Altitude Control of Powered Parafoil Using Fractional Sliding-Mode Backstepping Control Combined with Extended State Observer
Abstract
:1. Introduction
2. Dynamics of Powered Parafoil and Problem Formulation
3. Design of Control System
3.1. Design of LESO
3.2. Design of Fractional Sliding Mode Backstepping Control
4. Stability Analysis
5. Simulation Verification
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chambers, J. Longitudinal Dynamic Modeling and Control of Powered Parachute Aircraft. Ph.D. Thesis, Rochester Institute of Technology, Rochester, NY, USA, 2007. [Google Scholar]
- Zhu, E.; Zhao, J.; Li, B.; Gao, H. Trajectory planning for the powered parafoil at insufficient height. In Proceedings of the 33rd Chinese Control and Decision Conference, Kunming, China, 22–24 May 2021. [Google Scholar]
- Li, B.; Qi, J.; Lin, T.; Mei, S.; Han, J. Real-Time Data Acquisition and Model Identification for Powered Parafoil UAV. In Proceedings of the 8th International Conference on Intelligent Robotics & Applications, Portsmouth, UK, 24–27 August 2015. [Google Scholar]
- Ghoreyshi, M.; Bergeron, K.; Jirasek, A.; Seidel, J.; Lofthouse, R.J.; Cummings, R.M. Computational aerodynamic modelling for flight dynamics simulation of ram-air parachutes. Aerosp. Sci. Technol. 2016, 54, 286–301. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Dehmer, M.; Xie, G.; Zhou, Q. A generalized predictive control-based path following method for parafoil systems in wind environments. IEEE Access 2019, 7, 42586–42595. [Google Scholar] [CrossRef]
- Zhu, E.; Gao, H.; Zhao, J. Trajectory planning of the powered parafoil based on multi-phase design. J. Jiangsu Univ. Technol. 2020, 26, 28–35. [Google Scholar]
- Yang, H.; Song, L.; Liu, C.; Huang, J. Study on powered-parafoil longitudinal flight performance with a fast estimation model. J. Aircr. 2013, 50, 1660–1668. [Google Scholar]
- Aoustin, Y.; Martinenko, Y. Control algorithms of the longitude motion of the powered paraglider. In Proceedings of the ASME 11th Biennial Conference on Engineering Systems Design and Analysis, Nantes, France, 2–4 July 2012. [Google Scholar]
- Chen, S.; Sun, Q.; Luo, S. Longitudinal Control of Unmanned Powered Parafoil with Precise Control Gain. In Proceedings of the 13rd Chinese Intelligent Systems Conference, Mudanjiang, China, 14–15 October 2017. [Google Scholar]
- Chen, Z.; Zhang, H. Altitude control for unmanned powered parafoil based on backstepping method. In Proceedings of the 28th Chinese Control and Decision Conference, Yinchuan, China, 28–30 May 2016. [Google Scholar]
- Chen, Z.; Zhang, H.; Qiu, J.; Su, L. Adaptive backstepping altitude control for unmanned powered parafoil. Control. Eng. China 2018, 25, 554–558. [Google Scholar]
- Tan, P.; Sun, Q.; Jiang, Y. Trajectory tracking of powered parafoil based on characteristic model based all-coefficient adaptive control. J. Cent. South Univ. 2017, 24, 1073–1081. [Google Scholar] [CrossRef]
- Zhu, E.; Gao, H. Guidance-based path following control of the powered parafoil. Control Eng. Appl. Inf. 2020, 22, 42–50. [Google Scholar]
- Hu, K.-Y.; Wang, X.; Yang, C. Hybrid adaptive dynamic inverse compensation for hypersonic vehicles with inertia uncertainty and disturbance. Appl. Sci. 2022, 12, 11032. [Google Scholar] [CrossRef]
- Wang, C.; Du, Y. Lane-Changing strategy based on a novel sliding mode control approach for connected automated vehicles. Appl. Sci. 2022, 12, 11000. [Google Scholar] [CrossRef]
- Du, Y.; Cao, W.; Wu, M.; She, J.; Fang, M.; Kawata, S. Disturbance rejection and control system design using improved equivalent-input-disturbance approach. IEEE Trans. Ind. Electron. 2020, 67, 3013–3032. [Google Scholar] [CrossRef]
- Du, Y.; Cao, W.; She, J.; Wu, M.; Fang, M.; Kawata, S. Disturbance Rejection and Robustness of Improved Equivalent-Input-Disturbance-Based System. IEEE Trans. Cybern. 2022, 52, 8537–8546. [Google Scholar] [CrossRef] [PubMed]
- Guettal, L.; Chelihi, A.; Ajgou, R.; Touba, M. Robust tracking control for quadrotor with unknown nonlinear dynamics using adaptive neural network based fractional-order backstepping control. J. Franklin Inst. 2022, 359, 7337–7364. [Google Scholar] [CrossRef]
- Pouzesh, M.; Mobayen, S. Event-triggered fractional-order sliding mode control technique for stabilization of disturbed quadrotor unmanned aerial vehicles. Aerosp. Sci. Technol. 2022, 121, 107337. [Google Scholar] [CrossRef]
- Zhu, E.; Sun, Q.; Chen, Z.; Kang, X.; He, Y. Modeling of powered parafoil based on kirchhoff motion equation. Nonlinear Dyn. 2015, 79, 617–629. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, M.; Yang, R. On the stability of linear active disturbance rejection control. Acta Autom. Sin. 2013, 39, 574–580. [Google Scholar] [CrossRef]
- Shao, X.; Wang, L.; Li, J.; Liu, J. High-order ESO based output feedback dynamic surface control for quadrotors under position constraints and uncertainties. Aerosp. Sci. Technol. 2019, 89, 288–298. [Google Scholar] [CrossRef]
- Das, S. Functional Fractional Calculus, 2nd ed.; Springer: Berlin, Germany, 2011; pp. 204–206. [Google Scholar]
- Monje, C.; Chen, Y.; Vinagre, B.; Xue, D.; Feliu, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer: London, UK, 2010; pp. 153–155. [Google Scholar]
- Roy, P.; Roy, B. Sliding mode control versus fractional-order sliding mode control: Applied to a magnetic levitation system. J. Control Autom. Electr. Syst. 2020, 31, 597–606. [Google Scholar] [CrossRef]
Paremeter | Value/Unit |
---|---|
Span | 10.5/m |
Chord | 3.1/m |
Aspect ratio | 3 |
Area of canopy | 33/m |
Length of lines | 6.8/m |
Rigging angle | 10/deg |
Mass of canopy | 10/kg |
Mass of payload | 80/kg |
Characteristic area of drag of payload | 0.6/m |
FSMBC | LADRC | SMC | |
---|---|---|---|
Transient time of the altitude | 13 s | 16 s | 18 s |
Steady-state error | 0.00 m | 0.00 m | 1.44 m |
Transient time of the thrust | 18 s | 29 s | 35 s |
Settling time under disturbance | 16 s | 20 s | 28 s |
FSMBC | LADRC | SMC | |
---|---|---|---|
Steady-state error | 0.00 m | 0.00 m | 1.47 m |
Settling time of variable altitude | 8 s | 11 s | 11 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, E.; Du, Y.; Song, W.; Gao, H. Altitude Control of Powered Parafoil Using Fractional Sliding-Mode Backstepping Control Combined with Extended State Observer. Appl. Sci. 2022, 12, 12069. https://doi.org/10.3390/app122312069
Zhu E, Du Y, Song W, Gao H. Altitude Control of Powered Parafoil Using Fractional Sliding-Mode Backstepping Control Combined with Extended State Observer. Applied Sciences. 2022; 12(23):12069. https://doi.org/10.3390/app122312069
Chicago/Turabian StyleZhu, Erlin, Youwu Du, Wei Song, and Haitao Gao. 2022. "Altitude Control of Powered Parafoil Using Fractional Sliding-Mode Backstepping Control Combined with Extended State Observer" Applied Sciences 12, no. 23: 12069. https://doi.org/10.3390/app122312069
APA StyleZhu, E., Du, Y., Song, W., & Gao, H. (2022). Altitude Control of Powered Parafoil Using Fractional Sliding-Mode Backstepping Control Combined with Extended State Observer. Applied Sciences, 12(23), 12069. https://doi.org/10.3390/app122312069