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Abstract: Diabetic retinopathy is one of the most common microvascular complications of diabetes.
Early detection and treatment can effectively reduce the risk. Hence, a robust computer-aided
diagnosis model is important. Based on the labeled fundus images, we build a binary classification
model based on ResNet-18 and transfer learning and, more importantly, improve the robustness of
the model through supervised contrastive learning. The model is tested with different learning rates
and data augmentation methods. The standard deviations of the multiple test results decrease from
4.11 to 0.15 for different learning rates and from 1.53 to 0.18 for different data augmentation methods.
In addition, the supervised contrastive learning method also improves the average accuracy of the
model, which increases from 80.7% to 86.5%.

Keywords: supervised contrastive learning; diabetic retinopathy classification; convolutional neural
network

1. Introduction

Diabetic retinopathy can cause non-reversible damage to retina blood vessels and even
blindness. The risk can be reduced by early diagnosis. However, scanning is an intensive
task. Hence computer-aided scanning models of diabetic retinopathy are necessary.

Many machine learning algorithms have been proposed to build an automatic classifier
of diabetic retinopathy, which is the core of a computer-aided scanning system. In machine
learning methods, the data are the basis for learning the classifiers for diabetic retinopathy.
A diabetic retinopathy dataset was provided on the Kaggle website in 2015 [1]. The Kaggle
diabetic retinopathy detection competition consists of 35,126 and 53,576 fundus images for
training and testing, respectively. Porwal et al. [2] collected a fundus image dataset for
the Indian population. The Indian Diabetic Retinopathy Image Dataset (IDRiD) consists of
516 fundus images. Li et al. [3] collected a fundus image dataset for the Chinese population.
The dataset is named DDR (Dataset of Diabetic Retinopathy), and it consists of 13,673 color
fundus images. Zhou et al. [4] constructed a diabetic retinopathy dataset named FGADR.
FGADR contains 2842 fine-grained annotated diabetic retinopathy images. Decencière et al. [5]
published a diabetic retinopathy dataset named Messidor in 2008. The Messidor dataset
contains 540 normal images (fundus images without diabetic retinopathy) and 660 abnormal
images (fundus images with diabetic retinopathy).

Supported by the labeled fundus images, many automatic classification models of dia-
betic retinopathy have been built by deep learning methods and have achieved state-of-the-art
performance. Oltu et al. [6] showed that deep neural networks achieved good performance for
the detection of diabetic retinopathy. The performances of different deep learning networks,
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such as VGG19, InceptionV3, ResNet50, NASNet, and MobileNet, were tested for the classifica-
tion of diabetic retinopathy in [7]. Alyoubi et al. [8] built two deep learning models for diabetic
retinopathy; one was applied to distinguish fundus images, and the other was used to detect
the lesions of diabetic retinopathy. Transfer learning can be used to improve the classification
model for diabetic retinopathy [9], and it is considered as a useful method for learning from
a dataset with a limited size [10]. In essence, a deep learning method requires a sufficiently
large number of data to obtain a reliable model. It is risky to obtain a robust classifier for a
deep learning model trained on a dataset with a limited size. Tian et al. [11] suggested that the
ordinal information of classes is helpful. Hence, an ordinal regression method was applied
to train a more discriminative classification model for diabetic retinopathy. The new deep
learning network called BiRA-Net was proposed in [12]. An attention mechanism was applied
to build a fine-grained classification model.

Common deep learning networks lack explanation and are sensitive to the training
parameters. The explanation and robustness should be improved to build a more practical
classification model for diabetic retinopathy. Quellec et al. [13] proposed an eXplainable
Artificial Intelligence (XAI) for the classification task of diabetic retinopathy. Indepen-
dent component analysis with a score visualization technique was used to generate an
explainable deep learning model for diabetic retinopathy [14]. The visualization strategy
of networks was applied to discover the inherent features of fundus images in [15]. For
a practical medical model, the robustness of the model is a key factor. Adversarial train-
ing methods were applied to improve the robustness of the classification model in [16].
The built classification model should not fail due to minor changes in the fundus images.
Spatial attention and channel attention mechanisms were considered in [17] to capture the
important features from fundus images and finally build a robust classification model.

Contrastive learning is another way to improve the robustness of the classification model.
However, it has not been used to build a classification model for diabetic retinopathy. In
order to improve the robustness of the model, we apply supervised contrastive learning to
classify the fundus images. The accuracy and robustness of the proposed model are estimated
and discussed.

This article is organized as follows: The data are described in Section 2. The classification
model and its modeling method are proposed in Section 3. The performance of the proposed
model is estimated and discussed in Section 4, and the conclusions are provided in Section 5.

2. Related Work

Deep learning has been widely used to build classification models for diabetic retinopa-
thy. As shown in Table 1, the model includes binary classification or multiple classification.
The binary classification model distinguishes the diabetic retinopathy images from the nor-
mal images. The multiple classification model classifies the images into five stages—normal,
mild, moderate, severe, and proliferative diabetic retinopathy. Many popular deep neural
networks, for example, AlexNet, VggNet, GoogleNet, and ResNet, have been applied to build
classification models for diabetic retinopathy. In addition, some specifically designed net-
works, for example, Zoom-in-Net, BiRA-Net, CANet, and CABNet, have also achieved good
performance for the classification of diabetic retinopathy. A weighted path convolutional
neural network (WP-CNN) [18] was proposed to concatenate the convolutional outputs in
different paths with weights. The WP-CNN enhanced the representation capacity of the
deep neural network and improved the classification performance for diabetic retinopathy.
Bodapati et al. [19] obtained a new state-of-the-art result for diabetic retinopathy severity
level prediction on the Kaggle APTOS 2019 dataset. Tariq et al. [20] utilized deep transfer
learning, including AlexNet, GoogleNet, Inception V4, Inception ResNet V2, and ResNeXt-50,
for a five-degree classification of diabetic retinopathy. Chen et al. [21] proposed a novel
preprocessing algorithm, including scaling, resizing, cropping, and augmenting, to enhance
the quality of the fundus images and to achieve better performance of the diabetic retinopathy
classification model. Nneji et al. [22] proposed a new deep learning network called WFDLN
(weighted fusion deep learning network) to automatically extract features and build a classifi-



Appl. Sci. 2022, 12, 12071 3 of 11

cation model for diabetic retinopathy. Zoom-in-Net [23] was constructed to diagnose diabetic
retinopathy. An attention mechanism was applied to focus on the key area and improve
the model performance in the Zoom-in-Net. BiRA-Net [12], which combined the attention
mechanism and a bilinear model, was applied to consider the influence of small objects in
the fundus images on the classification model for diabetic retinopathy. A cross-disease atten-
tion network (CANet) [24] was proposed to jointly build a model for diabetic retinopathy
and diabetic macular edema. The relationship between diabetic retinopathy and diabetic
macular edema was explored and applied in the proposed model. A category attention block
network (CABNet) [25] was used to treat the class imbalance problem in diabetic retinopathy.
The discriminative features were extracted from each category of diabetic retinopathy. The
attention mechanism has been widely used to extract the fine-grained features and improve
the classification performance of diabetic retinopathy. However, contrastive learning, which
can be used to improve the robustness of model, has not been applied to build a diabetic
retinopathy classification model yet. In order to improve the robustness of the classification
model, supervised contrastive learning method was applied to build a classification model
for diabetic retinopathy.

Table 1. Related work. Binary classification includes a normal class (fundus images without diabetic
retinopathy) and an abnormal class (fundus images with diabetic retinopathy). Multiple classification
includes five classes (normal, mild, moderate, severe, and proliferative diabetic retinopathy).

Bibliography Task Dataset Model

[26] Binary Classification Kaggle CNN

[27] Binary Classification Private data Inception, ResNet

[18] Binary Classification Private data WP-CNN (weighted path
convolutional neural network)

[23] Binary Classification Kaggle Zoom-in-Net

[12] Multiple Classification Kaggle BiRA-Net (bilinear attention net)

[28] Multiple Classification Kaggle AlexNet, VggNet, GoogleNet, ResNet

[24] Multiple Classification IDRiD CANet (cross-disease attention network)

[25] Multiple Classification DDR CABNet (category attention block net)

[3] Multiple Classification DDR VGG-16, ResNet-18, GoogLeNet, DenseNet-121,
SE-BN-Inception

[19] Multiple Classification Kaggle DenseNets

[20] Multiple Classification Private data AlexNet, GoogLeNet, Inception, ResNet

[21] Multiple Classification EyePACS Inception V3

[22] Multiple Classification Kaggle VGG-16

3. Materials and Methods
3.1. Dataset

Li et al. [3] released a fundus image dataset called DDR (dataset of diabetic retinopathy)
for diabetic retinopathy screening. We used the DDR as our dataset. The DDR is an image
dataset, consisting of 13,673 samples divided into six classes, including no diabetic retinopa-
thy, mild diabetic retinopathy, moderate diabetic retinopathy, severe diabetic retinopathy,
proliferative diabetic retinopathy, and ungradable data. In our research, we discarded the
ungradable samples and merged all the diabetic retinopathy samples into one class to obtain
a balanced dataset. Finally, the dataset consisted of 6263 samples without diabetic retinopathy
and 6256 samples with diabetic retinopathy. The dataset was categorized into a training set,
validation set, and testing set at a ratio of 5:2:3.
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Data Preprocessing

The image sizes of the raw data ranged from 5184p × 3456p to 702p × 717p. To fit the
model, all images were resized to 224p × 224p. Several commonly used data augmentation
methods were applied to the original data, including random horizontal flip, random
vertical flip, random rotation, and color jitter. To obtain the robustness of the supervised
contrastive learning, different combinations of the above data augmentation methods
were tested.

3.2. Modeling Method

We used supervised contrastive learning based on ResNet-18 to classify the data.
A supervised contrastive (SupCon) loss was applied to the pretraining stage. The parame-
ters of the convolutional layers were finetuned in the pretraining stage and frozen in the
classification stage.

3.2.1. Networks

ResNet was selected as the backbone network. ResNet is one of the most popular
deep neural networks. The key improvement of ResNet is residual learning. Residual
learning is a kind of shortcut connection. It copies the previous layer’s feature to the next
layer. This solves the degradation problem in very deep neural networks. This makes
it possible to build a neural network with hundreds of layers. In this paper, ResNet-18
was selected to build a supervised contrastive learning model. There were 18 layers with
weights, including convolutional layers and fully connected layers.

The structure of ResNet-18 is shown in Figure 1. Batch normalization was applied to
each basic block of the residual block. The activation function between two convolutional
layers in the basic block was ReLU. The structure of ResNet-18 is simple but efficient.

Figure 1. Structure of Res-Net18.

3.2.2. Supervised Contrastive Learning

Contrastive learning aims to find similar and dissimilar patterns for a machine learning
model. Using this approach, a machine learning model can be trained to distinguish
between similar and dissimilar images and classify them. If there are not any labels or
only weak labels for the images in the dataset, contrastive self-supervised learning [29],
which can be effectively used to learn the data, is applied to build the model. If there
are labels for all the images in the dataset, supervised contrastive learning is the proper
method to build the model. The difference between contrastive self-supervised learning
and supervised contrastive learning is shown in Figure 2. Contrastive self-supervised
learning considers a single positive sample, such as an augmented version of the instance,
and regards the remainder instances as negative samples. The model represents each
instance in a unique and representative way. However, it may not be helpful enough for
classification. Supervised contrastive learning considers not only the augmented version
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but also the instances from same class as positive samples, and the remainder constructs
the negative set. This means the model represents the data into a feature space where
instances from same class are closer than in contrastive self-supervised learning. Therefore,
the model performs better in the classification problem.

Figure 2. Contrastive learning.

3.2.3. Supervised Contrastive Loss

In supervised contrastive learning, supervised contrastive loss is used in the pretraining
stage. The convolutional layers, which extract the features from instances, are trained. Then,
the fully connected layers are finetuned in the classification stage. In this paper, the model of
the pretraining stage started from the transfer model, which was trained on the ImageNet
dataset. Transfer learning accelerates the convergence of the model and has the potential to
improve the performance. In supervised learning, the model started from the same transfer
model as the supervised contrastive learning used in the pretraining stage. This is the
loss function:

Lsup
out = ∑

i∈I
Lsup

out,i = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp(zi
Tzi/τ)

∑a∈A(i) exp(zi
Tza/τ)

, (1)

where zi is the projection vector of instance i from the network, τ is a scalar temperature
parameter, and P(i) is the set of indices of all positive instances. A(i) is all instances
except i.

3.3. Work Flow

Figure 3 shows the work flow of our research. In supervised learning, the training
images were resized and augmented. Then the model, pretrained on the Image-Net dataset,
was transferred and finetuned by the training images. In supervised contrastive learning,
the training images were resized and augmented in same way. Then the feature layers
of the transfer model were used to pretrain in the contrastive learning method. Finally,
the feature layers were frozen, and the classification layers were finetuned.
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Figure 3. Flow chart of the diabetic retinopathy classification model based on the contrastive
learning method.

4. Results

The robustness of the different models was measured by the standard deviations of
the performances for the classification model in the various situations. Because the instance
number of each class was balanced in our dataset, the accuracy was sufficient to measure
the performance of the model.

4.1. Training Processes

We programmed the algorithm in Python 3.7. All the experiments were conducted
on a Linux system with 8 * Tesla V100 32G GPU. Additionally, pytorch-1.10.0 was used to
build the deep learning model.

4.2. Testing Processes
4.2.1. Robustness and Accuracy with Different Learning Rates

Firstly, we tested the robustness of the method with different learning rates. Nine
different learning rates were applied to both the supervised learning (SL) and supervised
contrastive learning (SCL). Details of the validation results are shown in Table 2 and Figure 4.
As shown in Table 2 and Figure 4, the standard deviation of the SL was 4.11, while that
of the SCL was 0.15. Therefore, the robustness of the SCL with different learning rates
was better than the SL. Moreover, the mean accuracy of the SL was 80.79, while that of the
SCL was 86.64. The SCL was more stable and had better performance than the SL with
different learning rates. Additionally, other learning rates such as 0.3, 0.5, or 0.00001 were
also tested. However, the models had either overfitting or underfitting. Therefore, the results
of these learning rates were not considered in robustness measurement. The receiver operator
characteristic (ROC) curve was plotted to comprehensively evaluate the performance of
these classification models. The ROC curve showed the tradeoff between the sensitivity (true
positive rate) and the specificity (1-false positive rate). The classification model that had a
curve closer to the top-left corner indicated a better performance. In order to compare the
different classification models, the area under the ROC curve (AUC), which summarizes the
performance of curve into a single value, was proposed. The results of the ROC curves and
AUC values in Figure 5 indicate that the classification model with the SCL was more robust
and powerful than the classification model with the SL for different learning rates. For a
given threshold, the sensitivity and specificity of the model can be calculated. The sensitivity
of the SL for different learning rates was 76.25%± 10.09%, while that for the SCL, for different
learning rates, was 86.24% ± 0.56%. The specificity of the SL for different learning rates was
76.42% ± 9.48%, while that for the SCL, for different learning rates, was 88.00% ± 1.32%.
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Table 2. Accuracy of the different learning rates. Supervised contrastive learning (SCL) and super-
vised learning (SL).

Learning Rate SL SCL

0.0001 69.42 86.45
0.0005 80.33 86.48
0.001 81.77 86.51
0.003 82.59 86.51
0.005 82.91 86.66
0.01 82.63 86.74
0.03 81.47 86.8
0.05 83.26 86.74
0.1 83.02 86.88

Figure 4. Error bar of accuracies with different learning rates.

Figure 5. ROC curves with different learning rates for the supervised learning (SL) and supervised
contrastive learning (SCL). The ROC curve max and ROC curve min stand for the ROC curves with
the maximum AUC value and minimum AUC value, respectively.

4.2.2. Robustness with Different Data Augmentation Methods

Further, we investigated the robustness of the method with different combinations
of data augmentation methods. Random horizontal flip, random vertical flip, random
rotation, and color jitter were elected. Nine kinds of combinations were applied to both the
supervised learning (SL) and supervised contrastive learning (SCL). Details of the validation
results are shown in Table 3 and Figure 6. As shown in Table 3 and Figure 6, besides the
combination of methods, different rotation rates were also considered. The standard
deviation of the SL was 1.53, while that of the SCL was 0.18. Therefore, the robustness of



Appl. Sci. 2022, 12, 12071 8 of 11

the SCL with different learning rates was better than the SL. Moreover, the mean accuracy
of the SL was 80.68, while that of the SCL was 86.53. The SCL outperformed the SL again
with different data augmentation methods.

Table 3. Accuracy of different data augmentation methods.

Data Augmentation Methods SL SCL

Random Horizontal Flip
Random Vertical Flip

Random Rotation (15 degree)
Color Jitter

82.63 86.74

Random Horizontal Flip
Random Vertical Flip 79.47 86.45

Random Horizontal Flip
Random Rotation (15 degree) 80.83 86.39

Random Horizontal Flip
Color Jitter 79.47 86.24

Random Vertical Flip
Random Rotation (15 degree) 79.27 86.34

Random Vertical Flip
Color Jitter 80.87 86.63

Random Rotation (15 degree)
Color Jitter 78.91 86.51

Random Horizontal Flip
Random Vertical Flip

Random Rotation (5 degree)
Color Jitter

80.99 86.71

Random Horizontal Flip
Random Vertical Flip

Random Rotation (25 degree)
Color Jitter

83.71 86.77

Figure 6. Error bar of accuracies with different data augmentation methods.

We also plotted the ROC curves and AUC values for the classification models with
the SCL and SL for different data augmentation methods in Figure 7. The testing results
indicated that the classification model with the SCL was better than the classification model
with the SL. For a given threshold, the sensitivity and specificity of the model can be
calculated. The sensitivity of the SL for the different data augmentation methods was
81.82% ± 3.05%, while that of the SCL for the different data augmentation methods was
86.53% ± 0.15%. The specificity of the SL for the different data augmentation methods is
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80.84% ± 3.69%, while that of the SCL for the different data augmentation methods was
86.72% ± 0.41%.

Figure 7. ROC curves with different data augmentation methods for the supervised learning (SL)
and supervised contrastive learning (SCL). The ROC curve max and ROC curve min stand for the
ROC curves with the maximum AUC value and minimum AUC value, respectively.

4.2.3. Discussion

The binary classification model, which distinguishes the diabetic retinopathy images
from normal images, was suitable for building the rapid screening system. The robustness
of model is a key performance index for a medical screening system. Our test results shown
in Sections 4.2.1 and 4.2.2 indicated that the contrastive classification model for diabetic
retinopathy was more robust than the traditional model.

In the rapid screening system for diabetic retinopathy, the diabetic retinopathy images
and the normal images were considered as the similar within the classes and dissimilar
between the classes, respectively. The proposed contrastive classification model learned
the representations of the fundus images with the rules that simultaneously maximized the
agreement between similar images and maximized the disagreement between dissimilar
images. In contrastive learning, the representations for the same type of samples were
more compact, and the representations for the different type of samples were more discrim-
inative. Hence, the model built by the contrastive learning method was more robust. The
representations of the fundus images were learned from the unlabeled images and then
fine-tuned with the labeled images. Our test results showed that the contrastive learning
method was suitable for establishing a robust classification model for diabetic retinopathy.

In image classification, contrastive learning is primarily used for unsupervised or
semi-supervised representation learning. Recently, the contrastive learning has been applied
to build a supervised classification model and obtain high accuracy results. The supervised
contrastive learning was used to classify product images [30], and it was also applied to
build a classification model for underwater acoustic communication modulation [31]. The
robustness of the supervised contrastive classification model was analyzed in [32]. The
results in this work showed that the features learned by supervised contract learning were
aggregated into different clusters separately. The supervised contrastive learning method
can obtain more distinguishing features, in which the distance of samples with the same
label is less, while the distance of samples with a different label is more. Thus, the boundary
of the classification model can be more easily determined in the the supervised contrastive
learning method, and the supervised contrastive learning obtains better robustness. Similar
to [32], our results showed that we can build a robust classification model for diabetic
retinopathy by using the supervised contrastive learning method.

5. Conclusions

In this paper, we compared the results of supervised contrastive learning (SCL) and
supervised learning (SL) with different learning rates and data augmentation methods



Appl. Sci. 2022, 12, 12071 10 of 11

in diabetic retinopathy image classification. Large span learning rates, from 0.0001 to 0.1,
were fully tested. Four kinds of data augmentation methods, including random horizontal
flip, random vertical flip, random rotation, and color jitter, were selected. We validated the
influences of different combinations and values of the above methods. The experimental
results showed that the SCL had a higher mean accuracy than the SL with different hyperpa-
rameters. More importantly, the SCL was more robust than the SL. In medical classification,
a robust system is more practical and valuable. Our work shows that the SCL is suitable
for diabetic retinopathy binary classification. The proposed automatic classification model
for diabetic retinopathy has the potential to be applied within the clinical decision support
systems. In fact, some systems [33,34] have been successfully applied to aid in diagnosing
diabetic retinopathy.

We validated the availability of the SCL for diabetic retinopathy binary classification
on ResNet-18. More research on multiple classification and other kinds of deep models is
expected. In the future, more experiments should be focused on multi-classification, which
is closer to the real diagnosis. Furthermore, supervised contrastive learning also has the
potential to increase the robustness of models in the medical image segmentation task.
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