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Abstract: With the continuous development of communication technology, the wireless communi-
cation environment becomes more and more complex with various intentional and unintentional
signals. Radio signals are modulated in different ways. The traditional radio modulation recognition
technology cannot recognize the modulation modes accurately. Consequently, the communication
system has embraced Deep Learning (DL) models as they can automatically recognize the modula-
tion modes and have better accuracy. This paper systematically summarizes the related contents of
radio Automatic Modulation Recognition (AMR) based on DL over the last seven years. First, we
summarize the current research status of modulation recognition and the necessity of AMR research
based on DL. Then, we review current radio AMR methods based on DL. In addition, we also propose
a network model of AMR based on Convolutional Neural Network (CNN) and prove its effectiveness.
Finally, we highlight existing challenges and research directions of radio AMR based on DL.

Keywords: deep learning; automatic modulation recognition; neural network; radio signal

1. Introduction

Since the 20th century, with the continuous development of radio communication
technology [1], the communication environment has become more and more complex.
In order to ensure the accuracy, speed, security and effectiveness of information in the
actual communication process, radio modulation recognition is needed, which is an inter-
mediate process of signal detection and signal demodulation. The modulation recognition
technology of radio signals plays an important role in military [2], national security and
civil fields. In the crowded electromagnetic spectrum environment, the information sent
by the sender in wireless communication is affected by various factors, which will lead to
the fusion of information and noise, so it is very challenging for the receiver to accurately
recognize and receive complete information. For example, in military applications, it is
necessary to ensure that friendly signals can be sent and received safely and at the same
time to recognize, interfere and locate hostile signals [3]. However, the frequency range of
the signal is very wide now and the modulation mode has changed from simple narrow-
band modulation to broadband modulation, so there are more and more modulation types.
In this case, it is increasingly difficult to recognize the radio modulation modes accurately in
real time. In order to improve the efficiency and accuracy of radio modulation recognition,
it is imperative to study new approaches for radio signal modulation recognition. Of course,
with the development of science and technology, some AMR technologies have emerged.

AMR can provide basic modulation information of input radio, especially in non-
cooperative radio signals. AMR is an intermediate step between signal modulation and
signal demodulation. It can be seen that AMR technology is a prerequisite for demodulating
signals at the receiver and a key link in wireless communication. It plays a key role in
cognitive radio, spectrum sensing, interference identification, signal monitoring and other
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scenarios. In the process of signal transmission, on one hand, the signal transmitted by the
transmitter is usually affected by noise, multipath fading, center frequency offset, etc.; on the
other hand, the signal structure is distorted due to poor hardware design or crystal oscillator
drifting, which makes it difficult to distinguish different modulation schemes. At this time,
AMR plays a key role. This technology can automatically identify the modulation type
of the signal, so as to obtain the information contained in the signal without knowing the
system parameters. Its automation can greatly reduce the consumption of human resources.
At the same time, it can greatly improve the accuracy of signal modulation recognition.

In the early days, traditional modulation recognition mainly depended on manual
work. The operator could judge the modulation mode of the signal by observing the time
domain and frequency domain of the signal with the oscilloscope and other instruments.
This manual method not only had large recognition error, but also long recognition time
and could only be applied to limited modulation types. Later, with the development of
modulation recognition technologies, there are two Automatic Modulation Classification
(AMC) methods. One is the modulation recognition method based on the maximum likeli-
hood ratio [4–6] and the basic idea of this method is hypothesis testing. First, the likelihood
probability model is given to estimate the probabilities of different modulation modes.
Then, the possible modulation modes are tested. Finally, the modulation type with the
maximum likelihood probability is selected as the experimental result. This method can
make the classification result optimal while ensuring the Bayesian minimum error criterion.
However, this method needs a lot of computation and a priori information, so it cannot be
used widely. Another is the modulation method based on feature extraction [7–13]. This
method extracts the spectrum differences between different modulation types and classifies
these features by constructing a classifier model, so as to obtain the modulation mode of
the unknown signal. This method has low complexity. However, it relies on the selection of
signal features. If the selected features are not distinguishable in the communication system,
the classification effect will be very poor. Therefore, it is necessary to find an algorithm
which has strong generalization ability and can automatically learn modulation features
from sample data.

Today, Machine Learning (ML) and DL show overwhelming advantages in fields such
as computer vision [14], speech recognition [15], image processing [16] and robotics [17].
For ML, its learning algorithms need to be designed by expert engineers and are mainly
aimed at manual extraction of engineering features. When ML algorithms fail in the
prediction process, expert engineers are required to adjust them. However, with DL,
features are learned automatically at multiple levels. DL models can learn and extract
features unsupervised from unlabeled or unstructured data, making decisions without
human supervision. Therefore, DL is more automatic and efficient than ML. More recently,
DL has also been applied to the field of radio modulation recognition. The process of radio
AMR based on DL can be roughly described as below. First, the DL algorithm is used to
code and learn the radio time domain signals; then, through deep learning, the similarity of
the feature vectors or the same characteristics of similar modulation signals can be matched
automatically; finally, the radio characteristics can be fine-tuned from top to bottom using
the class label information of training data to obtain a radio in DL representation vector to
train the fully connected classifier for radio modulation classification.

In this paper, we collected the milestone works and the latest progress of AMC based
on DL in the past seven years. The papers in the reference section are downloaded from the
following sources: Google Scholar, MPDI, IEEE Explore, Scopus Elsevier, Springer, Web of
Science, Research Gate, arXiv, etc. This paper mainly reviews the methods of AMC based
on DL. There are many DL-based AMC methods. According to the different DL network
models used, the methods are divided into four categories: CNN-based AMR method,
RNN-based AMR method, DBN-based AMR method and hybrid network-based AMR
method. By observing the literature of the recent years, the latest and novel methods of
AMC based on DL are summarized. Considering that datasets are necessary for signal
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training and testing with DL networks, this paper also summarizes the reference papers
that propose different datasets.

In recent decades, radio AMR has made significant progress, especially in recent years.
DL has brought advancement to many research areas, including radio AMR. The aim of
this survey is to comprehensively summarize the relevant work of DL in the field of radio
AMR. The main contributions of this paper are summarized as follows:

• We briefly review the relevant progress of DL-based AMR in the past seven years
and point out the benefits of DL technology for AMR research.

• We summarize the existing methods of DL-based AMR and classify them according to
CNN, RNN, DBN and hybrid network. In addition, the new research methods and
research trends in the past year are also given.

• We investigate the radio signal datasets used by DL-based AMR. They are introduced
in detail.

• We propose a CNN-based AMR method, which is proved to have good performance
and high recognition accuracy through simulation experiments.

• We introduce the commonly used evaluation parameters of DL-based AMR for clearer
understanding of the relevant literature.

• We discuss and compare the existing AMC methods based on DL in detail. The existing
problems and future research directions are summarized.

This paper is organized as follows. In Section 2, we introduce the related work of
AMC based on DL. Next, Section 3 summarizes the existing methods of AMR based on DL.
Section 4 summarizes and describes the published radio signal datasets. In Section 5, a radio
modulation recognition method based on CNN is proposed and its experimental simulation
and verification are carried out. Section 6 introduces the commonly used evaluation param-
eters. Section 7 discusses the existing DL-based AMR methods. Section 8 summarizes and
discusses the problems that need to be solved in the field of radio modulation recognition
and the future research directions. Section 9 concludes the whole paper.

2. Related Work

Researchers worldwide have done a lot of work on radio modulation recognition
based on DL. They have proposed a variety of network models for radio AMR based on DL.
In 2016, Kim [18] first proposed AMR technology based on Deep Neural Network (DNN).
Subsequently, many modulation recognition methods based on DL have been developed.
To facilitate the training and testing of the network, Timothy et al. [19] established a
benchmark dataset using GNU’S Not Unix (GNU) radio. O’Shea et al. [19,20] proposed
two methods to recognize the signals of the dataset. One is CNN [19], which is used in the
field of modulation recognition and the other is to apply the Recurrent Neural Network
(RNN) [20] to modulation recognition. By 2017, some new methods had been developed.
Mendis et al. [21] proposed an AMC recognition scheme based on Deep Belief Network
(DBN). Ali et al. [22] first proposed a non-negative constraint training method based on
Auto-Encoder (AE). Hang et al. [23] proposed a two-layer GRU based on circular neural
network with appropriate parameters. In 2018, Rajendran et al. [24] proposed an AMC
with Long Short-Term Memory (LSTM) based on improved RNN.

Until recent years, more and more methods have been studied in this field and a
large number of methods based on DL have been proposed. In 2022, Ghanem et al. [25]
proposed a wireless modulation classification algorithm based on CNNs in which the radon
transform (RT) of constellation diagrams with different modulation types is used as input.
Soon after, Ghanem et al. [26] conducted a more in-depth study in this direction. An AMC
approach based on 2D transforms and CNN was proposed. Various transform methods
were used. Abdel-Moneim et al. [27] proposed a new AMC method that combines Gabor
filtering, thresholding and CNN. Hamidi-Rad et al. [28] proposed MCformer, a transformer
for AMC based on DNN. MCformer makes use of the convolution layer and self-attention
mechanism. Wu et al. [29] proposed a multi-scale feature network with large kernel size and
squeeze-and-excitation mechanism for AMC. Sun et al. [30] proposed two AMC methods
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based on DL using image classification technology. One uses constellation images and
image classification technology and the other uses Graphic Representation of Features
(GRF) technology.

From them, it is found that using DL to recognize the modulated radio signals has
many advantages. The recognition accuracy is greatly improved compared with the tradi-
tional modulation recognition methods. The recognition methods based on DL solve the
problems of dependence on manual characteristics extraction, low robustness and difficult
model deployment in the traditional radio signal recognition methods. They overcome the
shortcomings of traditional linear classification methods, achieve accurate recognition of
radio-coded modulation signals and effectively enhance the classification performance of
radio modulation.

3. Radio Modulation Recognition Methods Based on Deep Learning

Recently, a variety of radio AMR methods based on DL have been proposed by the
academic community. After investigation, it is found that the commonly used DL models
are CNN, RNN, LSTM, AE, DBN, etc. In addition, there are some hybrid DL models.
Although they are not commonly used, they have great advantages, such as, Deep Multi-
scale Convolutional Neural Network (DMCNN), Convolutional Long Short-Term Deep
Neural Network (CLDNN). We classify literature according to the different DL models
they have used. According to the literature survey, major papers of DL models in radio
modulation recognition are shown in Table 1 and the applications of different models will
be described below in detail.

Table 1. Applications of DL models in radio modulation recognition.

DL Model Literature

CNN [31–56]

RNN [23]

LSTM [24,49,50,57,58]

DBN [21,59–61]

Other
GRU [62,63], AE [22,64], CGRN [65], CLDNN [66,67], DenseNet + BLSTM +

DNN [68], CNN + GRU [69,70], CNN + GRU + DNN [71], CNN + LSTM [72,73],
CNN + IndRNN [74]

3.1. CNN

CNN is a kind of feedforward neural network with deep structure and large amount
of computation. It is one of the representative algorithms of DL [75,76]. CNN has local
perception, weight sharing and shift invariance. It exploits spatial local correlation by
enforcing local connectivity patterns of adjacent layers, sharing weights between each
layer. A basic assumption of CNN is that input data are local and shift invariant. Wireless
signal sampling data fit this hypothesis. With the continuous expansion of DL knowledge,
the structure of CNN model is more and more diverse. Representative CNN algorithms
include LeNet [77], AlexNet [78], ZFNet [79], VGGNet [80], Google LeNet [81], Residual
Network (ResNet) [82] and DenseNet [83]. The general architecture of CNN is shown
in Figure 1. Typical CNN consists of an input layer, a hidden layer and an output layer.
The radio signal x is input into the network from the input layer and data features are
extracted and processed through the hidden layer; then the signal modulation mode is
output from the output layer and the signals are classified into different modulation modes.
The hidden layer includes a convolution layer, an excitation layer, a pooling layer and a
fully connected layer (also called dense layer). Some models also use other functional layers
in between, such as the normalization layer, the dropout layer and so on. The functions of
the main layers are described as follows:

• Input layer: This layer is used for data entry.
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• Convolution layer: This layer uses the convolution kernel for feature extraction and
feature mapping [84].

• Activating layer: This layer adds nonlinear mapping by using activation functions,
because linear models are not expressive enough.

• Pooling layer: This layer carries out a subsampling operation on the feature graph
output after convolution, so as to reduce the number of parameters.

• Fully connected layer: This layer converts the previous activation graph into a probabil-
ity distribution and finally sends it to the Softmax layer for classification of categories.

• Output layer: This layer is used to output classification results.

Input layer Convolution layer Pooling layer

Fully connected layer

Output layer

Figure 1. Typical CNN structure.

Radio modulation recognition is no exception in becoming an area of using CNN.
There is a lot of literature on radio modulation recognition methods based on the CNN as
summarized in Table 2 and described below. Zhang et al. [31] used CNN to recognize and
classify radio waveforms and used a two-dimensional time-frequency diagram to charac-
terize various signals. When the signal-to-noise ratio (SNR) is −2 dB, the overall ratio of
successful recognition (RSR) can reach 93.7%. Sethi et al. [32] proposed a signal distortion
correction module (CM). They used CM to shift the signal frequency and phase before
modulation recognition. Even if CM plus CNN is used for radio modulation recognition,
the experimental results show that the recognition accuracy is significantly higher than
that of CNN plus CLDNN. There are many modulation recognition methods based on the
radar signals. Gao et al. [33] proposed an AMR network for radar signals based on transfer
learning CNN. The effective information on the fused image is extracted and identified.
When the SNR is −6 dB, the overall RSR can reach 95.5%. Wang et al. [34] combined two
CNNs trained on different datasets (i.e., a DL-based combination of two CNNs) to achieve
more accurate radio AMR and designed a constellation-based CNN to identify modulation
modes that were difficult to distinguish in previous CNNs. Xu et al. [35] proposed a method
of radio automatic modulation recognition based on CNN, which used short-time Fourier
transform (STFT) to create spectrogram images of different complex signals to convert com-
plex modulation recognition problems into image recognition problems. Rakesh et al. [36]
proposed radio access technology (RAT), a wireless access technology based on the com-
bination of time-frequency distribution and CNN. Time-frequency analysis was used to
obtain the spectral content of the signal. CNN was used for feature extraction and recog-
nition. Performance charts and confusion matrices for correct recognition were used to
analyze the accuracy of the network. Wu et al. [37] proposed a radio AMC method with
multifeature fusion based on CNN, which can achieve the same or better results with
less learning parameters and training time. Gu et al. [38] proposed a BCI-assisted gen-
eralized AMR based on DL of two CNNs: the former identifies the channel category of
the signal, while the latter classifies the signals under the same channel. The simulation
shows that the proposed GenAMR method is significantly better than the traditional one.
Yang et al. [39] studied three fusion methods when the signal length is longer than the
designed CNN input length: voting-based fusion, trust-based fusion and feature-based
fusion. Experiments show that the latter two methods have better performance. Yong-
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shi et al. [40] proposed a radio AMC method based on wavelet denoising pre-processing
and improved CNN architecture. The method first decomposes the baseband signal into
various frequency scales by wavelet transform, then classifies the pre-processed signal
by improved CNN. Dileep et al. [41] proposed an AMC modulation classification based
on dense layer DropoutCNN (DDrCNN), selected the classification cross-entropy as the
loss function and selected Adam as the optimization function, including only one CNN.
The modulation schemes are classified by the IQ samples of training data. Above 97%
accuracy can be achieved over 2 dB SNR. Li et al. [42] proposed a sparse filtering criterion to
carry out unsupervised layer-by-layer pre-training of the CNN network, which effectively
improved the generalization ability. Peng et al. [43] used AlexNet and GoogleNet, two DL
models based on CNN, to classify the signals for modulation. That is, several methods
have been developed to represent the modulated signals in the data format of CNN with a
grid topology. Wu et al. [44] constructed a five-layer CNN model to identify VHF signals.
Simulation and actual signals showed that the influence of frequency shift and noise on
accuracy was great. Peng et al. [45] proposed the idea of using CNN to classify the modula-
tion types in the communication system. In their method, the constellation diagram was
used to represent the modulated signal of CNN. AlexNet model was used for training and
testing. Kulin et al. [46] used time-domain features, such as IQ vector and amplitude/phase
vector, to train the CNN classifier. Experimental results showed that the scheme could
identify ZigBee, WiFi and Bluetooth signals well. O’Shea et al. [47] extended the deep CNN
model of radio and used deep residual network for signal classification. Its robustness
was also discussed. Longi et al. [48] proposed a supervision model based on CNN and
trained a series of pseudo labeled time slice spectral data in the model. Zhang et al. [49]
proposed an AMR framework based on CNN. A preprocessed signal representation was
proposed, which combined the orthogonal, fourth-order statistics of the modulated signals.
The accuracy was improved by 8%. Sang et al. [50] proposed an AMR method for radio
signals based on improved CNN. The classification accuracy can reach 93%. Wang et al. [51]
proposed a lightweight CNN for AMC. Different model blocks in the network were used
for feature extraction, feature reconstruction and full connection classification. The re-
sults showed that this method greatly reduced the number of parameters and inference
time. Zhang et al. [52] proposed a multiscale CNN for constellation-based modulation
classification. The network structure was composed of multiple processing modules to
fully understand more internal features from images similar to constellations. At the same
time, the convolution gray image was developed and the convolution kernel was used to
overcome the shortcomings of the existing imaging schemes. The average classification
accuracy of the network trained on convolution gray image dataset was about 97.7% at
4 dB SNR. Ghanem et al. [25] proposed an AMC method based on CNN, which used RT
of constellation diagrams as input. For several modulation types, constellation radom
transform improved the performance and accuracy of the classifier. Du et al. [53] proposed
a dilated CNN for AMR. Firstly, the one-dimensional modulation signal was converted
into a two-dimensional asynchronous delay histogram. Then, it is input to CNN based on
dilated convolution kernel. Experiment results showed that this AMR method significantly
improved the recognition accuracy in low SNR. Shi et al. [54] proposed an AMR method,
which includes a multi-scale convolution deep network with attention module and a shal-
low network for recognizing modulation types that were easy to misclassify. The overall
recognition accuracy could reach 98.7%. It performed well in recognizing high-order and
analog signals. Le et al. [56] proposed five CNN models, including ResNet18, SqueezeNet,
GoogleNet, MobileNet and RepVGG. The experimental results showed that the SqueezeNet
model achieved the highest accuracy of 97.5% when the SNR was +8 dB. Based on the eval-
uation results of a single model, an ensemble learning method was proposed. Experimental
results showed that ensemble learning improved the accuracy of modulation recognition.
Weighted ensemble had better performance than the unweighted model.
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Table 2. Radio modulation recognition networks based on CNN.

Year Author The Innovation of
the Paper Dataset Evaluation

Parameter
The Technology of

DL

2017 Zhang et al. [31] CNN Created dataset 1 The overall RSR is
93.7%.

CNN architecture;
Two dimensional time

frequency diagram.

2017 Peng et al. [45]
Modulation

recognition based on
CNN.

Unspecified High SNR area is
close to 100%.

AlexNet Model;
CNN.

2017 Wang et al. [40] Improved AMC
method on CNN. Created dataset 1 The accuracy is up to

90%. CNN architecture

2018 Li et al. [42]

A novel
sparse-filtering

criterion;
Unsupervised

pre-train.

Created dataset 1 Accuracy higher than
95%.

Sparse-Filtering CNN;
Unsupervised
pretraining.

2018 Peng et al. [43]
Modulation

classification based on
CNN.

Created dataset 1
The classification
accuracy reached

97.1%.
AlexNet; GoogLeNet.

2018 Wu et al. [44]

VHF radio signal
modulation

classification based on
CNN.

Created dataset 1
The classification

accuracy can reach
99%.

CNN

2018 Kulin et al. [46]
Time domain features
are used to train the

CNN classifier.
RadioML2016.10a The classification

accuracy is up to 99%. CNN

2018 O’Shea et al. [47]
Modulation

Recognition Based on
Residual Network.

RadioML2018.01a Up to 94% accuracy. Deep residual
network

2018 Xu et al. [35] CNN Create spectrum
image.

The average
recognition rate can

reach 95%.
CNN

2018 Rakesh et al. [36]

Combination of time
frequency

distribution and
CNN.

Generating rat
spectrum with

Matlab.

Classification
accuracy up to 100%.

Blind identification
method;

CNN architecture.

2018 Longi et al. [48] Supervision model
based on CNN. Collected data Achieve 2% error rate.

Semi-supervised
learning;

CNN.

2018 Zhang et al. [49] CNN; A preprocessed
signal representation. RadioML2016.10a The accuracy is

improved by 8%. CNN

2018 Sang et al. [50] Improved CNN. RadioML2016.10a The accuracy can
reach 93%. CNN

2019 Sethi et al. [32] Correction module
CM + CNN. RadioML2016.10a The accuracy is up to

90%.

Calibration
module cm;

CNN architecture.

2019 Gao et al. [33] CNN based on
Transfer Learning. Created dataset 1 The overall RSR is up

to 95.5%.

Image fusion
algorithm;
CNN of

transfer learning.
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Table 2. Cont.

Year Author The Innovation of
the Paper Dataset Evaluation

Parameter
The Technology of

DL

2019 Wang et al. [34]

Combination of two
CNN based on DL;

CNN based on
Constellation.

Constellation dataset
created.

The accuracy of the
former can reach
more than 95%;

The latter precision is
close to 100%.

Planisphere;
DrCNN.

2019 Wu et al. [37]
AMC with multi

feature fusion based
on CNN.

RadioML2016.10a

The average accuracy
is 80%;

Reduced training
time.

Multi feature fusion;
CNN architecture.

2019 Gu et al. [38] Geneamr based on
two CNN. Created dataset 1 The accuracy can

reach 98%. CNN architecture.

2019 Yang et al [39]
AMR of CNN based

on three fusion
methods.

Created dataset 1 The accuracy is 96%,
97%, 98%. CNN architecture.

2020 Dileep et al. [41] Dense layer dropout
CNN (DDrCNN). Created dataset 1

More than 97%
accuracy can be

achieved.

CNN architecture;
Classification cross

entropy.

2021 Wang et al. [51]
An AMC method

based on lightweight
CNN.

RadioML2016.10a;
RadioML2018.01a

The proposed
network can save
70∼98% model
parameters and

30∼99% inference
time.

CNN;
Residual architecture.

2021 Zhang et al. [52]
An AMC method

based on
multiple-scale CNN.

Created dataset 1

The averaged
classification accuracy

reaches
approximately 97.7%

at 4 dB SNR.

CNN

2022 Ghanem et al. [25]

An AMC method
based on CNN, which
uses radom transform

of constellation
diagrams as input.

Created dataset 1
The classification
accuracy reaches

100% at 5 dB SNR.
CNN; AlexNet; VGG.

2022 Du et al. [53] A dilated CNN for
AMR. Created dataset 1

The recognition
accuracy under low
SNR is significantly

improved.

Dilated CNN.

2022 Shi et al. [54]

An AMR method
based on a multi-scale

convolution deep
network.

RadioML2018.01a
The recognition

accuracy can reach
98.7%.

CNN;
Attention

mechanisms.

2022 Lin et al. [55]

An AMR framework
based on CNN with

time-frequency
attention mechanism.

RadioML2018.01a;
RadioML2016.10b

This method has
higher recognition

rate and fewer
parameters.

CNN;
Attention

mechanisms.

2022 Le et al. [56] Five CNN models are
proposed for AMC. HisarMod2019.1 The highest accuracy

can reach 97.5%.

ResNet18;
SqueezeNet;
GoogleNet;

MobileNet; RepVGG.
1 The dataset created refers to the data signals designed by the authors according to their own needs by using
simulation software.
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3.2. RNN

RNN was first proposed by Pollack in 1990 [85]. It takes sequence data as input and re-
curses in the evolution direction of sequence. All nodes are connected by chain. Unlike
other feedforward machine learning algorithms, data flow only flows in one direction, that
is, input to output.

As shown in Figure 2, a cyclic neural network diagram is composed of input layer,
cyclic layer, fully connected layer and output layer. X(t) refers to the input vector, O(t)
refers to the output vector, H(t) refers to the weight matrix from the hidden layer to the
fully connected layer at the current time and H(t-1) refers to the weight matrix from the
hidden layer to the fully connected layer at the previous time. The cyclic layer is used for
feature extraction and the fully connected layer is used for feature classification. It is a
network with memory. Because it contains something like memory inside, the current state
depends not only on the input of the current moment, but also on the input of the previous
moment. This looks like the circulatory unit in RNN neurons. Expanding the neurons of
RNN circulatory layer along the time sequence is the structure shown in Figure 3, where the
grey box is the circulatory unit, X(t) represents the input vector at a certain time and H(t)
indicates the state of the hidden layer at the current time.

Fully connected layer

Output layer

H(t)

O(t)

H(t)

H(t-1)
X(t)

Circulation layer

Input layer

Delay layer

Figure 2. RNN structure.

Ht

Xt

H0

X0

H1

X1

Ht

Xt

=

Figure 3. Cyclic unit [86].

Although RNN is theoretically unrestricted in length of time series, it has a long-term
dependence problem; that is, when learning a long sequence, in the cyclic neural network
will appear gradient vanishing and gradient explosion [87] phenomena, unable to grasp the
long-span non-linear relationship. To improve long-term dependency, Hochreiter proposed
the LSTM in 1997 to improve its cell structure [88].

As shown in Figure 4, X(t) represents the input of the LSTM unit and H(t) represents
the output of the LSTM unit. The RNN is endowed with the ability to control its internal
information accumulation by adding a gating unit [89], so as to control the influence of the
input at the current time on the network. More specifically, the LSTM unit contains three
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gates: the input gate, the forgotten gate and the output gate. Input gates allow input signals
to adjust the storage unit state or prevent extreme operations such as setting the input
door to zero; output gates allow input signal unit states to affect other neurons or prevent
similar operations; and forgotten gates enable storage units to remember or forget their
previous state, with only a small amount of linear interaction in the information flow. This
makes it easier to remember long-term information and the model more easily converges.
LTSM can solve the problem of gradient vanishing on the one hand and remember the past
data on the other hand. LSTM is trained using back propagation, so time series can also be
classified with time lags of unknown duration.

× + T

s s T

× ×

s

× + T sTanh Sigmoid

Xt

Ht

Pointwise 

addition

Pointwise 

multiplication

Figure 4. LSTM cell structure.

There are also many studies in the literature on radio modulation recognition methods
based on RNN as summarized in Table 3 and decribed below. Hong et al. [23] proposed
a two-layer GRU model with appropriate parameters based on RNN model. Using the
time series characteristics of the signal, the original signal can be directly used with limited
data length, avoiding manual signal extraction. Compared with [90], the double-layer
GRU model has obvious advantages in high SNR. O’Shea et al. [57] analyzed the effect
of CNN layer size and depth on classification accuracy and proposed a complex priori
module that combines CNN and LSTM modules to improve classification accuracy of
radio AMR. Rajendran et al. [24] proposed a classification method of radio AMR based
on LSTM, learning from the amplitude and phase information of the modulation scheme
in the time domain that exists in the training data, without the need for expert features
such as high-order cyclic moments. Zhang et al. [49] proposed an AMR model based on
LSTM. A preprocessed signal representation was proposed, which combined the orthog-
onal, fourth-order statistics of the modulated signal. The accuracy was improved by 8%.
Sang et al. [50] proposed an AMR model based on improved LSTM. The model achieved
accuracy of 76% under all SNR. Daldal et al. [58] proposed an automatic recognition of
digital modulation based on depth LSTM model. This method did not need any feature
extraction and directly input the modulated signal into the system. The classification
accuracy reached 94.72%.
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Table 3. Radio modulation recognition networks based on RNN and LSTM.

Year Author The Innovation of
the Paper Dataset Evaluation Parameter The Technology of

DL

2017 Hong et al. [23] RNN RadioML2016.10a
The classification

accuracy can reach
91%.

RNN

2017 West et al. [57] LSTM RadioML2016.10a The classification
accuracy is about 90%. LSTM

2018 Rajendran et al. [24] Two layer LSTM. RadioML2016.10a
The average

classification accuracy
is close to 90%.

RNN; LSTM.

2018 Zhang et al. [49] LSTM;
Preprocess signal RadioML2016.10a The accuracy is

improved by 8%. LSTM

2018 Sang et al. [50] Improved LSTM RadioML2016.10a The accuracy can
reach 93% LSTM

2019 Daldal et al. [58] LSTM Created dataset 1 The accuracy can
reach 94.72% LSTM

1 The dataset created refers to the data signals designed by the authors according to their own needs by using
simulation software.

3.3. DBN

DBN is another typical DL algorithm proposed by Hinton in 2006 [91]. It is a probabil-
ity generation model and widely used in natural language processing [92–95] and image
recognition [95–100].

Figure 5 shows the classic DBN network structure, which is composed of several
restricted Boltzmann machine (RBM) layers. The network is “limited” to a visible layer
(i.e., input layer) and a hidden layer. Each RBM has two layers: an upper hidden layer
and a lower visible layer. The DBN training process is divided into two steps. The first
step is pretreatment and uses layerwise training. The lower layer serves as the input to the
upper layer. The second step is fine-tuning. It is supervised to train the last layer and the
error generated by result comparison is propagated backward layer by layer, fine-tuning
the overall weight.

RBM1

RBM2

RBM3

Input 

layer

Hidden 

layer

Output 

layer

Figure 5. DBN network structure [101].
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There is not much literature on radio modulation recognition methods based on DBN.
At present, there are several as summarized in Table 4 and described below. Zhang et al. [59]
used deep confidence network and unsupervised greedy algorithm to pre-train RBM.
The result obtained was used as the initial value of the supervised learning training
probability model and the time IQ data representation was used to identify the modulation
types, which improved the recognition rate. In the cognitive radio signal modulation
pattern recognition algorithm proposed by Wei et al. [60] and Mendis et al. [21] for DBN,
the spectral correlation function was used as the characteristic representation of the received
signal even in the presence of environmental noise. Cui et al. [102] proposed a DBN-based
DL algorithm which was applied in the main user classification, and significantly reduced
the number of tagged data. At the same time it has a better recognition rate than CR engine
using traditional strategies such as shallow learning, with a detection accuracy of more than
90% and a classification accuracy of more than 85%. Sun et al. [61] proposed a cooperative
Bayesian compression spectrum detection method based on RBM, which used Bayesian
compression sensing model to detect wideband sparse signals and then used RBM learning
to implement fusion decision based on multiuser recovery signals.

Table 4. Radio modulation recognition networks based on DBN.

Year Author The Innovation of
the Paper Dataset Evaluation

Parameter
The Technology of

DL

2015 Cui et al. [102] User centered DBN
model Actual sampling data Short time;

Accuracy increased. DBN model

2016 Sun et al. [61]

Collaborative
Bayesian compressed
spectrum detection
method based on

RBM.

Created dataset 1

Improve detection
accuracy;
Enhance

anti-interference
capability

RBM

2016 Wei et al. [60] DBN with anti noise
ability. Created dataset 1 The accuracy can

reach more than 90%.

Feature
representation

mechanism based on
SCF;

DBN Network.

2017 Wei et al. [21] DBN based on low
complexity.

Simulation creation
dataset

the classification
accuracy can reach

more than 90%.

Feature
representation

mechanism based on
SCF;

DBN Network

2018 Zhang et al. [59] DBN Simulation creation
dataset

The average
recognition rate is

92.12%.

Unsupervised greedy
algorithm;

DBN Network.
1 The dataset created refers to the data signals designed by the authors according to their own needs by using
simulation software.

3.4. Other Models Based on DL Networks

In addition to the above several common DL network models, there are some not so
commonly used DL network models for radio signal modulation recognition. They are as
follows: AE, CLDNN, dynamic multi-pooling convolutional neural network (DMCNN),
Gated Recurrent Unit (GRU), Adversarial Training for Supervised and Semi-Supervised
Learning and so on.

The relevant literature is summarized in Table 5 and described in the following.
Xie et al. [68] proposed a hybrid network model. Its network structure consists of DenseNet,
BLSTM and DNN. They tested and proved the effectiveness of the proposed algorithm by
using the RadioML2016.10a dataset. Experimental results showed that the classification
accuracy of this network model was much higher than that of the benchmark model at high
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SNR. It could extract deeper information. Li et al. [65] proposed a signal classifier produc-
tion antagonism network, increased the encoder network and signal space transformation
module and achieved significant accuracy improvement. Nie et al. [66] proposed a new
deep hierarchical network (DHN) based on CNN, which combined shallow features with
advanced features and used SNR as the weight in training. Liu et al. [67] combined CNN
and the short-term memory architecture into a deep neural network CLDNN, which im-
proved the accuracy by about 13.5% compared with the original CNN model. Ali et al. [22]
proposed an unsorted input data classifier (UDNN) based on k-sparse self-encoder, which
used the power of DNN to learn advanced abstraction from raw input data to omit Klog
(K) comparison operations as much as possible. Hao et al. [69] proposed an AMR method
based on a CNN-GRU hybrid network. This method used different structures to extract and
classify features with different dimensions automatically. The comprehensive recognition
accuracy on RadioML2016.04c and RadioML2016.10a was 60.64% and 73.2%, respectively.
Njoku et al. [71] proposed an AMC method based on a hybrid neural network composed of
a shallow CNN, a GRU and a DNN. The recognition accuracy reached 93.5% and 90.38% on
RadioML2016.10a and RadioML2016.10b, respectively. Wang et al. [72] proposed an AMC
method of hierarchical multifeature fusion based on multidimensional CNN and LSTM.
Multidimensional CNN compensated the interactive features extracted by two-dimensional
convolution filter with the features extracted by one-dimensional filter. The LSTM layer
was used to extract the time characteristics of the signal. The recognition accuracy was
higher than other methods. Wang et al. [74] proposed a novel multi-cue fusion network for
AMR. The network consisted of a signal cue multi-stream (SCMS) module and a visual cue
discrimination (VCD) module. The SCM module based on CNN and Independently Recur-
rent Neural Network (IndRNN) was used to extract two signal cues (In-phase/Quadrature
and amplitude-phase), which aimed to explore various differences and make use of the
supplement of multiple data forms. The VCD module took the constellation map as the
visual clue and used CNN to extract the structural information of the map. The recognition
accuracy reached 97.8% and 96.1% on RadioML2016.10a and RadioML2018.01a, respec-
tively. Liu et al. [70] proposed a modulation recognition method, which combined GRU
based on feature extraction with CNN based on cyclic spectrum. The results showed that
this method greatly improved the modulation recognition rate under low SNR. The recog-
nition rate was more than 90% when the SNR was −6 dB. The recognition rate was 100%
when the SNR was −1 dB. Aiming at the problem of low accuracy of wireless signal
modulation recognition, Lei et al. [73] proposed a rough and fine feature fusion network.
The method of combining rough and fine feature fusion module with LSTM achieved better
recognition accuracy.

Table 5. Other radio modulation recognition networks.

Year Author The Innovation of the
Paper Dataset Evaluation Parameter The Technology of DL

2017 Liu et al. [67]
Convolution long short

term deep neural
network (CLDNN)

RadioML2016.10a The accuracy can reach
88.5%.

CNN;
Convolution long short

term network.

2017 Ali et al. [22] Data classifier (udnn) Signals actually
collected.

The classification
accuracy can reach 95%.

sparse autoencoder;
Classification cross

entropy.

2017 Qi et al. [64] Deep automatic encoder
network. Created dataset 1

When SNR is 10 dB,
the recognition rate can

reach 1.
AE

2018 Li et al. [65]
Semi supervised

learning method for
antagonistic training.

RadioML2016.10a The classification
accuracy is 91%.

STN network structure;
Cgrn countermeasure

network.
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Table 5. Cont.

Year Author The Innovation of the
Paper Dataset Evaluation Parameter The Technology of DL

2019 Nie et al. [66]
Deep hierarchical

network (DHN) based
on CNN.

RadioML2016.10a The accuracy can reach
93%.

SNR as a weight in
trainning;

DBN.

2021 Xie et al. [68]
An AMR method based
on DenseNet + BLSTM

+ DNN network.
RadioML2016.10a

The recognition
accuracy of this

method is higher than
traditional modulation
recognition methods.

DenseNet;
BLSTM;
DNN

2021 Hao et al. [69]
An AMR method based
on a CNN–GRU hybrid

network.

RadioML2016.04c;
RadioML2016.10a

The comprehensive
recognition accuracy on

the two datasets is
60.64% and 73.2%,

respectively.

CNN;
GRU.

2021 Njoku et al. [71]
An AMC method based
on CNN + GRU + DNN

network.

RadioML2016.10a;
RadioML2016.10b

The recognition
accuracy can reach

93.5% and 90.38% on
RadioML2016.10a and

RadioML2016.10b,
respectively.

CNN;
GRU;
DNN

2021 Wang et al. [72]

An AMC method of
hierarchical

multifeature fusion
based on

multidimensional CNN
and LSTM.

RadioML2016.10a;
RadioML2016.10b

The recognition
accuracy is higher than

other methods.

CNN;
LSTM

2021 Wang et al. [74]
A novel multi-cue
fusion network for

AMR.

RadioML2016.10a;
RadioML2018.01a

The recognition
accuracy can reach
97.8% and 96.1% on

RadioML2016.10a and
RadioML2018.01a,

respectively.

CNN;
IndRNN;

Attention mechanisms

2021 Liu et al. [70]

The GRU based on
feature extraction and
CNN based on cyclic

spectrum are
combined.

Created dataset 1
The recognition rate is
100% when the SNR is

−1 dB.

CNN;
GRU

2022 Lei et al. [73]

An AMR method based
on a novel multi-path

features fusion
network.

RadioML2016.04c
The recognition

accuracy is 99.04% at
18 dB SNR.

CNN;
LSTM

1 The dataset created refers to the data signals designed by the authors according to their own needs by using
simulation software.

3.5. Recent Research Trends of AMC Based on DL

By reading through the literature, we found that most of the previous studies had
focused on the design of network models. Most network models were based on the
extension or integration of basic models such as CNN, RNN, LSTM and DBN. In order to
further improve the performance of DL-based AMC, there are some new research trends.
These can be roughly divided into the following three categories:

The first category considers the transform of input signals. The research of some
articles not only focuses on the design of the network model but also on the signal form
of the input network. The original IQ signal is not used as the input of the network,
but the IQ signal is transformed differently. The transformed form is used as the input of
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the network so that the network can better extract the characteristics of the signal. This
improves the performance of AMC. In 2022, Ghanem et al. [25] orthogonally projected the
original IQ signal to obtain the constellation diagrams of the signal. An AMC algorithm
based on CNNs was proposed. The RT of constellation diagrams with different modulation
types is used as input of the network. The experimental results showed that the RT of
constellation diagrams could improve the performance of the classifier and the recognition
accuracy at low SNRs. Soon, Ghanem et al. [26] conducted a more in-depth study in
this direction. An AMC approach based on 2D transforms and CNN was proposed.
The constellation diagrams were processed using three different 2D transforms. These
transforms were RT, the curvelet transform and the phase congruency (PC). The effect
of using different transformed constellation diagrams on the performance of AMC was
analyzed experimentally. Quan et al. [103] proposed an LPI radar signal recognition method
based on dual channel CNN and feature fusion. The author used the wavelet transform
method to transform the signal into a time-frequency image and carried out gray processing
on the time-frequency image, then input it into the dual-channel CNN model. This model
could extract two features from the signal time-frequency diagram, namely, the directional
gradient and the depth feature histogram. Finally, the two features were combined for
classification. The recognition rate could reach more than 95% when the SNR was 6 dB.

The second category is about feature extraction. Recently, many studies have added
transformer or attention mechanism to the basic network. The transformer can extract the
temporal correlation features between signals and improve the recognition accuracy of
neural networks. The attention mechanism can make the model focus on the relevant char-
acteristics of signals and accelerate the training process. It is able to judge the importance
of each feature, select important signal features for processing and improve the efficiency
of the neural network. In 2022, Hamidi-Rad et al. [28] proposed a new transformer based
DNN-MCformer for AMC of complex radio signals. MCformer used the convolution layer
and self-attention mechanism. It significantly reduced the number of parameters and
achieved the most advanced performance. Experiments showed the excellent performance
of the architecture based on MCformer. Lin et al. [55] proposed a time-frequency attention
mechanism for automatic modulation recognition based on CNN. The time-frequency
attention mechanism was designed to learn which channel, frequency and time information
is more meaningful for modulation recognition in CNN. Experiment results demonstrated
that the proposed attention mechanism required a similar inference time as the other
methods and fewer learned parameters than IQ-CNN and CLDNN.

The third category concerns hardware implementation. Although most previous
studies on AMC have achieved good results, most of them are still in the simulation stage.
Recently, many scholars began studying AMC hardware implementation based on DL.
In 2022, Kumar et al. [104] designed AMC schemes based on CNN for the complex time
radio signal domain and implemented them on the FPGA platform. Based on the training
mechanism of iterative pruning, the model size on the hardware was reduced and the
overall accuracy was kept above a certain threshold. The proposed scheme achieved an
accuracy of at least 1.4% higher than the baseline and only took 40% of the hardware
resources. The model achieved a real-time throughput of 527k classifications per second,
with a delay of 7.5 µs.

4. Datasets

When using the DL network model to train and test radio modulation signals, datasets
are essential. After training and testing the model with the dataset, we can know the
recognition effect of our model on the data and whether the model can recognize the
modulation of radio signals correctly. Therefore, we will introduce the datasets currently
used in the field of radio modulation recognition based on DL. They can be roughly
divided into two categories: public open source synthetic datasets and other datasets.
The public open source synthetic datasets are a type of dataset that can be publicly used.
This paper mainly refers to the RF datasets for machine learning created by O’Shea et al.,
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including RadioML2016.10a [105], RadioML2016.10b [105], RadioML2016.04c [19] and Ra-
dioML2018.01a [47]. HisarMod2019.1 was created with MATLAB by Tekbıyık et al. [106].
Other datasets refer to those created by some simulation software according to the experi-
mental requirements. Next, we will introduce these datasets through two parts: dataset
parameters and generation methods.

4.1. RadioML2016.04c

This is a dataset composed of 11 modulation modes: 8 digital modulation and 3 analog
modulation, which include BPSK, QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK and PAM4
for digital modulation, WB-FM, AM-SSB and AM-DSB for analog modulation. The rate
of modulated data is about eight samples per symbol. The normalized average transmit
power is 0 dB. There are 220,000 samples in each modulation mode. Each signal is sampled
into 2 × 128 vector data. The tag includes SNR value and modulation type. The SNR of
each signal sample ranges from −20 dB to 18 dB. The display parameters of the dataset are
described in Table 6.

Table 6. Description of display parameters for Radio2016.04c dataset.

Dataset RadioML2016.04c

Number of modulation mode 11

Number of digital modulation mode 8

Number of analog modulation mode 3

Modulation mode 8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK,
PAM4, QAM16, QAM64, QPSK, WBFM

Format of each sample 2 × 128

Number of samples 220,000

Samples per symbol 8

SNR (dB) −20:2:18

Data generation methods are described below. The synthesis of the radio communica-
tion signal introduces the same modulation, data carrying, pulse shaping and other good
transmission parameters as the real world. Real speech and text datasets are modulated to
communication signals. At the same time, in order to ensure that the bit is of equal proba-
bility, the block randomizer is used when the signal is digitally modulated. In addition,
the robust model is used for the multipath fading of impulse response in time-varying chan-
nel, random walk drift of carrier oscillator and sampling clock and additive white Gaussian
noise. The synthetic signal set is passed through a rigorous channel model. Unknown
scale, translation, dilation and impulse noise are introduced into the model. This makes
the infinite band channel better. The generation of datasets is modeled in GNU radio [107]
using GNU radio channel model [108]. By using a 128 sample rectangular window process,
each time series signal is divided into a test and training set. The total dataset is stored as a
Python pickle file. It contains 32-bit floating-point samples and is about 500 Mbytes.

4.2. RadioML2016.10a

The signal data in the dataset include 11 modulation modes, namely, 8PSK, AM-DSB,
AM-SSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK and WBFM, in which
8 of them are digital modulation modes and 3 analog modulation modes. It contains
220,000 communication signal data after sampling. Each modulation mode has 2000 signal
data. Each signal is sampled as vector data of 2× 128, where 2 represents I and Q signal data
and 128 represents 128 time nodes. All SNR ranges from −20 to 18 dB and is included in the
serial number and test tag. The number of samples per symbol parameter is a modulation
characteristic that specifies the number of samples that represent each modulation symbol.
The display parameters of the dataset are described in Table 7.
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Table 7. Description of display parameters for Radio2016.10a dataset.

Dataset RadioML2016.10a

Number of modulation mode 11

Number of digital modulation mode 8

Number of analog modulation mode 3

modulation mode 8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK,
PAM4, QAM16, QAM64, QPSK, WBFM

Format of each sample 2 × 128

Number of samples 220,000

Samples per symbol 8

SNR(dB) −20:2:18

This dataset is generated using GNU radio. The specific data generation method is
divided into the following four steps. The first step is to select the source alphabet. The ana-
log modulation uses a publicly available copy of serial episode 1. Digital modulation uses
the ASCII code of Shakespeare’s entire Gutenberg work. In order to equalize the symbol
and bit of the data, a whitening randomizer is used in digital modulation. The second step
is modulation. In order to form a normalized symbol rate in all digital modulation, each
symbol value has a normalized sample. Different modulation modes have different usage
and transmission modes. The third step is channel simulation. The production of this set
of radio signals mainly uses the block layer of GNU’s wireless dynamic channel model.
The fourth step is data storage. The data are standardized first. Based on the unit energy
in each 128 sample data vector, each stored signal sample is scaled. Then, using numpy
and cpickle, the data are stored as an n-dimensional vector. Next, the time period sampled
from the analog output stream is stored in the output vector. The last step is to classify the
signals by machine learning.

4.3. RadioML2016.10b

This dataset contains 11 modulation modes: 8 digital modulation and 2 analog modu-
lation. These include 8PSK, BPSK, SPFSK, GFSK, PAM4, QAM16, QAM64 and QPSK for
digital modulation and WBFM, AM-SSB and AM-DSB for analog modulation. It contains
1,200,000 communication signal data after sampling. The parameters of RadioML2016.10a
and RadioML2016.10b are the same except for the difference of modulation types and
signal quantity. The display parameters of the dataset are described in Table 8. In addition,
the two datasets are generated in the same way.

Table 8. Description of display parameters for Radio2016.10b dataset.

Dataset RadioML2016.10b

Number of modulation mode 11

Number of digital modulation mode 8

Number of analog modulation mode 3

Modulation mode 8PSK, BPSK, SPFSK, GFSK, PAM4, QAM16,
QAM64, QPSK, WBFM, AM-DSB

Format of each sample 2 × 128

Number of samples 1,200,000

SNR (dB) −20:2:18
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4.4. RadioML2018.01A

This dataset contains 24 modulation modes: 32PSK, 16APSK, 32QAM, FM, GMSK,
32APSK, OQPSK, 8ASK, BPSK, 8PSK, AM-SSB-SC, 4ASK, 16PSK, 64APSK, 128QAM,
128APSK, AM-DSB-SC, AM-SSB-WC, 64QAM, QPSK, 256QAM, AM-DSB-WC, OOK and
16QAM. Each modulation mode contains 26 SNRs, 4096 data in each SNA, two IQ signals
in each datum and 1024 points in each signal, so the dataset contains (24 × 26 × 4096) ×
1024 × 2 = 5,234,491,392 data. The dataset is stored in three dimensions (X, Y, Z) in the
HDF5 file. The X dimension stores a three-dimensional array that stores signal modulation
data (that is, data used to recognize signal types) in the shape and size of (2,555,904, 1024, 2),
representing a total of 25,555,904 signal data, with 1024 signal modulation data containing
two IQ signals per signal. The Y dimension stores a two-dimensional array that stores
signal types in the shape and size of (2,555,904, 24), representing 2,555,904 signal data of
each signal type, represented by 24 digits. The Z dimension stores a one-dimensional array
that stores the SNR (2,555,904, 1), representing 2,555,904 signal data. The SNR of each
signal sample ranges from −20 dB to 18 dB. The parameter description of the dataset is
shown in Table 9.

Table 9. Description of display parameters for RadioML2018.01a dataset.

Dataset RadioML2018.01a

Number of modulation mode 24

Modulation mode

32PSK, 16APSK, 32QAM, FM, GMSK, 32APSK, OQPSK, 8ASK,
BPSK, 8PSK, AM-SSB-SC, 4ASK, 16PSK, 64APSK, 128QAM,

128APSK, AM-DSB-SC, AM-SSB-WC, 64QAM, QPSK,
AM-DSB-WC, 256QAM, OOK, 16QAM

Format of each sample 2 × 1024

Number of samples 5,234,491,392

SNR(dB) −20:2:30

This dataset is an improved version of the previous datasets. Unlike the three datasets
mentioned earlier, this dataset uses 24 different modulation types, divided into analog
and digital. The single carrier molation scheme is also included. Firstly, the model is built
to generate several analog wireless channels and dataset signals. Then the OTA test is
carried out on the clean signal channel without the damage of synthetic signals. The way
to test is this to first modulate the signal and then let it transmit. The signal is set to offset
about 1 MHz and stored in baseband. The test transmitter is stored with the transmitter
modulated real-world label on the ground. The next part classifies the signals. The specific
classification methods include baseline method, CNN and ResNet [47]. After signals are
classified, appropriate data can be obtained.

4.5. HisarMod2019.1

This dataset contains 26 different modulation signals belonging to the five modulation
groups and is affected by five types of fading noise. The dataset consists of five main
modulation groups. Each modulation type comprises 1500 signals with a length of 1024
I/Q samples. The number of samples is 780,000. The SNR of each signal sample ranges
from −20 dB to 18 dB. When generating signals, the oversampling rate is selected as 2
and the raised cosine pulse shaping filter with a roll off factor of 0.35 is used. The display
parameters of the dataset are described in Table 10.

MATLAB 2017a is used to create random bit sequences, symbols and wireless fading
channels. In addition, the dataset consists of signals passing through five different wireless
communication channels, which are ideal, static, Rayleigh, Rician (k = 3) and Nakagami–m
(m = 2). These channels may also be distributed on the dataset; therefore, there are
300 signals for each modulation type and each SNR level. An ideal channel is one in
which there is no fading but additive white Gaussian noise (AWGN). In a static channel,
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the channel coefficients are randomly determined at the beginning and remain constant
during the propagation time. The signal passing through the Rayleigh channel is used to
make the system resist the non-line-of-sight (NLOS) condition. On the other hand, since the
dataset covers mild fading, Rician fading with shape parameter k of 3 is used. In addition
to these channel models, for the rest of the signals in the dataset, the distribution of received
power is selected as Nakagami–m and the shape parameter m is 2. Therefore, the dataset
includes signals with different fading models. Note that the number of multi-path channel
taps may also be 4 and 6 and ITU–R M1225 [109] is adopted for these two taps.

Table 10. Description of display parameters for HisarMod2019.1 dataset.

Dataset HisarMod2019.1

Number of modulation mode 26

Modulation mode

Analog modulation: AM-DSB, AM-SC, AM-USB,
AM-LSB, FM, PM.

FSK modulation: 2FSK, 4FSK, 8FSK, 16FSK.
PAM modulation: 4PAM, 8PAM, 16PAM.

PSK modulation: BPSK, QPSK, 8PSK, 16PSK, 32PSK,
64PSK.

QAM modulation: 4QAM, 8QAM, 16QAM, 32QAM,
64QAM, 128QAM, 256QAM.

Format of each sample 2 × 1024

Number of samples 780,000

Number of signals each modulation type 1500

SNR (dB) −20:2:18

4.6. Other Datasets

In addition to the publicly available datasets mentioned above, there are many docu-
ments that use self-created datasets, which are created by simulation software according to
their needs. For example, Dileep et al. [41] used Matlab to generate the required dataset;
Zhang et al. [59] generated datasets by GNU Radio simulation, and so on. The parameters
of different datasets are different. The parameters and formats of the datasets are simulated
and set according to different requirements for the data.

5. Radio Modulation Recognition Model Based on CNN
5.1. Modulation Recognition of Radio Signals by CNN

As one of the representative methods of DL, CNN has excellent performance in many
fields. We mentioned some radio modulation recognition methods based on CNN in
Section 2. They can produce good results. However, we can find that the accuracy of
modulation recognition experiments using the dataset mentioned in the third part is not
very high. Therefore, we have carried out relevant experiments in this aspect and achieved
a satisfactory result.

The general framework of the radio signal AMR method based on CNN is shown in
Figure 6. The specific steps are described as follows. Firstly, divide the dataset into training
set and test set in the ratio of 1:1. This method uses raw IQ data. Secondly, the training set
data are preprocessed and input into the neural network. Thirdly, the neural network is
used to train the training set data iteratively many times and the network parameters are
constantly updated, so that the modulation recognition effect of the network is the best.
Then, the trained neural network is used to test the test set data. Finally, the modulation
recognition results predicted by the neural network are output.
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Figure 6. Flow chart of CNN-based AMR method.

The experiment we have carried out is based on CNN radio signal modulation recogni-
tion. The dataset used is the open source dataset RadioML2016.04c mentioned in Section 4.
During training, the dataset is divided into 50% training set and 50% test set. Keras frame-
work is used in the experiment. TensorFlow acts as the back end. Training is accelerated by
GPU. Batch_size is set to 1024 by default during training. Dropout is 0.5. The training is
conducted by using the categorical_crossentropy function and Adam solution.

We designed a simple CNN network framework to verify the effectiveness of CNN for
AMC. Many existing references are mainly based on this simple framework and add some
additional modules to improve the performance. The implementation process of this CNN
based on AMC is shown in Figure 7. Firstly, the signal is input into the network and four
convolution layers are used to process the signal and automatically learn the characteristics
of the signal. At the same time, in order to prevent overfitting, we use dropout after each
convolution layer. Finally, the signal modulation recognition result is output through the
fully connected layer and Softmax activation function.
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Figure 7. Implementation of our method.

The network structure of CNN is adopted in the experiment. The network model
structure is shown in Figure 8 and Table 11. There are six layers in the network, including
four convolution layers and two dense layers. Reshape the input from [N, 2, 128] to
[N, 1, 2, 128], where N is samples/ batch_size. At a time, one matrix with size 2 × 128
will enter the network. The input layer is followed by four convolution layers. All four
layers use ReLU as the activation function. These four layers are preceded by zero padding
with symmetric width pad. This zero padding uses the 2D input zero padding and the
padding is set to (0, 2). Channels_first is used for ordering the dimensions in the inputs
(batch_size, channels, height, width). The first, second and third Conv/ReLU layers have
256 output filters and 1 × 3 filter size. The fourth Conv/ReLU layer has the number of
output filters 80 and the filter size 2 × 3. These four layers are ended with dropout for
regularization. The four convolution layers are followed by two dense (fully connected)
layers. The first dense layer, after the input is flattened, obtains its output by taking the
dot product between input tensor and 256 kernel matrices and then the activation function
ReLU is used. The second dense layer obtains its output by taking the dot product between
input tensor and an 11 kernel matrix and then Softmax is used as activation function. Since
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at this stage we want to classify the types of signals to be recognized, the output here is
11 classes, corresponding to 11 types of different signals in the dataset. After running,
we can obtain the results described below.
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... ... ...
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Classification 

probability of 11 

types of modulation 

recognition

Figure 8. Modulation recognition model based on CNN.

Table 11. Detailed structure of the model.

Layer Size of Convolution
Kernel

Layer Output
Dimension

Layer Activation
Function

Number of Trainable
Parameters

Input layer - 2 × 128 - 0

Pooled convolutional
layer 1 1 × 3 130 × 256 ReLU 1024

Pooled convolutional
layer 2 1 × 3 132 × 256 ReLU 196,864

Pooled convolutional
layer 3 1 × 3 134 × 256 ReLU 196,864

Pooled convolutional
layer 4 2 × 3 136 × 80 ReLU 122,960

Full connected layer 1 - 1 × 256 ReLU 2,785,536

Full connected layer 2 - 1 × 11 Softmax 2827

Output layer - 1 × 11 - 0

In order to verify the effectiveness of the proposed model, existing recognition meth-
ods such as CNN, ResNet, Inception and CLDNN are compared with the methods in this
Section. The parameters of the existing recognition methods are kept in the original parame-
ter setting of the method. After training on the RadioML2016.04C dataset, the experimental
results are shown in Figure 9. This figure shows the recognition accuracy of each method
with SNR range of [−20 dB, +18 dB], in which the blue line represents the recognition
accuracy of the method in this section. It can be seen that the recognition accuracy of the
proposed model in the range of [−20 dB, −10 dB] is not much different from those of
the existing methods, but the recognition accuracy of the proposed model in the range of
[−10 dB, 18 dB] is better than those of the other methods. The highest recognition accuracy
is 98.47% at +18 dB. It is verified that our method is effective for wireless signal modulation
recognition task.
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Figure 9. Classification accuracy over different SNRs.

Table 12 shows the comparison of simulation results of these five methods. From the
table, we can see that the method in this paper has a relatively small number of parameters.
The recognition accuracy and average recognition accuracy are the highest. The perfor-
mance of AMR is superior to the other four methods.

Table 12. Recognition accuracy and number of parameters of five models.

Model ResNet Inception CLDNN CNN Model
(This Paper)

Highest
recognition

accuracy
87.75% 93.60% 92.82% 92.34% 98.47%

Average
recognition

accuracy
60.40% 62.43% 65.40% 64.29% 68.25%

Number of
parameters 3,425,233 10,142,983 164,233 278,299 3,306,075

Figure 10 shows the confusion matrices of the above five methods when the SNR is
18 dB. Through comparison, it can be found that the confusion matrix of our proposed
method has almost no light color blocks and the diagonal color blocks are darker. This
further shows that our method has almost no misclassification and most modulation types
can be accurately recognized.

We set epoch to 100 and batch to 1024. Cross entropy loss function and Adam optimizer
are used. At the same time, the early stop mechanism is used. The patience is set to 5,
which means that the loss function of five consecutive batches has not changed and the
training will be stopped automatically, so as to prevent overfitting. Finally, the training
time is about 28 min and a batch takes 24 s, much less than the training time of CNN.
The training time is similar to ResNet, Inception and CLDNN, but the recognition effect is
better than them. Therefore, in terms of online learning, our proposed method has higher
recognition correlation and optimal performance.



Appl. Sci. 2022, 12, 12052 23 of 34

CNN ResNet

Inception CLDNN

Our model

Figure 10. Confusion matrices for different models when SNR = 18 dB.



Appl. Sci. 2022, 12, 12052 24 of 34

5.2. Influence of CNN Network Hyperparameters on Modulation Recognition Rate

A large part of the reason why this model can achieve such a good effect is that it selects
the appropriate hyperparameters. Next, we will discuss the influence of hyperparameters
on modulation recognition in detail. The hyperparameters of a neural network refer to the
types of neuron activation functions, the number of layers, the number of neurons in each
hidden layer, the size of convolution kernel, etc. These hyperparameters will not participate
in the training of the sample. However, the difference of hyperparameters will affect the
learning speed of the neural network and the final classification structure. In other words,
it affects how fast the cost function drops on the training set and the classification accuracy
on the verification set. However, there is no complete theoretical method and basis for
how to select the hyperparameters. Therefore, this section mainly studies the problem of
hyperparameter selection of the neural network model for radio modulation recognition.
Here we use the model designed in Figure 8 as a benchmark. When one hyperparameter is
discussed, the other hyperparameters remain unchanged.

5.2.1. Influence of the Number of Network Layers on Recognition Results

We use the model shown in Figure 8. Keep the original hyperparameters unchanged
and change the number of convolution layers with 256 convolution cores. We set up
four sets of experiments. The number of convolution layers of each group is 1, 2, 3, 4 and 5.
Comparison of corresponding recognition accuracy rates on different SNRs is observed,
as shown in Figure 11. It can be seen that under the low SNR (less than −8 dB), the number
of convolution layers has little influence on the recognition rate. The recognition rate of
different convolution layers is almost the same. However, when the SNR is greater than
−8 dB, the recognition rate is the best when the convolution layer number is 3. When the
number of convolutional layers is less than or equal to 3, the recognition rate increases
with the increase of the number of convolutional layers; when the number of convolutional
layers is greater than 3, the recognition rate decreases with the increase of the number of
convolutional layers. The recognition rate of convolution layery 1, 2, 4 and 5 is not as good
as that of convolution layer 3. This indicates that too few or too many convolution layers
will affect the overall performance of recognition. When the number of convolutional
layers is too small, the range of local perceptual field is small and the learning ability of the
network is very low, which leads to low recognition rate. However, that does not mean that
the larger the number of convolution layers, the better. There are also negative effects when
the number of convolution layers is too deep. When the number of convolution layers
is too large, the overfitting phenomenon easily occurs, resulting in gradient attenuation
and it is difficult to find the optimal solution of parameters. This can degrade network
performance. That leads to bad results. Therefore, the appropriate number of convolution
layers should be selected when modulation recognition of radio is carried out.

5.2.2. Influence of the Number of Convolution Kernels on Recognition Results

We still use the model shown in Figure 8. The number of convolution kernels in
the 1st, 2nd and 3rd convolution layer is changed from 256 to 128 and 64, respectively.
Comparison of the recognition accuracy of different SNRs is shown in Figure 12. We can
see that the number of convolution kernels has little effect on the recognition rate at low
SNR (SNR less than −4 dB). However, when SNR is higher than −4 dB, we can observe
that the recognition rate increases with the increase of convolution kernel. The recognition
rate of 256 convolution kernels is the highest. This shows that the more convolution
kernels, the stronger the fitting ability and the higher the recognition rate. At the same
time, we also observe that the recognition rate of 256 convolution kernels is a little bit
higher than that of the other two. This shows that the fitting ability of convolution training
dataset is also limited. When the convolution kernel number increases to a certain extent,
the feature extraction ability will not change much. The corresponding recognition rate is
similar. Therefore, it is very important to choose the number of convolution kernels when
recognizing radio signals.
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Figure 11. Recognition accuracy of different number of convolution layers.
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Figure 12. Recognition accuracy of different number of convolution kernels.

6. Accuracy of Common Evaluation Parameters and Classical Methods
Common Evaluation Parameters

Confusion matrix, accuracy rate, recall rate and average precision are commonly used
parameters in DL. We can judge the performance of a network model according to them.
That is to say, when we observe the training results, we pay attention to the changes in
these parameters. Therefore, it is necessary to observe these evaluation parameters when
using DL to recognize the modulation of radio signals.
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First of all, the most important parameter is the confusion matrix, from which we can
clearly see the prediction and the actual situation. Let us take the classification problem as
an example. The binary confusion matrix is shown in Table 13, where ’1’ is a positive class
and ’0’ is a negative class and ’Predicted’ stands for predicted results and ’Actual’ stands
for actual results. Other variables in the table are defined as

• TP: The true value is positive and the predicted value of the model is positive (True
Positive = TP)

• FN: The actual value is positive and the predicted value of the model is negative (False
Negative = FN)

• FP: The actual value is negative and the predicted value of the model is positive (False
Positive = FP)

• TN: The true value is negative and the predicted value of the model is negative (True
Negative = TN)

Table 13. Confusion matrix.

Confusion Matrix
Predicted

Total
1 0

Actual
1 TP FN TP + FN: Actual Positive

0 FP TN FP + TN: Actual Negative

Total TP + FP:
Predicted Positive

FN + TN:
Predicted Negative

TP + TN + FP + FN:
The total number of samples

Suppose we want to classify radio signals containing only QPSK and WBFM mod-
ulation modes. Assume that in the confusion matrix Table 13, ’1’ represents QPSK and
’0’ represents WBFM. Then, TP represents the number of QPSK correctly predicted. FN
represents the amount of QPSK that has been mispredicted as WBFM. TN represents the
number of WBFM correctly predicted. FP represents the number of WBFM mispredicted
as QPSK. TP + FN represents the actual amount of QPSK. FP + TN represents the actual
amount of WBFM. TP + FP represents the amount predicted to be QPSK. FN + TN repre-
sents the amount predicted to be WBFM. TP + TN + FP + FN represents the total number of
WBFM and QPSK samples. Therefore, we can clearly see the actual and predicted results
from the confusion matrix.

For a given set of test data, accuracy is defined as the ratio of the number of samples
correctly classified by the classifier to the total number of samples, which is expressed
as below

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

The accuracy rate is generally used to evaluate the global accuracy of a model. It
cannot contain too much information to comprehensively evaluate the performance of a
model. In short, it is the proportion of the number of correctly predicted samples to the
total number of samples.

Precision refers to the proportion of the number of samples correctly predicted as a
class to the total number of samples predicted as a class. This is for the forecast results.
For the example we gave earlier. The precision is the proportion of the number of correctly
predicted QPSK TP to the total number of predicted QPSK TP + FP as shown in (2) below.
The precision of WBFM is the same.

Precision =
TP

TP + FP
(2)

Recall refers to the proportion of the number of samples correctly predicted as a certain
category to the actual total number of such samples. This is for the original actual sample.
For the example we gave earlier, the recall is the proportion of the quantity TP correctly
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predicted as QPSK to the total quantity TP + FN of the original QPSK as shown in (3) below.
The recall of WBFM is the same.

Recall =
TP

TP + FN
(3)

F1-score is based on the harmonic average of recall and precision, which is a compre-
hensive evaluation of recall and precision, as expressed below

F1-score =
2 × recall × precision

recall + precision
(4)

7. Discussion

With the continuous development of DL, there are many kinds of neural networks
based on DL for radio modulation recognition. Some methods have high recognition rate,
while others have low recognition rate. Of course, the recognition rate of the same network
model is different due to the different hyperparameters such as the number of network
layers and activation function. Below, we summarize the recognition rate of different
methods based on dataset RadioML2016.10a, as shown in Table 14. From the table, we can
see that DHN has the highest recognition accuracy because the model is different from
the general model. In order to obtain the characteristics of modulated signals, the model
is designed to extract two layer features. One is shallow information, the other is deep
information. Shallow confidence corresponds to shallow features and the unemployment
of shallow features is slightly larger than the sample of each symbol. Deep information
corresponds to high-level features, which have global vision. In addition, the general model
only takes SNR as the criterion of robustness, but the DHN model takes SNR as the weight
of loss function, which can achieve stronger system robustness. The model makes full use
of all data, extracts useful information from bad information and can play a greater role in
the case of small datasets.

Table 14. Accuracy comparison of existing classical methods.

Network Structure Dataset Recognition Rate

CLDNN [67] RadioML2016.10a 88.5%

CM + CNN [32] RadioML2016.10a 90%

LSTM [57] RadioML2016.10a 90%

RNN [23] RadioML2016.10a 91%

A semi supervised approach to confrontation
training [65] RadioML2016.10a 91%

DHN [66] RadioML2016.10a 93%

ConvLSTMAE [110] adioML2016.10a 94.51%

Considering that the datasets used in some of the latest literature are different from
those used in the literature analyzed in our table, we cannot compare the experimental
results of all the latest literature. Only the latest literature of the dataset RadioML2016.10a
can be selected for further comparison. ConvLSTMAE, a new method proposed in 2022
using the dataset RadioML2016.10a, was used for comparison. Through comparison, it is
found that ConvLSTMAE can achieve higher accuracy than DHN. This is because it uses
an AE as the backbone and convolutional AE and LSTM-AE are combined in parallel as
temporal and spatial feature extractors. It has temperament structure and fewer parameters,
which can keep high accuracy and lower down calculation costs.
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8. Limitations

Due to the advancement and applications of modern radio communication technology,
the electromagnetic environment has become more complex, which puts forward higher
requirements for the analysis and processing of communication signals. Improving the
radio modulation recognition efficiency and accuracy has great benefits for various military
and civil fields such as electronic detection, spectrum monitoring, etc. By analyzing and
researching various methods of radio modulation recognition based on DL, it is found that
most methods still have some defects as described below.

The recognition rate of SNR below 0 dB is low. It can be seen from the literature
worldwide that the recognition rate of radio modulation based on DL decreases with the
decrease of SNR. Generally, the recognition rate for SNR above 10 dB is higher, about 90%
and the recognition rate of SNR above 0 dB can reach 80%. However, the recognition rate of
SNR below 0 dB is very low, generally less than 50%. Therefore, further research is needed
to improve the recognition rate of SNR below 0 dB.

It is still difficult to use various models based on DL in practical applications. The sig-
nals of the datasets that have been published are ideal, with almost no noise and lossless
channels. However, the real channel environment is very complex. Actual noise and other
uncertain factors will have a great impact on modulation recognition. The difficulty of
modulation recognition far exceeds that of signal recognition simulation. This is also an
important research direction in the future.

There is some difficulty in implementing DL-based AMR methods on real hardware.
At the moment most researcher are working on simulation, for example on computer software.
However, very few researcher are working on implementation on real hardware. Deploying
DL-based AMR to real hardware is very challenging and requires further investigation.

9. Concluding Remarks

In the previous sections, we reviewed the network models of radio AMR based on DL.
The related literature about AMR based on DL was summarized. We found that most of
the literature only talked about the advantages of the proposed network model, but few
studies mentioned the disadvantages of the model. Below, we summarize the advantages
and disadvantages of several models mentioned above. As shown in Table 15, the CNN
model has the advantage of local perception. It is good at sensing signal features locally
and synthesizing local information at a higher level to obtain global information. CNN
also has the advantages of weight sharing and shift-invariance. These can greatly reduce
the parameters of model training. However, CNN is a feed-forward neural network with
unidirectional propagation, which can only process the current signals. The input signal
must be of fixed length. However, in reality, in many cases, the state of the signal at that
time is related to the influence of the time before and after. The length of the signal is
not exactly the same. The structural form of RNN solved this problem. The input of
RNN includes not only the current time, but also the feedback after the output of the
current time. As time changes, RNN can also process variable signal sequences. However,
it has the problem of disappearing gradients. It cannot solve the problem of long-term
dependence. Subsequently, the structural form of LSTM which is the revision of RNN
solved the above problems to some extent. LSTM has a memory function for a certain
period of time by adding a control unit. LSTM is different from the previous two networks.
It is trained in the way of back propagation. However, these functions in turn make LSTM
more complex and time-consuming to train. Compared with CNN, RNN and LSTM, DBN
is a probability generation model. DBN starts from RBM, based on Bayesian thought
and finds out the joint probability distribution of data, so as to automatically obtain the
high-level information hidden in the data and difficult to interpret. It can be understood
as an unsupervised data coding and the output information has a certain characterization
effect on the data. In unsupervised learning, an unlabeled input dataset is provided for
the algorithm. The goal is to identify patterns and cluster the data into multiple groups
for learning based on similarity [111]. However, its recognition accuracy is not very high



Appl. Sci. 2022, 12, 12052 29 of 34

and the process of model training is also very complicated. Therefore, when we build the
model, we might as well consider designing some hybrid models. By comprehensively
utilizing the advantages of each model, more effects can be obtained. For example, in the
CLDNN model mentioned in [57], the convolution layer is followed by the cyclic layer.
In this case, CNN and LSTM achieve complementary effects, because CNN is good at
reducing frequency variation and LSTM is good at temporal modeling [112,113].

Table 15. Advantages and disadvantages of the DL network model.

DL Network Models Advantages Disadvantages

CNN
Local perception;
Weight sharing;
Shift invariance.

The input is a fixed length;
One-way non feedback

connection.

RNN
Contains the feedback input at the

current time;
Processing signal sequence.

Gradient vanishing problem;
Processing signal sequence unable
to solve the long-term dependency

problem.

LSTM Back propagation;
With memory function.

The calculation is complex and
time-consuming.

DBN
Establish a joint probability

distribution;
Unsupervised learning.

High complexity;
The recognition accuracy is low.

As a key part of communication signal processing, radio signal modulation recognition
has become a research hotspot with the development of artificial intelligence, including
DL, neural networks and others. This paper provides a literature survey and summarizes
the development and state-of-the-art of radio modulation recognition based on DL. This
paper also summarizes the existing methods of radio modulation recognition based on
neural networks and open radio signal datasets. In addition, a CNN network for radio
modulation recognition is designed and the effectiveness of the proposed network is
verified. A comparison of the proposed network with the previously existing ones has
been carried out to show its advantages. Finally, the common evaluation parameters of
the existing classical methods are introduced. The problems to be solved in the field of
radio modulation recognition and the future research direction are discussed. It is hoped
that this paper will introduce and provide useful information on the radio modulation
methods based on DL, so that more research and attention can be given to this topic to
further improve the efficiency and accuracy of radio modulation recognition.

Author Contributions: Data curation, T.W. and M.J.; funding acquisition, Q.Y.; investigation, P.C.;
methodology, T.W.; supervision, Z.X.; validation, G.Y. and T.W.; writing—original draft, T.W.;
writing—review and editing, Q.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research has received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 12052 30 of 34

Abbreviations
The following abbreviations are used in this manuscript:

AMR Automatic Modulation Recognition
AMC Automatic Modulation Classification
AE Auto-Encoder
AWGN Additive White Gaussian Noise
NLOS Non-line-of-sight
CNN Convolutional Neural Network
CM Correction Module
CLDNN Convolutional Long short-term Deep Neural Network
DL Deep Learning
DNN Deep Neural Network
DBN Deep Belief Network
DHN Deep Hierarchical Network
DMCNN Deep Multi-scale Convolutional Neural Network
DDrCNN Dense layer Dropout Convolutional Neural Network
GRU Gated Recurrent Unit
GNU GNU’S Not Unix
GRF Graphic Representation of Features
LSTM Long Short Term Memory
ML Machine Learning
PC Phase Congruency
RNN Recurrent Neural Network
RT Radon Transform
ResNet Residual Network
RSR Ratio of Successful Recognition
RAT Radio Access Technology
RBM Restricted Boltzmann Machine
SNR Signal-to-Noise Ratio
STFT Short-Time Fourier Transform
UDNN Unsorted Deep Neural Network
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