responses to Call Playback. Mar. Mammal Sci. 2018, 34, 577–594. [Google Scholar] [CrossRef]
- Bradley, D.W.; Mennill, D.J. Strong Ungraded Responses to Playback of Solos, Duets and Choruses in a Cooperatively Breeding Neotropical Songbird. Anim. Behav. 2009, 77, 1321–1327. [Google Scholar] [CrossRef]
- Coye, C.; Ouattara, K.; Arlet, M.E.; Lemasson, A.; Zuberbühler, K. Flexible Use of Simple and Combined Calls in Female Campbell’s Monkeys. Anim. Behav. 2018, 141, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Hetrick, S.A.; Sieving, K.E. Antipredator Calls of Tufted Titmice and Interspecific Transfer of Encoded Threat Information. Behav. Ecol. 2011, 23, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Raemaekers, J.J.; Raemaekers, P.M.; Haimoff, E.H. Loud Calls of the Gibbon (Hylobates Lar): Repertoire, Organisation and Context. Behaviour 1984, 91, 146–189. [Google Scholar] [CrossRef]
- Konrad, C.M.; Gero, S.; Frasier, T.; Whitehead, H. Kinship Influences Sperm Whale Social Organization within, but Generally Not among, Social Units. R. Soc. Open Sci. 2018, 5, 180914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cise, A.; Mahaffy, S.; Baird, R.; Mooney, T.; Barlow, J. Song of My People: Dialect Differences among Sympatric Social Groups of Short-Finned Pilot Whales in Hawai’i. Behav. Ecol. Sociobiol. 2018, 72, 193. [Google Scholar] [CrossRef]
- Charlton, B.D.; Reby, D. The Evolution of Acoustic Size Exaggeration in Terrestrial Mammals. Nat. Comm. 2016, 7, 12739. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Herbst, C.T.; Bowling, D.L.; Dunn, J.C.; Fitch, W.T. Acoustic Allometry Revisited: Morphological Determinants of Fundamental Frequency in Primate Vocal Production. Sci. Rep. 2017, 7, 10450. [Google Scholar] [CrossRef] [Green Version]
- Gillooly, J.F.; Ophir, A.G. The Energetic Basis of Acoustic Communication. Proc. R. Soc. B 2010, 277, 1325–1331. [Google Scholar] [CrossRef]
- Jensen, F.H.; Johnson, M.; Ladegaard, M.; Wisniewska, D.M.; Madsen, P.T. Narrow Acoustic Field of View Drives Frequency Scaling in Toothed Whale Biosonar. Curr. Biol. 2018, 28, 3878–3885.e3873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balcazar, N.E.; Tripovich, J.S.; Klinck, H.; Nieukirk, S.L.; Mellinger, D.K.; Dziak, R.P.; Rogers, T.L. Calls Reveal Population Structure of Blue Whales across the Southeast Indian Ocean and the Southwest Pacific Ocean. J. Mammal. 2015, 96, 1184–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Torre, S.; Snowdon, C.T. Dialects in Pygmy Marmosets? Population Variation in Call Structure. Am. J. Primatol. 2009, 71, 333–342. [Google Scholar] [CrossRef]
- Nicholls, J.A.; Austin, J.J.; Moritz, C.; Goldizen, A.W. Genetic Population Structure and Call Variation in a Passerine Bird, the Satin Bowerbird, Ptilonorhynchus Violaceus. Evolution 2006, 60, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, A.; Amos, J.N.; Goretskaia, M.I.; Beme, I.R.; Buchanan, K.L.; Takeuchi, N.; Radford, J.Q.; Sunnucks, P. Genes and Song: Genetic and Social Connections in Fragmented Habitat in a Woodland Bird with Limited Dispersal. Ecology 2012, 93, 1717–1727. [Google Scholar] [CrossRef]
- Podos, J. Discrimination of Geographical Song Variants by Darwin’s Finches. Anim. Behav. 2007, 73, 833–844. [Google Scholar] [CrossRef]
- Davis, G.E.; Baumgartner, M.F.; Corkeron, P.J.; Bell, J.; Berchok, C.; Bonnell, J.M.; Bort Thornton, J.; Brault, S.; Buchanan, G.A.; Cholewiak, D.M.; et al. Exploring Movement Patterns and Changing Distributions of Baleen Whales in the Western North Atlantic Using a Decade of Passive Acoustic Data. Glob. Chang. Biol. 2020, 26, 4812–4840. [Google Scholar] [CrossRef]
- Dawson, D.K.; Efford, M.G. Bird Population Density Estimated from Acoustic Signals. J. Appl. Ecol. 2009, 46, 1201–1209. [Google Scholar] [CrossRef]
- Marques, T.A.; Munger, L.; Thomas, L.; Wiggins, S.; Hildebrand, J.A. Estimating North Pacific Right Whale Eubalaena Japonica Density Using Passive Acoustic Cue Counting. Endanger. Species Res. 2011, 13, 163–172. [Google Scholar] [CrossRef]
- Marques, T.A.; Thomas, L.; Martin, S.W.; Mellinger, D.K.; Ward, J.A.; Moretti, D.J.; Harris, D.; Tyack, P.L. Estimating Animal Population Density Using Passive Acoustics. Biol. Rev. 2013, 88, 287–309. [Google Scholar] [CrossRef]
- Lau, A.R.; Zafar, M.; Ahmad, A.H.; Clink, D.J. Investigating Temporal Coordination in the Duet Contributions of a Pair-Living Small Ape. Behav. Ecol. Sociobiol. 2022, 76, 91. [Google Scholar] [CrossRef]
- Dunn, J.C.; Smaers, J.B. Neural Correlates of Vocal Repertoire in Primates. Front. Neurosci. 2018, 12, 534. [Google Scholar] [CrossRef]
- Snowdon, C.T. Cognitive Components of Vocal Communication: A Case Study. Animals 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Crance, J.L.; Bowles, A.E.; Garver, A. Evidence for Vocal Learning in Juvenile Male Killer Whales, Orcinus Orca, from an Adventitious Cross-Socializing Experiment. J. Exp. Biol. 2014, 217, 1229–1237. [Google Scholar] [CrossRef] [Green Version]
- Favaro, L.; Neves, S.; Furlati, S.; Pessani, D.; Martin, V.; Janik, V.M. Evidence Suggests Vocal Production Learning in a Cross-Fostered Risso’s Dolphin (Grampus Griseus). Anim. Cogn. 2016, 19, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Prat, Y.; Taub, M.; Yovel, Y. Vocal Learning in a Social Mammal: Demonstrated by Isolation and Playback Experiments in Bats. Sci. Adv. 2015, 1, e1500019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernes, S.C.; Janik, V.M.; Fitch, W.T.; Slater, P.J.B. Vocal Learning in Animals and Humans. Philos. Trans. R. Soc. B 2021, 376, 20200234. [Google Scholar] [CrossRef]
- Fehér, O.; Ljubičić, I.; Suzuki, K.; Okanoya, K.; Tchernichovski, O. Statistical Learning in Songbirds: From Self-Tutoring to Song Culture. Philos. Trans. R. Soc. B 2017, 372, 20160053. [Google Scholar] [CrossRef] [Green Version]
- Goutte, S.; Dubois, A.; Howard, S.D.; Márquez, R.; Rowley, J.J.L.; Dehling, J.M.; Grandcolas, P.; Xiong, R.C.; Legendre, F. How the Environment Shapes Animal Signals: A Test of the Acoustic Adaptation Hypothesis in Frogs. J. Evol. Biol. 2018, 31, 148–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyhn, L.A.; Tougaard, J.; Beedholm, K.; Jensen, F.H.; Ashe, E.; Williams, R.; Madsen, P.T. Clicking in a Killer Whale Habitat: Narrow-Band, High-Frequency Biosonar Clicks of Harbour Porpoise (Phocoena Phocoena) and Dall’s Porpoise (Phocoenoides Dalli). PLoS ONE 2013, 8, e63763. [Google Scholar] [CrossRef] [PubMed]
- Podos, J.; Warren, P.S. The Evolution of Geographic Variation in Birdsong. In Advances in the Study of Behavior; Academic Press: Cambridge, MA, USA, 2007; pp. 403–458. [Google Scholar]
- Crouch, W.B.; Peter, W.C.P. Assessing the Use of Call Surveys to Monitor Breeding Anurans in Rhode Island. J. Herpetol. 2002, 36, 185–192. [Google Scholar] [CrossRef]
- Heinicke, S.; Kalan, A.K.; Wagner, O.J.J.; Mundry, R.; Lukashevich, H.; Kühl, H.S. Assessing the Performance of a Semi-Automated Acoustic Monitoring System for Primates. Methods Ecol. Evol. 2015, 6, 753–763. [Google Scholar] [CrossRef]
- Rankin, S.; Archer, F.; Keating, J.; Oswald, J.N.; Oswald, M.; Curtis, A.; Barlow, J. Acoustic Classification of Dolphins in the California Current Using Whistles, Echolocation Clicks, and Burst Pulses. Mar. Mammal Sci. 2017, 33, 520–540. [Google Scholar] [CrossRef]
- Russo, D.; Voigt, C. The Use of Automated Identification of Bat Echolocation Calls in Acoustic Monitoring: A Cautionary Note for a Sound Analysis. Ecol. Indic. 2016, 66, 598–602. [Google Scholar] [CrossRef]
- Gage, S.H.; Napoletano, B.M.; Cooper, M.C. Assessment of Ecosystem Biodiversity by Acoustic Diversity Indices. J. Acoust. Soc. Am. 2001, 109, 2430. [Google Scholar] [CrossRef]
- Mooney, T.A.; Di Iorio, L.; Lammers, M.; Lin, T.-H.; Nedelec, S.L.; Parsons, M.; Radford, C.; Urban, E.; Stanley, J. Listening Forward: Approaching Marine Biodiversity Assessments Using Acoustic Methods. R. Soc. Open Sci. 2020, 7, 201287. [Google Scholar] [CrossRef]
- Parks, S.E.; Miksis-Olds, J.L.; Denes, S.L. Assessing Marine Ecosystem Acoustic Diversity across Ocean Basins. Ecol. Inform. 2014, 21, 81–88. [Google Scholar] [CrossRef]
- Sueur, J.; Farina, A.; Gasc, A.; Pieretti, N.; Pavoine, S. Acoustic Indices for Biodiversity Assessment and Landscape Investigation. Acta Acust. 2014, 100, 772–781. [Google Scholar] [CrossRef] [Green Version]
- Francis, C.D.; Newman, P.; Taff, B.D.; White, C.; Monz, C.A.; Levenhagen, M.; Petrelli, A.R.; Abbott, L.C.; Newton, J.; Burson, S.; et al. Acoustic Environments Matter: Synergistic Benefits to Humans and Ecological Communities. J. Environ. Manag. 2017, 203, 245–254. [Google Scholar] [CrossRef]
- Benoit-Bird, K.J.; Southall, B.; Moline, M.A. Using Acoustics to Examine Odontocete Foraging Ecology: Predator–Prey Dynamics in the Mesopelagic. J. Acoust. Soc. Am. 2016, 140, 3130. [Google Scholar] [CrossRef]
- Berejikian, B.A.; Moore, M.E.; Jeffries, S.J. Predator–Prey Interactions between Harbor Seals and Migrating Steelhead Trout Smolts Revealed by Acoustic Telemetry. Mar. Ecol. Prog. Ser. 2016, 543, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.H.; Apfelbach, R.; Banks, P.B.; Cameron, E.Z.; Dickman, C.R.; Frank, A.S.K.; Jones, M.E.; McGregor, I.S.; McLean, S.; Müller-Schwarze, D.; et al. Biologically Meaningful Scents: A Framework for Understanding Predator–Prey Research across Disciplines. Biol. Rev. 2018, 93, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, D.; Castellote, M.; Wade, P.; Cornick, L. Call Types of Bigg’s Killer Whales (Orcinus Orca) in Western Alaska: Using Vocal Dialects to Assess Population Structure. Bioacoustics 2019, 28, 74–99. [Google Scholar] [CrossRef]
- Depraetere, M.; Pavoine, S.; Jiguet, F.; Gasc, A.; Duvail, S.; Sueur, J. Monitoring Animal Diversity Using Acoustic Indices: Implementation in a Temperate Woodland. Ecol. Indic. 2012, 13, 46–54. [Google Scholar] [CrossRef]
- Branch, C.L.; Pravosudov, V.V. Mountain Chickadees from Different Elevations Sing Different Songs: Acoustic Adaptation, Temporal Drift or Signal of Local Adaptation? R. Soc. Open Sci. 2015, 2, 150019. [Google Scholar] [CrossRef]
- Gillam, E.H.; McCracken, G.F.; Westbrook, J.K.; Lee, Y.; Jensen, M.L.; Balsley, B.B. Bats Aloft: Variability in Echolocation Call Structure at High Altitudes. Behav. Ecol. Sociobiol. 2009, 64, 69–79. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Armstrong, E.; Gordon, J.; Lusseau, S.M.; Fernandes, P.G. Passive and Active, Predator and Prey: Using Acoustics to Study Interactions between Cetaceans and Forage Fish. ICES J. Mar. Sci. 2016, 73, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Celis-Murillo, A.; Deppe, J.L.; Allen, M.F. Using Soundscape Recordings to Estimate Bird Species Abundance, Richness, and Composition. J. Field Ornithol. 2009, 80, 64–78. [Google Scholar] [CrossRef]
- Hannay, D.E.; Delarue, J.; Mouy, X.; Martin, B.S.; Leary, D.; Oswald, J.N.; Vallarta, J. Marine Mammal Acoustic Detections in the Northeastern Chukchi Sea, September 2007–July 2011. Cont. Shelf Res. 2013, 67, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Fukui, D.; Agetsuma, N.; Hill, D.A. Acoustic Identification of Eight Species of Bat (Mammalia: Chiroptera) Inhabiting Forests of Southern Hokkaido, Japan: Potential for Conservation Monitoring. Zool. Sci. 2004, 21, 947–955. [Google Scholar] [CrossRef]
- Vaughan, N.; Jones, G.; Harris, S. Identification of British Bat Species by Multivariate Analysis of Echolocation Call Parameters. Bioacoustics 1997, 7, 189–207. [Google Scholar] [CrossRef]
- Bridges, A.S.; Dorcas, M.E. Temporal Variation in Anuran Calling Behavior: Implications for Surveys and Monitoring Programs. Copeia 2000, 2000, 587–592. [Google Scholar] [CrossRef]
- Riede, K. Diversity of Sound-Producing Insects in a Bornean Lowland Rain Forest. In Tropical Rainforest Research—Current Issues: Proceedings of the Conference Held in Bandar Seri Begawan, April 1993; Edwards, D.S., Booth, W.E., Choy, S.C., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 77–84. [Google Scholar]
- Armitage, D.W.; Ober, H.K. A Comparison of Supervised Learning Techniques in the Classification of Bat Echolocation Calls. Ecol. Inform. 2010, 5, 465–473. [Google Scholar] [CrossRef]
- Baumgartner, M.F.; Mussoline, S.E. A Generalized Baleen Whale Call Detection and Classification System. J. Acoust. Soc. Am. 2011, 129, 2889–2902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandes, T.S. Automated Sound Recording and Analysis Techniques for Bird Surveys and Conservation. Bird Conserv. Int. 2008, 18, S163–S173. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, S.; DiMarzio, N.; Morrissey, R.; Morretti, D. Automated Classification of Beaked Whales and Other Small Odontocetes in the Tongue of the Ocean, Bahamas. Presented at the OCEANS 2006, Boston, MA, USA,, 18–21 September 2006. [Google Scholar]
- Oswald, J.N.; Rankin, S.; Barlow, J.; Lammers, M.O. A Tool for Real-Time Acoustic Species Identification of Delphinid Whistles. J. Acoust. Soc. Am. 2007, 122, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Coffey, K.R.; Marx, R.G.; Neumaier, J.F. Deepsqueak: A Deep Learning-Based System for Detection and Analysis of Ultrasonic Vocalizations. Neuropsychopharmacology 2019, 44, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Fukuzawa, Y.; Webb, W.H.; Pawley, M.D.M.; Roper, M.M.; Marsland, S.; Brunton, D.H.; Gilman, A. Koe: Web-Based Software to Classify Acoustic Units and Analyse Sequence Structure in Animal Vocalizations. Methods Ecol. Evol. 2020, 11, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Oswald, J.N.; Barlow, J.; Norris, T.F. Acoustic Identification of Nine Delphinid Species in the Eastern Tropical Pacific Ocean. Mar. Mammal Sci. 2003, 19, 20–037. [Google Scholar] [CrossRef] [Green Version]
- Jensen, F.H.; Wahlberg, M.; Bejder, L.; Madsen, P.T. Noise Levels and Masking Potential of Small Whale-Watching and Research Vessels around Two Delphinid Species. Bioacoustics 2008, 17, 166–168. [Google Scholar] [CrossRef]
- Larom, D.; Garstang, M.; Payne, K.; Raspet, R.; Lindeque, M. The Influence of Surface Atmospheric Conditions on the Range and Area Reached by Animal Vocalizations. J. Exp. Biol. 1997, 200, 421–431. [Google Scholar] [CrossRef]
- Oswald, J.N.; Rankin, S.; Barlow, J. The Effect of Recording and Analysis Bandwidth on Acoustic Identification of Delphinid Species. J. Acoust. Soc. Am. 2004, 116, 3178–3185. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Podos, J.; Sung, H.-C. Distinct Patterns of Geographic Variation for Different Song Components in Daurian Redstarts (Phoenicurus Auroreus). Bird Study 2019, 66, 73–82. [Google Scholar] [CrossRef]
- Lima, I.M.S.; Venuto, R.; Menchaca, C.; Hoffmann, L.S.; Dalla Rosa, L.; Genoves, R.; Fruet, P.F.; Milanelli, A.; Laporta, P.; Tassino, B.; et al. Geographic Variation in the Whistles of Bottlenose Dolphins (Tursiops Spp.) in the Southwestern Atlantic Ocean. Mar. Mammal Sci. 2020, 36, 1058–1067. [Google Scholar] [CrossRef]
- Papale, E.; Azzolin, M.; Cascão, I.; Gannier, A.; Lammers, M.O.; Martin, V.M.; Oswald, J.; Perez-Gil, M.; Prieto, R.; Silva, M.A.; et al. Geographic Variability in the Acoustic Parameters of Striped Dolphin’s (Stenella Coeruleoalba) Whistles. J. Acoust. Soc. Am. 2013, 133, 1126–1134. [Google Scholar] [CrossRef] [Green Version]
- Tamura, N.; Boonkhaw, P.; Prayoon, U.; Phan, Q.T.; Yu, P.; Liu, X.; Hayashi, F. Geographical Variation in Squirrel Mating Calls and Their Recognition Limits in the Widely Distributed Species Complex. Behav. Ecol. Sociobiol. 2021, 75, 97. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Slatkin, M. Gene Flow and the Geographic Structure of Natural Populations. Science 1987, 236, 787–792. [Google Scholar] [CrossRef]
- Irwin, D.E.; Thimgan, M.P.; Irwin, J.H. Call Divergence Is Correlated with Geographic and Genetic Distance in Greenish Warblers (Phylloscopus Trochiloides): A Strong Role for Stochasticity in Signal Evolution? J. Evol. Biol. 2008, 21, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Laiolo, P.; Tella, J.L. Landscape Bioacoustics Allow Detection of the Effects of Habitat Patchiness on Population Structure. Ecology 2006, 87, 1203–1214. [Google Scholar] [CrossRef]
- Van Cise, A.; Roch, M.A.; Baird, R.W.; Mooney, T.A.; Barlow, J. Acoustic Differentiation of Shiho- and Naisa-Type Short-Finned Pilot Whales in the Pacific Ocean. J. Acoust. Soc. Am. 2017, 141, 737–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, K.M.; Durban, J.W.; Burdin, A.M.; Burkanov, V.N.; Pitman, R.L.; Barlow, J.; Barrett-Lennard, L.G.; LeDuc, R.G.; Robertson, K.M.; Matkin, C.O.; et al. Geographic Patterns of Genetic Differentiation among Killer Whales in the Northern North Pacific. J. Hered. 2013, 104, 737–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Strobl, C.; Malley, J.; Tutz, G. An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests. Psychol. Methods 2009, 14, 323–348. [Google Scholar] [CrossRef] [Green Version]
- Garland, E.C.; Castellote, M.; Berchok, C.L. Beluga Whale (Delphinapterus Leucas) Vocalizations and Call Classification from the Eastern Beaufort Sea Population. J. Acoust. Soc. Am. 2015, 137, 3054–3067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keen, S.; Ross, J.C.; Griffiths, E.T.; Lanzone, M.; Farnsworth, A. A Comparison of Similarity-Based Approaches in the Classification of Flight Calls of Four Species of North American Wood-Warblers (Parulidae). Ecol. Inform. 2014, 21, 25–33. [Google Scholar] [CrossRef]
- Deecke, V.B.; Ford, J.K.B.; Spong, P. Dialect Change in Resident Killer Whales: Implications for Vocal Learning and Cultural Transmission. Anim. Behav. 2000, 60, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Boelman, N.T.; Asner, G.P.; Hart, P.J.; Martin, R.E. Multi-Trophic Invasion Resistance in Hawaii: Bioacoustics, Field Surveys, and Airborne Remote Sensing. Ecol. Appl. 2007, 17, 2137–2144. [Google Scholar] [CrossRef]
- Joo, W. Environmental Acoustics as an Ecological Variable to Understand the Dynamics of Ecosystems. Ph.D. Thesis, Michigan State University, Ann Arbor, MI, USA, 2009. [Google Scholar]
- Pieretti, N.; Farina, A. Application of a Recently Introduced Index for Acoustic Complexity to an Avian Soundscape with Traffic Noise. J. Acoust. Soc. Am. 2013, 134, 891–900. [Google Scholar] [CrossRef]
- Krause, B.; Gage, S.H.; Joo, W. Measuring and Interpreting the Temporal Variability in the Soundscape at Four Places in Sequoia National Park. Landsc. Ecol. 2011, 26, 1247. [Google Scholar] [CrossRef]
- Krause, B.; Farina, A. Using Ecoacoustic Methods to Survey the Impacts of Climate Change on Biodiversity. Biol. Conserv. 2016, 195, 245–254. [Google Scholar] [CrossRef]
- Oppenheim, A.V.B., Jr.; Schafer, R.W. Discrete-Time Signal Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2001; Volume 2. [Google Scholar]
- Wiley, R.H. Noise Matters: The Evolution of Communication; Harvard University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Kery, M.; Plattner, M. Species Richness Estimation and Determinants of Species Detectability in Butterfly Monitoring Programmes. Ecol. Entomol. 2007, 32, 53–61. [Google Scholar] [CrossRef]
- Meyer, C.F.J.; Aguiar, L.M.S.; Aguirre, L.F.; Baumgarten, J.; Clarke, F.M.; Cosson, J.-F.; Villegas, S.E.; Fahr, J.; Faria, D.; Furey, N.; et al. Accounting for Detectability Improves Estimates of Species Richness in Tropical Bat Surveys. J. Appl. Ecol. 2011, 48, 777–787. [Google Scholar] [CrossRef]
- Green, S. Dialects in Japanese Monkeys: Vocal Learning and Cultural Transmission of Locale-Specific Vocal Behavior? Z. Tierpsychol. 1975, 38, 304–314. [Google Scholar] [CrossRef]
- Greenfield, M.D. Evolution of Acoustic Communication in Insects. In Insect Hearing; Pollack, G.S., Mason, A.C., Popper, A.N., Fay, R.R., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 17–47. [Google Scholar]
- Picq, S.; Alda, F.; Bermingham, E.; Krahe, R. Drift-Driven Evolution of Electric Signals in a Neotropical Knifefish. Evolution 2016, 70, 2134–2144. [Google Scholar] [CrossRef]
- Podos, J.; Huber, S.K.; Taft, B. Bird Song: The Interface of Evolution and Mechanism. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 55–87. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, M.R.; Seddon, N.; Safran, R.J. Evolutionary Divergence in Acoustic Signals: Causes and Consequences. Trends Ecol. Evol. 2013, 28, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Derryberry, E.P.; Seddon, N.; Derryberry, G.E.; Claramunt, S.; Seeholzer, G.F.; Brumfield, R.T.; Tobias, J.A. Ecological Drivers of Song Evolution in Birds: Disentangling the Effects of Habitat and Morphology. Ecol. Evol. 2018, 8, 1890–1905. [Google Scholar] [CrossRef] [PubMed]
- Slabbekoorn, H.; Smith, T.B. Bird Song, Ecology and Speciation. Philos. Trans. R. Soc. B 2002, 357, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.; Feldman, M.W. Toward a Theory for the Evolution of Cultural Communication: Coevolution of Signal Transmission and Reception. Proc. Natl. Acad. Sci. USA 1987, 84, 7164–7168. [Google Scholar] [CrossRef]
- Byers, B.E.; Belinsky, K.L.; Bentley, R.A. Independent Cultural Evolution of Two Song Traditions in the Chestnut-Sided Warbler. Am. Nat. 2010, 176, 476–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garland, E.C.; Rendell, L.; Lamoni, L.; Poole, M.M.; Noad, M.J. Song Hybridization Events during Revolutionary Song Change Provide Insights into Cultural Transmission in Humpback Whales. Proc. Natl. Acad. Sci. USA 2017, 114, 7822–7829. [Google Scholar] [CrossRef] [Green Version]
- Lachlan, R.F.; Feldman, M.W. Evolution of Cultural Communication Systems: The Coevolution of Cultural Signals and Genes Encoding Learning Preferences. J. Evol. Biol. 2003, 16, 1084–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurk, H.; Barrett-Lennard, L.; Ford, J.K.B.; Matkin, C.O. Cultural Transmission within Maternal Lineages: Vocal Clans in Resident Killer Whales in Southern Alaska. Anim. Behav. 2002, 63, 1103–1119. [Google Scholar] [CrossRef] [Green Version]
- Derryberry, E.P. Ecology Shapes Birdsong Evolution: Variation in Morphology and Habitat Explains Variation in White-Crowned Sparrow Song. Am. Nat. 2009, 174, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, S.; Marler, P. The Analysis of Animal Communication. In Social Behavior and Communication; Marler, P., Vandenbergh, J.G., Eds.; Springer: Boston, MA, USA, 1979; pp. 73–158. [Google Scholar]
- Scherberich, J.; Hummel, J.; Schöneich, S.; Nowotny, M. Functional Basis of the Sexual Dimorphism in the Auditory Fovea of the Duetting Bushcricket (Ancylecha Fenestrata). Proc. R. Soc. B 2017, 284, 20171426. [Google Scholar] [CrossRef] [Green Version]
- Slabbekoorn, H.; Ripmeester, E.A. Birdsong and Anthropogenic Noise: Implications and Applications for Conservation. Mol. Ecol. 2008, 17, 72–83. [Google Scholar] [CrossRef]
- Fehér, O.; Wang, H.; Saar, S.; Mitra, P.P.; Tchernichovski, O. De Novo Establishment of Wild-Type Song Culture in the Zebra Finch. Nature 2009, 459, 564–568. [Google Scholar] [CrossRef] [Green Version]
- Endler, J.A. Signals, Signal Conditions, and the Direction of Evolution. Am. Nat. 1992, 139, S125–S153. [Google Scholar] [CrossRef] [Green Version]
- Perez, E.C.; Elie, J.E.; Soulage, C.O.; Soula, H.A.; Mathevon, N.; Vignal, C. The Acoustic Expression of Stress in a Songbird: Does Corticosterone Drive Isolation-Induced Modifications of Zebra Finch Calls? Horm. Behav. 2012, 61, 573–581. [Google Scholar] [CrossRef]
- Sheldon, E.L.; Ironside, J.E.; de Vere, N.; Marshall, R.C. Singing under Glass: Rapid Effects of Anthropogenic Habitat Modification on Song and Response Behaviours in an Isolated House Sparrow Passer Domesticus Population. J. Avian Biol. 2020, 51, 1–8. [Google Scholar] [CrossRef]
- Emlen, S.T.; Oring, L.W. Ecology, Sexual Selection, and the Evolution of Mating Systems. Science 1977, 197, 215–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West-Eberhard, M.J. Sexual Selection, Competitive Communication and Species Specific Signals in Insects. In Insect Communication, Proceedings of the 12th Symposium of the Royal Entomological Society of London, London, UK, 7–9 September 1983; Academic Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Akamatsu, T.; Teilmann, J.; Miller, L.A.; Tougaard, J.; Dietz, R.; Wang, D.; Wang, K.; Siebert, U.; Naito, Y. Comparison of Echolocation Behaviour between Coastal and Riverine Porpoises. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 290–297. [Google Scholar] [CrossRef]
- Neuweiler, G. Foraging Ecology and Audition in Echolocating Bats. Trends Ecol. Evol. 1989, 4, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Teilmann, J. Influence of Sea State on Density Estimates of Harbour Porpoises (Phocoena Phocoena). J. Cetacean Res. Manag. 2003, 5, 85–92. [Google Scholar]
- Møhl, B.; Andersen, S. Echolocation: High-Frequency Component in the Click of the Harbour Porpoise (Phocoena Ph. L.). J. Acoust. Soc. Am. 1973, 54, 1368–1372. [Google Scholar] [CrossRef]
- Teilmann, J.; Miller, L.; Kirketerp, T.; Kastelein, R.; Madsen, P.T.; Nielsen, B.K.; Au, W.W.L. Characteristics of Echolocation Signals Used by a Harbour Porpoise ( Phocoena Phocoena ) in a Target Detection Experiment. Aquat. Mamm. 2002, 28, 275–284. [Google Scholar]
- Gillespie, D.; Mellinger, D.K.; Gordon, J.; McLaren, D.; Redmond, P.; McHugh, R.; Trinder, P.; Deng, X.; Thode, A. Pamguard: Semiautomated, Open Source Software for Real-Time Acoustic Detection and Localization of Cetaceans. J. Acoust. Soc. Am. 2009, 125, 2547. [Google Scholar] [CrossRef]
- Brudzynski, S.M. Communication of Adult Rats by Ultrasonic Vocalization: Biological, Sociobiological, and Neuroscience Approaches. ILAR J. 2009, 50, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Seyfarth, R.; Cheney, D. Meaning and Emotion in Animal Vocalizations. Ann. N. Y. Acad. Sci. 2004, 1000, 32–55. [Google Scholar] [CrossRef]
- Janik, V.M.; Slater, P.J.B. Context-Specific Use Suggests That Bottlenose Dolphin Signature Whistles Are Cohesion Calls. Anim. Behav. 1998, 56, 829–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derrickson, K.C. Yearly and Situational Changes in the Estimate of Repertoire Size in Northern Mockingbirds (Mimus Polyglottos). Auk 1987, 104, 198–207. [Google Scholar] [CrossRef]
- Sekulic, R. Daily and Seasonal Patterns of Roaring and Spacing in Four Red Howler Alouatta Seniculus Troops. Folia Primatol. 1982, 39, 22–48. [Google Scholar] [CrossRef]
- Colombelli-Négrel, D.; Smale, R. Habitat Explained Microgeographic Variation in Little Penguin Agonistic Calls. Auk 2017, 135, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Sementili-Cardoso, G.; Rodrigues, F.G.; Martins, R.M.; Gerotti, R.W.; Vianna, R.M.; Donatelli, R.J. Variation among Vocalizations of Taraba Major (Aves: Thamnophilidae) Subspecies. Stud. Neotrop. Fauna Environ. 2018, 53, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Oswald, J.N.; Walmsley, S.F.; Casey, C.; Fregosi, S.; Southall, B.; Janik, V.M. Species Information in Whistle Frequency Modulation Patterns of Common Dolphins. Philos. Trans. R. Soc. B 2021, 376, 20210046. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Shen, T.-J. Nonparametric Prediction in Species Sampling. J. Agric. Biol. Environ. Stat. 2004, 9, 253–269. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A.; Corbet, A.S.; Williams, C.B. The Relation between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. J. Anim. Ecol. 1943, 12, 42–58. [Google Scholar] [CrossRef]
- Metcalf, O.C.; Barlow, J.; Marsden, S.; de Moura, N.G.; Berenguer, E.; Ferreira, J.; Lees, A.C. Optimizing Tropical Forest Bird Surveys Using Passive Acoustic Monitoring and High Temporal Resolution Sampling. Remote Sens. Ecol. Conserv. 2022, 8, 45–56. [Google Scholar] [CrossRef]
- Rand, Z.R.; Wood, J.D.; Oswald, J.N. Effects of Duty Cycles on Passive Acoustic Monitoring of Southern Resident Killer Whale (Orcinus Orca) Occurrence and Behavior. J. Acoust. Soc. Am. 2022, 151, 1651–1660. [Google Scholar] [CrossRef]
- Stanistreet, J.E.; Nowacek, D.P.; Read, A.J.; Baumann-Pickering, S.; Moors-Murphy, H.B.; Van Parijs, S.M. Effects of Duty-Cycled Passive Acoustic Recordings on Detecting the Presence of Beaked Whales in the Northwest Atlantic. J. Acoust. Soc. Am. 2016, 140, EL31–EL37. [Google Scholar] [CrossRef] [Green Version]
- Thomisch, K.; Boebel, O.; Zitterbart, D.P.; Samaran, F.; Van Parijs, S.; Van Opzeeland, I. Effects of Subsampling of Passive Acoustic Recordings on Acoustic Metrics. J. Acoust. Soc. Am. 2015, 138, 267–278. [Google Scholar] [CrossRef]
- Blumstein, D.T.; Mennill, D.J.; Clemins, P.; Girod, L.; Yao, K.; Patricelli, G.; Deppe, J.L.; Krakauer, A.H.; Clark, C.; Cortopassi, K.A.; et al. Acoustic Monitoring in Terrestrial Environments Using Microphone Arrays: Applications, Technological Considerations and Prospectus. J. Appl. Ecol. 2011, 48, 758–767. [Google Scholar] [CrossRef]
- Verreycken, E.; Simon, R.; Quirk-Royal, B.; Daems, W.; Barber, J.R.; Steckel, J. Bio-Acoustic Tracking and Localization Using Heterogeneous, Scalable Microphone Arrays. Commun. Biol. 2021, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.M.; O’Donnell, C.F.J.; Armstrong, D.P. Cost-Benefit Analysis of Acoustic Recorders as a Solution to Sampling Challenges Experienced Monitoring Cryptic Species. Ecol. Evol. 2018, 8, 6839–6848. [Google Scholar] [CrossRef] [PubMed]
- Roch, M.A.; Batchelor, H.; Baumann-Pickering, S.; Berchok, C.L.; Cholewiak, D.; Fujioka, E.; Garland, E.C.; Herbert, S.; Hildebrand, J.A.; Oleson, E.M.; et al. Management of Acoustic Metadata for Bioacoustics. Ecol. Inform. 2016, 31, 122–136. [Google Scholar] [CrossRef] [Green Version]
- Darras, K.; Batáry, P.; Furnas, B.J.; Grass, I.; Mulyani, Y.A.; Tscharntke, T. Autonomous Sound Recording Outperforms Human Observation for Sampling Birds: A Systematic Map and User Guide. Ecol. Appl. 2019, 29, e01954. [Google Scholar] [CrossRef] [Green Version]
- Oswald, J.N.; Rankin, S.; Barlow, J.; Oswald, M.; Lammers, M. Real-Time Odontocete Call Classification Algorithm (Rocca): Software for Species Identification of Delphinid Whistles. In Detection, Classification and Localization of Marine Mammals Using Passive Acoustics, 2003–2013: 10 Years of International Research; DIRAC NGO: Paris, France, 2013; pp. 245–266. [Google Scholar]
- Filatova, O.A.; Deecke, V.B.; Ford, J.K.B.; Matkin, C.O.; Barrett-Lennard, L.G.; Guzeev, M.A.; Burdin, A.M.; Hoyt, E. Call Diversity in the North Pacific Killer Whale Populations: Implications for Dialect Evolution and Population History. Anim. Behav. 2012, 83, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Ford, J.K.B. Vocal Traditions among Resident Killer Whales (Orcinus Orca) in Coastal Waters of British Columbia. Can. J. Zool. 1991, 69, 1454–1483. [Google Scholar] [CrossRef]
- Fitch, W.T.; Suthers, R.A. Vertebrate Vocal Production: An Introductory Overview. In Vertebrate Sound Production and Acoustic Communication; Suthers, R.A., Fitch, W.T., Fay, R.R., Popper, A.N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–18. [Google Scholar]
- Gentry, K.E.; Lewis, R.N.; Glanz, H.; Simões, P.I.; Nyári, Á.S.; Reichert, M.S. Bioacoustics in Cognitive Research: Applications, Considerations, and Recommendations. WIREs Cogn. Sci. 2020, 11, e1538. [Google Scholar] [CrossRef]
- Baker, M.C.; Logue, D.M. Population Differentiation in a Complex Bird Sound: A Comparison of Three Bioacoustical Analysis Procedures. Ethology 2003, 109, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Deecke, V.B.; Janik, V.M. Automated Categorization of Bioacoustic Signals: Avoiding Perceptual Pitfalls. J. Acoust. Soc. Am. 2006, 119, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Noser, R.; Hammerschmidt, K. Bioacoustic Field Research: A Primer to Acoustic Analyses and Playback Experiments with Primates. Am. J. Primatol. 2013, 75, 643–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odom, K.J.; Araya-Salas, M.; Morano, J.L.; Ligon, R.A.; Leighton, G.M.; Taff, C.C.; Dalziell, A.H.; Billings, A.C.; Germain, R.R.; Pardo, M.; et al. Comparative Bioacoustics: A Roadmap for Quantifying and Comparing Animal Sounds across Diverse Taxa. Biol. Rev. 2021, 96, 1135–1159. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Johnson, M.T.; Clemins, P.J.; Darre, M.; Glaeser, S.S.; Osiejuk, T.S.; Out-Nyarko, E. A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models. Algorithms 2009, 2, 1410–1428. [Google Scholar] [CrossRef] [Green Version]
- Stowell, D. Computational Bioacoustic Scene Analysis. In Computational Analysis of Sound Scenes and Events; Virtanen, T., Plumbley, M.D., Ellis, D., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 303–333. [Google Scholar]
- Wood, C.M.; Popescu, V.D.; Klinck, H.; Keane, J.J.; Gutiérrez, R.J.; Sawyer, S.C.; Peery, M.Z. Detecting Small Changes in Populations at Landscape Scales: A Bioacoustic Site-Occupancy Framework. Ecol. Indic. 2019, 98, 492–507. [Google Scholar] [CrossRef]
- Oswald, J.N.; Erbe, C.; Gannon, W.L.; Madhusudhana, S.; Thomas, J.A. Detection and Classification Methods for Animal Sounds. In Exploring Animal Behavior Through Sound: Volume 1; Erbe, C., Thomas, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 269–317. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oswald, J.N.; Van Cise, A.M.; Dassow, A.; Elliott, T.; Johnson, M.T.; Ravignani, A.; Podos, J. A Collection of Best Practices for the Collection and Analysis of Bioacoustic Data. Appl. Sci. 2022, 12, 12046. https://doi.org/10.3390/app122312046
Oswald JN, Van Cise AM, Dassow A, Elliott T, Johnson MT, Ravignani A, Podos J. A Collection of Best Practices for the Collection and Analysis of Bioacoustic Data. Applied Sciences. 2022; 12(23):12046. https://doi.org/10.3390/app122312046
Chicago/Turabian StyleOswald, Julie N., Amy M. Van Cise, Angela Dassow, Taffeta Elliott, Michael T. Johnson, Andrea Ravignani, and Jeffrey Podos. 2022. "A Collection of Best Practices for the Collection and Analysis of Bioacoustic Data" Applied Sciences 12, no. 23: 12046. https://doi.org/10.3390/app122312046
APA StyleOswald, J. N., Van Cise, A. M., Dassow, A., Elliott, T., Johnson, M. T., Ravignani, A., & Podos, J. (2022). A Collection of Best Practices for the Collection and Analysis of Bioacoustic Data. Applied Sciences, 12(23), 12046. https://doi.org/10.3390/app122312046