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Abstract: This paper presents a method of altitude control of the powered parafoil with uncertainties
and disturbances based on sliding-mode backstepping control combined with a linear extended
state observer (LESO). First, the dynamics of a powered parafoil is derived in the longitudinal
plane using its inclination angle. The problem of altitude control is converted to the issue of angle
control. Next, uncertainties and disturbances are considered as a total disturbance. An LESO is
used to estimate the total disturbance and form an inner-loop compensation. Backstepping control is
employed to regulate the inclination angle to follow the desired value. A fractional sliding surface is
introduced to the backstepping control. This ensures the transient performance of altitude control
of the powered parafoil. Then, stability analysis shows that the observation errors of the LESO
are bounded and the control system is uniformly ultimately bounded. Simulation results of an 8
degree-of-freedom powered parafoil illustrate that the LESO can effectively estimate the states of the
system and demonstrate the validity and the superiority of the presented method.
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1. Introduction

The powered parafoil is a prevalent new type of air vehicle with a flex wing [1,2].
Because the engine is equipped with the payload, compared with traditional parafoils, the
powered parafoil not only can glide but also cruise and climb, which traditional parafoils
cannot perform [3–5]. The powered parafoil has been applied to paragliding sports, supply
airdropping, pesticide spraying, and airport demisting, to name but a few, due to its
excellent maneuverability [6]. In recent years, the control of powered parafoils has become
a research hotspot. Compared with the horizontal control of traditional parafoils, the
altitude control of powered parafoils has received extensive attention and has been a
challenge because of its complex aerodynamics characteristics.

Many strategies have been proposed to control the altitude of powered parafoils. Yang et
al. analyzed the flight performance of altitude control and derived the longitudinal model
of a powered parafoil [7]. Aoustin and Martinenko designed a nonlinear control law for a
powered parafoil based on partial feedback linearization to track a desired trajectory in the
longitudinal plane [8]. Chen et al. presented a precise-gain method to handle the problem
of longitudinal motion control of a powered parafoil [9]. The backstepping control was first
employed to control the altitude of a powered parafoil using its lateral model [10]. Then, a
fuzzy backstepping control was extended to improve the control performance of the altitude
control based on a variable-gain scheme [11]. Tan et al. proposed an altitude-tracking control
method for a powered parafoil using the coefficient adaptive control and the characteristic
model of the parafoil [12]; however, the specification of the guidance was not provided. Zhu
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et al. presented a spatial path-tracking control of a powered parafoil using the guidance theory
combined with the linear active disturbance control (LADRC) [13].

The above-mentioned methods mainly used a simplified model of powered parafoils
to design a controller. However, this may impose limitations on control performance
as there exist strong nonlinearities and complex model couplings in powered-parafoil
systems. Although Tan and Zhu employed methods of the characteristic model and LADRC
that do not rely on the precise model of a powered parafoil to remove the limitations,
it increases the complexity of the system design and brings difficulty in analyzing the
stability of control systems. The sliding mode control (SMC) is a commonly used method
for the aircraft [14,15]; however, the control is susceptible to system uncertainties and
disturbances. How to effectively suppress disturbances and improve the robustness of a
control system is one of the key points in system design [16,17]. On the other hand, the
fractional-order theory [18,19] is widely used in industrial control systems. A fractional
calculus operator shows good robustness for systems with uncertainties and external
disturbances due to its hereditary and memorability.

This paper presents an alternative way to address the problem of the altitude control of
a powered parafoil using the fractional sliding-mode backstepping control combined with
a linear extended state observer (LESO). First, the inclination angle model of a powered
parafoil is derived according to the guidance law. The altitude control of the powered
parafoil is converted into the issue of the inclination angle control. Then, an LESO is
used to estimate system uncertainties and exogenous disturbances. A fractional dynamic
sliding-mode surface is introduced into the backstepping control to improve the transient
performance of the altitude tracking. A stability criterion is derived to guarantee that
virtual control variables and the error of system states are bounded. Finally, the validity
of the presented method is demonstrated by simulation results of an 8-degree-of-freedom
powered parafoil.

The rest of the paper is organized as follows. Section 2 derives the inclination angle
model of the powered parafoil according to the guidance law. Section 3 explains the design
algorithm of the control system based on the fractional sliding-mode backstepping control
(FSMBC) combined with an LESO. Section 4 analyzes the stability of the control system.
Section 5 shows the validity of the method through simulation results. Section 6 gives some
concluding remarks and points out future work.

2. Dynamics of Powered Parafoil and Problem Formulation

Figure 1 shows the structure of a powered parafoil and its three coordinate frames,
that is, OdXdYdZd represents the earth reference frame, OsXsYsZs represents the parafoil
reference frame, and OwXwYwZw represents the payload reference frame. The transforma-
tion between the earth reference frame and the parafoil reference frame is achieved through
three Euler angles

[
ψ θ φ

]T; that is, ψ denotes the yaw angle, θ denotes the pitch angle,
and φ denotes the roll angle.

The study in this paper focuses on the altitude control of a powered parafoil that
involves the relative motion between a parafoil and a payload. The dynamics model is
established according to the Kirchhoff motion equation. The specific modeling process and
model parameters can be found in [20].

The inclination angle σ of the powered parafoil is defined as the angle between the
velocity and the horizontal plane, shown as

σ = arctan

(
−ż√

ẋ2 + ẏ2

)
, (1)

where
[
x y z

]T is the position vector in the earth reference frame.
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Figure 1. The structure of the powered parafoil and coordinate frames.

Lemma 1 ([13]). The vertical error eh between the powered parafoil and the desired point pp is
global uniformly asymptotically stable and local exponential stable, if the inclination angle of the
powered parafoil changes with the following guidance law

σd = arctan
(

eh
kh

)
, (2)

where eh = Hd − H and kh is an adjustable parameter. Hd and H are the desired altitude and actual
altitude of the powered parafoil, respectively.

According to Lemma 1, the altitude control of the powered parafoil can be converted
to the control of the inclination angle.

The velocity transformation from the parafoil frame to the earth frame can be de-
scribed as ẋ

ẏ
ż

 = Rp−e

us
vs
ws

, (3)

where
[
us vs ws

]T is the velocity vector in the parafoil frame and the transformation matrix

Rp−e =

cos θ cos ψ sin φ sin θ cos ψ− cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ
cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ− sin φ cos ψ
− sin θ sin φ cos θ cos φ cos θ

. (4)

If the motion of the longitudinal plane is considered, then it is easy to obtain

vs = 0, y = 0, ψ = 0, φ = 0. (5)
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Substituting (4) and (5) into (3) yields

ẋ = us cos θ + ws sin θ, (6)

ż = −us sin θ + ws cos θ. (7)

Choose the inclination angle σ of the powered parafoil as the state variable of the
system. According to (1), (6), and (7), the first derivative of σ is

σ̇ = θ̇ +
u̇sws − usẇs

u2
s + w2

s
. (8)

Let fs be the derivative of u̇sws−usẇs
u2

s+w2
s

. The second derivative of σ is obtained as

σ̈ = θ̈ + fs. (9)

For the altitude control of the powered parafoil, the only control variable that affects
the flight velocity is the thrust u provided by the power propulsion. According to the
nonlinear dynamics model of the powered parafoil [20], the thrust control variable is
coupled in fs, which increases the difficulty in the design of the controller. To facilitate the
design of the control system, the control variable should be separated out. Rewrite (9) as

σ̈ = θ̈ + fs − bu + bu

= f + bu,
(10)

where f = θ̈ + fs − bu is viewed as a total disturbance.
The state space model of the dynamics of σ is obtained as

ẋ1 = x2

ẋ2 = f + bu

x1 = σ.

(11)

The main objective of this study is to minimize the error of the inclination angle despite
of the influence of system uncertainties of the dynamics model and external disturbances
on the system. In the next section, a new control scheme is proposed to handle this issue.
The LESO is used to estimate uncertainties and disturbance. A fractional sliding-mode
backstepping control law is devised to improve control performance and the stability of
the system.

3. Design of Control System

In this section, a method of FSMBC with LESO is proposed for the altitude control of a
powered parafoil. The configuration of the control system of the powered parafoil is shown in
Figure 2, which consists of guidance-based path following, FSMBC, LESO, and the powered
parafoil. The outer-loop is a guidance loop, from where the desired inclination angle (2) is
obtained according to altitude signals. The inner-loop is the control loop of the inclination angle.
FSMBC is adopted, and LESO is used to observe and eliminate the total disturbance.

Figure 2. Configuration of the control system of the powered parafoil.
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3.1. Design of LESO

Assume ḟtotal = h. Rewrite (11) as

Ẋ = A1X + B1u + B2h, (12)

where A1 =

0 1 0
0 0 1
0 0 0

, B1 =
[
0 b 0

]T, B2 =
[
0 0 1

]T, X =
[
x1 x2 f

]T. Con-

struct an LESO as
˙̂X = A1X̂ + B1u + L

(
X − X̂

)
, (13)

where X̂ =
[
x̂1 x̂2 f̂

]T is the estimated value of X and L is the gain matrix of LESO,
which is given by

L =

l1 0 0
l2 0 0
l3 0 0

. (14)

Let ẽ represent the estimated error of the LESO. We have

ẽ = X − X̂. (15)

According to (12), (13), and (15), the following differential equation with respect to ẽ
can be obtained as

˙̃e = A2ẽ + B2h, (16)

where A2 = A1 − L.
Assume that h is bounded, namely there exists a positive constant M1 such that

|h| ≤ M1. The estimated error of the LESO is always bounded, that is, there exists a positive
constant M2 such that ||ẽ|| ≤ M2 holds [21].

3.2. Design of Fractional Sliding Mode Backstepping Control

The estimated states x̂1 and x̂2 of the LESO are used in the design of fractional sliding-
mode backstepping control. Define the tracking error of the inclination angle as

e1 = σd − x̂1. (17)

Calculating the derivative of (17) yields

ė1 = σ̇d − ˙̂x1

= σ̇d − x̂2.
(18)

Define an auxiliary error e2 as

e2 = x2d − x̂2. (19)

where x2d is a virtual control variable. It is easy to obtain

ė1 = e2 + σ̇d − x2d. (20)

According to the error system, let the virtual control variable satisfy

x2d = σ̇d + k1e1, (21)

where k1 ∈ R+ is the feedback gain.
To avoid differential explosion, the algorithm of dynamic surface control is employed. De-

signing a low-pass filter and passing the virtual control variable x2d through it yield

T ˙̂x2d + x̂2d = x2d, x̂2d(0) = x2d(0), (22)
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where T is the time constant of the filter and x̂2d is the filtered virtual control variable. Define
the filter error as

x̃2d = x̂2d − x2d. (23)

Calculating the derivative of (23) along (22) yields

˙̃x2d = ˙̂x2d− ẋ2d

= − 1
T

x̃2d − (σ̈d + k1 ė1)

= − 1
T

x̃2d + B(σ̈d, ė1),

(24)

where B(σ̈d, ė1) is a function about σ̈d and ė1. There exists a positive constant BM such that
|B| ≤ BM [22]. Substituting (21) into (20) yields

ė1 = e2 − k1e1. (25)

Choose a Lyapunov candidate to be

V1 =
1
2

e2
1. (26)

It is easy to obtain

V̇1 = e1 ė1 = e1(e2 − k1e1) = e1e2 − k1e2
1. (27)

In this study, the methodology of the sliding surface and the backstepping control is
used to ensure that e1 and e2 converge quickly. Moreover, the fractional calculus operator is
employed to improve transient performance in the design of a sliding mode surface, which
is denoted by

s = λ1e1 +a Dα
t e2. (28)

where λ1 is the sliding surface gain and aDα
t is the calculus operator

aDα
t =


dα

dtα
Re(α) > 0

1 Re(α) = 0∫ t

a
d(τ)−α Re(α) < 0.

(29)

In (29), α is the order of the operator and can be used to adjust transient performance
of the control system. For simplicity of implementation, we choose the Caputo fractional
calculus [23–25]

aDα
t f (t) =

1
Γ(m− α)

∫ t

a

f m(τ)

(t− τ)1+α−m dτ, m− 1 < α < m, (30)

where Γ(·) is Gamma Function, Γ(η) =
∫ ∞

0 e−ttη−1dt and m is the least integer that is not less
than α. The fractional differential operation is transformed to the particular form of integral
operation; therefore, the fractional calculus has the heritability and the memorability. To simplify
the notation, let Dα represent 0Dα

t . This should not cause confusion.
In order to make the system state converge to the sliding-mode surface and further

weaken the chattering of the system, the fractional reaching law is designed as

Dβs = −εsgn(s), (31)
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where ε is a positive constant. According to the properties of fractional calculus, we have

ṡ = D1−β(−εsgn(s)). (32)

Taking the derivative of the fractional sliding-mode surface yields

ṡ = λ1 ė1 + Dα ė2. (33)

Choose a Lyapunov candidate to be

V2 = V1 +
1
2

s2. (34)

Calculating the derivative of V2 gives

V̇2 = V̇1 + sṡ

= e1e2 − k1e2
1 + s(λ1 ė1 + Dα ė2)

= e1e2 − k1e2
1 + s

(
λ1 ė1 + Dα

( ˙̂x2d − f − bu
))

.

(35)

The control law is designed to be

u =
1
b

(
˙̂x2d − f̂ + D−α

(
λ1 ė1 + ks + D1−βεsgn(s)

))
, (36)

where k is a positive adjustable parameter.

4. Stability Analysis

Theorem 1. The errors of the system (11) with the control law (36) are uniformly ultimately
bounded, if the parameter k < 1 and the time constant of the filter T < 2.

Proof of Theorem 1. Assume there exists a positive definite matrix P such that AT
2 P +

PA2 = −I. Construct a Lyapunov function

V =
1
2

e2
1 +

1
2

s2 +
1
2

x̃2
2d + ẽTPẽ. (37)

Substituting (36) into (35) yields

V̇ = e1e2 − k1e2
1 + s

(
f̂ − f − ks− D1−βεsgn(s)

)
+ x̃2d ˙̃x2d + 2ẽTP ˙̃e. (38)

A proper selection of the gain L ensures that the error dynamics of the LESO is stable.
Thus, it is reasonable to assume that f̂ ≈ ftotal . Then, rewrite (38) as

V̇ = e1e2 − k1e2
1 − s

(
ks + D1−βεsgn(s)

)
+ x̃2d ˙̃x2d + 2ẽTP ˙̃e

= e1e2 − k1e2
1 − ks2 − sD1−βεsgn(s) + x̃2d ˙̃x2d + 2ẽTP ˙̃e

= e1e2 − k1e2
1 + (1− k)s2 − s2 + sṡ + x̃2d ˙̃x2d + 2ẽTP ˙̃e.

(39)

Let e12 =
[
e1 e2 Dαe2

]T, and choose a symmetric matrix Q

Q =

k1 + (k− 1)λ2
1 −0.5 (k− 1)λ1

−0.5 0 0
(k− 1)λ1 0 k− 1

 (40)

to make
eT

12Qe12 = −e1e2 + k1e2
1 − (1− k)(λ1e1 + Dαe2)

2

= −e1e2 + k1e2
1 − (1− k)s2

(41)
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hold. Substituting (41) into (39) yields

V̇ = −eT
12Qe12 − s2 + sṡ + x̃2d ˙̃x2d + 2ẽTP ˙̃e. (42)

Calculating the determinant of Q gives

|Q| = −0.25(k− 1). (43)

It can be seen that k should satisfy k < 1 to guarantee that |Q| > 0 holds. Thus
−eT

12Qe12 < 0 holds and there exists a positive constant µ such that the inequality

V̇ ≤ −µe2
1 − s2 + sṡ + x̃2d ˙̃x2d + 2ẽTP ˙̃e (44)

is satisfied.
Assume ṡ is bounded and |ṡ| ≤ SM, where SM is a positive constant. According to

Yong’s inequality, it is easy to obtain

x̃2d ˙̃x2d = − 1
T

x̃2
2d + x̃2dB

≤ − 1
T

x̃2
2d + |x̃2dB|

≤ − 1
T

x̃2
2d + |x̃2d|BM

≤ − 1
T

x̃2
2d +

1
2

x̃2
2d +

1
2

B2
M

(45)

and
sṡ ≤ 1

2
s2 +

1
2

ṡ2

≤ 1
2

s2 +
1
2

S2
M.

(46)

According to (16), we have

2ẽTP ˙̃e = 2ẽTP(A2ẽ + B2h)

= −ẽTẽ + 2ẽTPB2h

≤ −ẽTẽ + 2M1M2||PB2||.
(47)

Substituting (45)–(47) into (44) yields

V̇ ≤ −µe2
1 −

1
2

s2 −
(

1
T
− 1

2

)
x̃2

2d − ẽTẽ +
1
2

S2
M +

1
2

B2
M + 2M1M2||PB2||. (48)

Assume 1
T −

1
2 > 0. Then, let τ = min

{
2µ, 1, 2

T − 1, 1
λmax(P)

}
, where λmax(P) denotes

the maximum eigenvalue of P. Rewrite (48) as

V̇ ≤ −τV + υ, (49)

where υ = 1
2 S2

M + 1
2 B2

M + 2M1M2||PB2||.
Solving the differential inequality (49) yields

V ≤ υ

τ
+
[
V(0) +

υ

τ

]
e−τt. (50)

This indicates that V is uniformly ultimately bounded.
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It can be concluded that |e1| ≤
√

2υ
τ , |s| ≤

√
2υ
τ , |x̃2d| ≤

√
2υ
τ , ||ẽ|| ≤

√
υ

λmin(P)τ
,

where λmin(P) denotes the minimum eigenvalue of P. All signals in the powered-parafoil
control system are uniformly ultimately bounded. This completes the proof.

5. Simulation Verification

Simulation results of the altitude control of an 8-degree-of-freedom powered parafoil
were used to verify the validity of the presented method. The main structure parameters of
the powered parafoil are shown in Table 1. Simulation results are compared with LADRC
and SMC in [13].

Table 1. Structure parameters of the powered parafoil.

Paremeter Value/Unit

Span 10.5/m
Chord 3.1/m

Aspect ratio 3
Area of canopy 33/m2

Length of lines 6.8/m
Rigging angle 10/deg

Mass of canopy 10/kg
Mass of payload 80/kg

Characteristic area of drag of payload 0.6/m2

The bandwidth parameterization method was used to design the gain of the LESO.

l1 = 90, l2 = 2700, l3 = 2700.

The time constant of the filter was selected to be T = 0.025 s.
The parameters of the designed fractional sliding mode backstepping controller were

designed to be

λ1 = 0.16, k1 = 0.02, k = 0.015, α = 0.82, β = 0.36, ε = 0.01.

The saturation of the control input was considered. The maximum thrust provided by
the engine was limited to 400 N.

The initial altitude of the powered parafoil was set to be 2000 m and the desired
altitude Hd was set to be 1970 m. A gust disturbance (2 m/s) along the negative direction
of the Z axis was added to the system during 100–115 s, which is shown in Figure 3.

Figure 4 shows the observed results of the LESO. The outputs of the observer can
effectively observe each state of the system. For comparison, simulations for the LADRC
and the SMC in [13] were also carried out. The design of the LADRC and the SMC was
the same as that in [13]. Figure 5 shows the attitude angles of the powered parafoil in
the longitudinal plane for the three methods. The pitch angles remained at 9o after the
powered parafoil entered the steady-state. The pitch angles oscillated violently when the
parafoil suffered from the gust disturbance. It can be seen that the transient performance is
better for the parafoil with FSMBC than for that with other two methods.
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Figure 3. The gust disturbance.
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Figure 4. Observed results of LESO.
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Figure 5. Simulation results of the pitch angle.

Figure 6 illustrates the simulation results of the altitude control. The altitude of the
powered parafoil with the FSMBC stabilized at 1970 m after 13 s. The convergence time
was less than that of the LADRC and SMC. Moreover, the recovery speed against the
disturbance is faster for the FSMBC than for the LADRC and SMC. Compared with other
two control methods, there exists about 1.4 m steady-state error for the SMC due to the
lack of ESO. It can be seen from Figure 7 that the thrust input for the FSMBC stabilizes at
18 s, and the convergence speed is faster than that for the LADRC and SMC. It is obvious
that the thrust input for the FSMBC is smoother than that for the LADRC and SMC. This is
beneficial to energy saving and system stability. The SMC used a traditional integer order
sliding surface, which caused the thrust input fluctuated. The specific performance indexes
are shown in Table 2.
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Figure 6. Simulation results of altitude control by LADRC, SMC, and FSMBC.
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Figure 7. Thrust inputs for LADRC, SMC, and FSMBC.

Table 2. The performance indexes of the control system.

FSMBC LADRC SMC

Transient time of the altitude 13 s 16 s 18 s
Steady-state error 0.00 m 0.00 m 1.44 m

Transient time of the thrust 18 s 29 s 35 s
Settling time under disturbance 16 s 20 s 28 s

The variable altitude control of the powered parafoil were also considered. The desired
altitude changed from 1970 m to 1960 m at 50 s. Simulation results are shown in Figures 8–11.
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Figure 8. Observed results of LESO for variable altitude control.
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Figure 9. Simulation results of the pitch angle for variable altitude control.
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Figure 10. Simulation results of altitude cotrol by LADRC, SMC, and FSMBC for variable altitude control.
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Figure 11. Thrust inputs for LADRC, SMC, and FSMBC for variable altitude control.

Figure 8 shows the observed results of the LESO for variable altitude control. The
simulation results of pitch angles are shown in Figure 9. When the desired altitude changed
to 1960 m, the altitude of the powered parafoil decreased accordingly and the pitch angle
deviated from the steady-state value. When the altitude approached to the desired value,
the pitch angle returned to the previous steady-state value. Figure 10 shows that the
transient performance is better for the FSMBC than for the LADRC and SMC. The settling
time is 8 s for the FSMBC and 11 s for the LADRC and SMC. Figure 11 shows that the thrust
input for the SMC vibrates more violently than that of the LADRC and FSMBC during the
transient response. The proposed method, that is, FSMBC, achieved good rapidity and
smoothness. The performance indexes are shown in Table 3. The transient times of the
altitude and the thrust are the same as in Table 2.

Table 3. The performance indexes of the control system for variable altitude control.

FSMBC LADRC SMC

Steady-state error 0.00 m 0.00 m 1.47 m
Settling time of variable altitude 8 s 11 s 11 s

According to the two simulation experiments, due to the lack of ESO, SMC cannot
observe and compensate the total disturbance of the system such that there exists the
steady-state error. FSMBC adopts the fractional sliding-mode surface such that dynamic
characteristics are better than LADRC and SMC, and the control curve is smoother due to
the fractional reaching law.

6. Conclusions

This paper addressed the problem of the altitude control of the powered parafoil. The
dynamic model of the powered parafoil was derived and converted into the second-order
model of the inclination angle. The LESO was devised to estimate the unmodeled dynamics
and the exogenous disturbance. Consequently, the estimate was used for compensation
in the control law. The fractional sliding-mode surface was employed in the design of
the backstepping design to improve the transient performance of the altitude control.
The stability criterion of the control system was derived using the Lyapunov method.
Simulation results demonstrated the validity and the superiority of the presented method.
It was shown that the control performance was better for the FSMBC than for the LADRC
and SMC. However, only longitudinal control problem of the powered parafoil was studied
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in this paper without considering the coupling problem in the horizontal plane. Future
work will be focused on the horizontal orientation control of the powered parafoil.
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