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Abstract: UAVs have shown great potential application in persistent monitoring, but still have
problems such as difficulty in ensuring monitoring frequency and easy leakage of monitoring path
information. Therefore, under the premise of covering all monitoring targets by UAVs, it is necessary
to improve the monitoring frequency of the target and the privacy protection of the monitoring
intention as much as possible. In response to the above problems, this research proposes monitoring
overdue time to evaluate the monitoring frequency and monitoring period entropy in order to evalu-
ate the ability to ensure monitoring privacy protection. It then establishes a multi-UAV cooperative
persistent monitoring path planning model. In addition, the multi-group ant colony optimization
algorithm, called overdue-aware multiple ant colony optimization (OMACO), is improved based
on the monitoring overdue time. Finally, an optimal flight path for multi-UAV monitoring with
high monitoring frequency and strong privacy preservation of monitoring intention is obtained.
The simulation results show that the method proposed in this paper can effectively improve the
monitoring frequency of each monitoring node and the privacy preservation of the UAV monitoring
path and has great significance for enhancing security monitoring and preventing intrusion.

Keywords: persistent monitoring; privacy protection; path planning; monitoring frequency;
overdue time

1. Introduction

For the purposes of public safety, environmental protection, scientific research, etc.,
people need to observe, measure and collect information in certain areas over a long time,
and then make decisions based on the results of these observations, measurements and
collection. This is generally called a persistent monitoring problem [1–3]. Monitoring
in person or by hand is usually constrained by weather, geography, working hours and
labor costs, and intelligent equipment can greatly overcome the above deficiencies of
human based monitoring. Unmanned aerial vehicles (UAV) are examples of one of these
typical intelligent monitoring devices. Because they are free of human intervention and
offer stable flight, a wide range of motion, and low cost, UAVs are often used to perform
persistent monitoring tasks [4], target detection and tracking [5], and border patrols [6].
This research mainly studies the UAV path planning problem when they are used in
persistent monitoring.

With the emergence of various complex environments and complex tasks, a single UAV
will find it hard to meet the requirements of increasingly complex inspection operations.
Consequently, there has been extensive research on multi-UAV cooperation. Compared
with single-UAV operation, multi-UAV cooperation has demonstrated greater advantages.
For example, multi-UAV cooperation [7,8] can obtain more comprehensive and wide infor-
mation and can realize multi-angle monitoring of the target area. However, such problems
as cooperation strategy, inconsistent monitoring frequency, unsynchronized monitoring
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information, and unsafe monitoring strategies still exists for multi-UAV cooperation. The
task decisions of multi-UAV persistent monitoring have become popular issues in the
application field of UAVs.

The multi-UAV persistent monitoring problem can be divided into two levels. One
level is the monitoring frequency constraint, and the other is the persistent monitoring
security, i.e., monitoring privacy preservation. The above two levels correspond to the two
so-called modes of UAV persistent monitoring. One is the regular monitoring mode, that is,
the route planned for the UAV to minimize the time delay between each adjacent visit of
the task nodes and to improve their monitor frequency as much as possible. The other is the
adversarial monitoring mode, which is to plan uncertain, unpredictable and non-periodic
monitoring paths for UAVs in order to prevent any intelligent intruders from detecting
the monitoring regularity [9]. If the monitoring frequency constraint is considered as the
only criterion, the monitoring path is usually a certain periodic path. Once an intelligent
intrusion appears in the monitoring environment, the privacy of the UAV monitoring
intention cannot be protected, and the monitoring task is easily destroyed by intelligent
intruders. On the other hand, when only the security of persistent monitoring is considered,
it may be difficult to satisfy the monitoring frequency requirements of each node due
to excessive consideration of path privacy security. Therefore, it is of great theoretical
significance and practical value to study the joint optimization problem of monitoring
frequency and privacy protection.

Portugal [10] reviewed the multi-robot cooperative patrol algorithms that has been
studied in recent years and pointed out that a distributed, non-deterministic and coopera-
tive strategy represents the future trend. Alamdari [11] studied the persistent monitoring
problem of a single robot. The optimization goal is to minimize the revisit duration of
the given monitoring tasks. Two approximate algorithms with complexity O(log ρG) and
O(log n) were proposed, respectively. Elmaliach [12] studied the patrol problem in a closed
area and proposed the patrol frequency optimization criterion for the first time, and each
point in the area should be repeatedly visited by multiple robots. Smith [3,13] studied
persistent monitoring problems in discrete and continuous environments, and established
two optimization models, aiming to enhance the monitoring frequency. Wang [14] studied
the persistent monitoring problem of multiple UAVs and established a mathematic model
based on the optimization of the maximum environmental recognition accuracy, which
was then solved by a heuristic algorithm. Kalyanam [15] studied a similar problem, i.e.,
UAV data collection, allowing UAVs to visit some targeted location with high priority more
than once in a single cycle. An optimization by maximizing the average period reward
was formulated, and the precise solution combining dynamic programming and mixed
integer linear programming was achieved. Subsequently, considering the scalability of
the algorithm and improving its efficiency, an approximate solution was proposed for the
nodes with specific visiting times [16]. Von [17] also discussed the algorithm scalability
where a genetic algorithm was used to obtain the approximate solution that showed better
scalability than a precise method through experiments. Scherer [18] studied a multi-UAV
cooperative path planning problem with monitoring data transport for the purpose of
minimizing the time delay between data being captured by UAVs and the arrival of the
data at the base station. Hari [19] considered the monitoring frequency constraint and
set the fixed horizon to a given number, k, which assumes that the UAV can only access k
nodes in each cycle. However, once there exists an intelligent intrusion in the monitoring
environment, the monitoring privacy will have already been destroyed. The above persis-
tent monitoring studies considered monitoring frequency constraints, but only focused on
the monitoring performance or coverage rate of the given area [20] and did not consider
monitoring security issues in an adversarial environment.

With regard to the concern for monitoring security, one also needs to consider how
easy the monitoring strategy can be acquired by intelligent intruders. The privacy of the
persistent monitoring process is of great concern, especially in some applications where
intelligent adversaries or intruders might occur. At present, there are at least two ideas in
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the field of monitoring security. One is to improve the existing deterministic strategy for
the path planning problem and use random algorithms instead, such as Markov chains,
or random walk theory. The other is to establish a game model and a balance scheme
between the competing players. Agmon [21] proposed a Markov strategy, which is a
polynomial-time algorithm, and their research is motivated by reducing the probability
of being invaded at a weak task position as much as possible. Entropy has also been
introduced in path planning [22]. For example, George [23] and Duan [24] studied the
entropy rate maximization problem based on Markov chains. Stackelberg game theory was
used by Basilico [25] to formulate an optimal solution to the path planning problem for a
single robot on a security patrol, while assuming only one intruder. Security game theory
has been proposed for the study of the persistent monitoring path planning problem in
ecological protection [26]. The main motivation for their study on patrol and monitoring
strategies is to obtain an unpredictable trajectory, which was finally obtained through
maximum entropy.

With the aforementioned observations, some studies on persistent monitoring path
planning only concern the complete coverage rate, and some studies consider the moni-
toring frequency, but the final paths often fall in a fixed monitoring period which makes
the monitoring regularity completely exposed to intrusions. The other study considers
monitoring security, but they still do not consider monitoring frequency constraints. To
bridge the gap between the monitoring frequency and monitoring security, this study will
comprehensively consider both sides simultaneously, that is, improving monitoring path
privacy while increasing monitoring frequency. The main contributions of this paper are
as follows:

• Considering monitoring frequency and path privacy, this study shows how to for-
mulate a multi-UAV cooperative persistent monitoring path planning problem with
multiple constraints based on the monitoring of overdue time and of monitoring
period entropy.

• A multi-group ant colony optimization algorithm, called overdue-aware multiple ant
colony optimization (OMACO), is proposed to obtain an optimal flight path for UAV
cooperation. The heuristic function and pheromone update method are improved
based on the monitoring delay time and overdue time. In addition, a target exclusive
mechanism and greedy strategy are proposed for ant node selection.

• Simulation experiments are carried out in complete and incomplete environments to
verify the effectiveness and advantages of the designed algorithm. The simulation
results show that the algorithm proposed in this paper can effectively improve both
the monitoring frequency and the monitoring privacy protection.

2. Multi-UAV Cooperative Persistent Monitoring Path Planning Model
2.1. Problem Description

As the monitoring environment changes and the node quantity increases, computer
resources onboard are often insufficient when performing persistent monitoring tasks in
the stand-alone operation mode. As a result, the waiting time of nodes increase, causing
some nodes to monitor overdue. Compared with a single drone, a drone group performing
persistent monitoring tasks will face huge challenges. For example, each node will maintain
a parameter that represents how long it has been waiting since its last monitoring. Once any
drone visits a node position and completes that monitoring, the waiting-time parameter
maintained by this node will be cleared— demonstrating a rigid nonlinearity. Other diffi-
culties include collision avoidance between multiple drones, information synchronization,
and collaborative work between drones.

This study focuses only on the multi-UAV cooperative path planning problem of
persistent monitoring. A graph model is used to describe the distribution of the candidate
nodes, i.e., G = (V, E), where V = {1, 2, . . . , N} represents the nodes set, N represents the
total number of nodes, and E =

{
eij, ∀i, j ∈ V

}
represents the edges set of G. The UAV set
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is MUAV = {1, 2, . . . , M}, where M is the total number in the given UAV group, M << N.
Here are some assumptions about the background of this study.

(1) For safety and efficiency purposes, the same nodes cannot exist for multiple drones
at the same time. This means that different UAV are permitted to monitor the same node
on different time.

(2) Without loss of generality, all UAVs fly with a constant speed, v.
(3) After a UAV accesses a node, the waiting time of the node is cleared, and all other

UAVs need to be notified to ensure information synchronization.
This research tries to find the optimal flight path of a UAV group, so that the path

meets the requirements of high monitoring frequency and strong monitoring path privacy.

2.2. Discretization of the Graph

Persistent monitoring needs to consider UAV movement synchronization. In order to
solve the problem, a discrete approximation operation is introduced on the graph G. Several
virtual nodes are inserted in an approximately uniform way to the edges of G leading to a
discretized graph that includes many more edges of equal intervals, denoted by δ. This
operation encourages good behavior in which any UAV will certainly move forward from
its current node position to its neighbor node in G instead of staying between nodes at time
step k. This is called UAV movement synchronization. Consequently, nodes can be divided
into two categories, one is the task node set, V, which requires monitoring and the other is
the virtual node set, U, which is generated during discrete approximation operation and
does not to be monitored. The complete node set, called a generalized node set, is denoted
as V′ = V ∪U = {1, 2, . . . , N + |U|}. It should be emphasized that all virtual nodes in U
are not real monitoring tasks, so they do not need to record their monitoring delays. The
final adjacency matrix of G is A ∈ R(N+|U|)×(N+|U|), where any element aij is binary. aij = 1
indicates that node i and j are adjacent to each other, otherwise aij = 0.

2.3. Multi-UAV Collaborative Monitoring Constraints

Let K denote the maximum length of the monitoring horizon. Let the binary variable
matrix Ym ∈ RK×(N+|U|) denote whether a node is monitored by UAV m, m ∈ MUAV . For
∀i ∈ V′, the element ym

k,i = 1 represents that the node i is monitored by UAV m at time k,
and ym

k,i = 0 represents that the node i is not monitored by UAV m at time k. Ym represents
the monitoring of all nodes by UAV m in the entire monitoring time horizon.

Let the binary variable matrix X ∈ RK×(N+|U|) represent whether a node is monitored
by any UAV in the group, where the element xk,i = 1 represents that there is at least one
UAV monitoring node i at time k, and the element xk,i = 0 represents that node i is not
monitored by any UAV at time k. The matrix X stands for the monitored situation of all
nodes in the monitoring time horizon, and can be obtained by combining all Ym, m = 1, 2,
. . . , M. The relationship between X and Ym is X = Y1 ∪ Y2 . . . ∪ YM. The constraints are
as follows:

xk,i =


0, if

M
∑

m=1
ym

k.i = 0,

1, otherwise, i.e.,
M
∑

m=1
ym

k.i = 1
(1)

where i ∈ V, k ∈ {1, 2, . . . , K}

M

∑
m=1

ym
k.i ≤ 1, i ∈ V′, k ∈ {1, 2, . . . , K} (2)

K

∑
k=1

xk,i ≥ 1, i ∈ V (3)

N+|U|

∑
i=1

xk,i = M, k ∈ {1, 2, . . . , K} (4)
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Equation (2) indicates that at any time k, a node is monitored by, at most, one UAV,
that is, multiple UAVs cannot appear at the same location at the same time. Equation (3)
indicates that within the monitoring horizon K, each node must be visited at least once.
Equation (4) indicates that a UAV only has one position at a certain time k.

2.4. UAV Motion Constraints

Assuming that the initial moment k=1, all the UAVs need to start from the same given
initial node Sm ∈ V. The following constraints are satisfied:

ym
1,Sm

= 1, m ∈ MUAV (5)

At the same time, the UAV m cannot visit the same node in two adjacent time steps:

ym
k,i + ym

k+1,i ≤ 1, i ∈ V, k ∈ {1, 2, . . . , K− 1}, m ∈ MUAV (6)

2.5. The Waiting Time Constraint of the Task Node

Let F ∈ R(K−1)×N represent the whole task nodes’ waiting time, in which the element
is fk,i ≥ 0. In the interval between time step k-1 to k, all UAVs select a candidate node
from their individual neighbor according to a certain movement strategy. After that, the
waiting time of almost all nodes increases by one unit time except the arrived node i which
is exactly a task node. That is, i ∈ V. The waiting time corresponding to the arrived node i
will be cleared. Therefore,

fk,i =

{
0 , i ∈ V, k = 1
(1− xk,i)( fk−1,i + c), i ∈ V, k ∈ {2, 3, . . . , K}

(7)

where c is a unit time constant, which represents the time consumed by the UAV when
passing through each edge interval. This specific value is related to the accuracy of the
discretization operation.

2.6. Min–Max Optimization for Multi-UAV Cooperative Monitoring
2.6.1. UAVs Monitoring Overdue Time Evaluation

Let the maximum monitoring interval of a task node i between two adjacent monitor-
ing events be the expected period of the node, denoted by Ti, i ∈ V. Ideally, for any time k,
the waiting time of node i should not exceed its expected period. That is

0 ≤ fk,i ≤ Ti, i ∈ V, k ∈ {1, 2, . . . , K} (8)

However, in practical applications, since the number of UAVs is far less than the
quantity of the task nodes, it is inevitable that some nodes’ monitoring will be overdue.
The overdue time can be expressed as fk−1,i + c− Ti. Define the real monitoring period of
the task node as P ∈ RK×N :

pk,i =

{
0, i ∈ V, k = 1
xk,i( fk−1,i + c), i ∈ V, k ∈ {2, 3, . . . , K}

(9)

The above equation indicates that when the UAV arrives at node i at time step k,
i.e., xk,i = 1, the real monitoring period of this node is fk−1,i + c. Otherwise, pk,i have no
definition and it will be assigned to zero. Therefore, the maximum monitoring period of
the task node i in the entire monitoring horizon is:

max
k∈{1,2,...,K}

pk,i (10)
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Then, the maximum overdue time of the task node i caused by exceeding its expected
period Ti can be expressed as:

max
{

0, max
k∈{1,2,...,K}

(pk,i − Ti)

}
(11)

The following objective, J1, is proposed for optimization by minimizing the normalized
maximum overdue time of all task nodes.

min
Y,F

J1 = max
i∈V

(
1
Ti

max
{

0, max
k∈{1,2,...,K}

(pk,i − Ti)

})
(12)

2.6.2. UAVs Monitoring Path Privacy Criterion

As long as any UAV accesses a task node, its waiting time will be cleared. Therefore,
it is necessary to evaluate the privacy of the monitoring path based on the actual visiting
period of all task nodes. Since the uncertainty of the monitoring period indirectly reflects the
monitoring privacy, this study proposes the concept of monitoring period entropy (MPE)
which refers to the uncertainty when the UAV returns to the task node for monitoring
again. The larger the MPE, the higher the randomness of the monitoring period. Define
a vector p̃i =

{
pk,i
∣∣pk,i > 0, k = 1, 2, . . . , K

}
to represent the vector composed of all the

monitoring cycles of task node i in the entire monitoring horizon. The length of the vector,
p̃i, is l p̃i

= ∑K
k=1 xk,i. Define the monitoring period entropy of node i as:

H( p̃i) = −
l p̃i

∑
j=1

P( p̃i(j)) log P( p̃i(j)) (13)

where P( p̃i(j)) is the probability that the jth element in vector p̃i. One should note that
H( p̃i) is always positive. The minimum monitoring period entropy among all task nodes is:

min
i∈V

H( p̃i) (14)

Therefore, in order to improve the randomness of the monitoring period, the optimiza-
tion objective is designed to maximize the entropy of the smallest monitoring period among

all task nodes, namely max
Y,F

(
min
i∈V

H( p̃i)

)
. This criterion is also equivalent to the reciprocal

of the minimum monitoring period entropy (because H( p̃i) is a positive number), so the
following optimization objectives can be designed:

min
Y,F

J2 =
1

min
i∈V

H( p̃i)
(15)

The dimension of the multi-UAV path solution Y is K × (N + |U|), and the algorithm
time complexity of the calculation for the monitoring of overdue time and the evaluation of
path privacy is O(n2).

2.6.3. Multi-UAV Persistent Monitoring Path Planning Model

The optimization problem of multi-UAV cooperative persistent monitoring path plan-
ning is expressed as follows:

min
Y,F

J = wJ1 + (1− w)J2

s.t. (1)− (8)
(16)

where w ∈ (0, 1) represents the weight coefficient, which will balance between the perfor-
mance of overdue time and path privacy.
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3. Improved Multi-Group Ant Colony Optimization Algorithms Based on Monitoring
Overdue Time

From the perspective of reducing monitoring overdue time and improving path pri-
vacy, this section designs an improved ant colony optimization (ACO) algorithm based on
the monitoring of overdue time, called an overdue-aware multiple ant colony optimization
algorithm. Major improvements include the aspects:

• A greedy strategy for node selection is proposed, in which the ant colony heuristic
function is modified using the expected period of the task nodes.

• Ant colony pheromone is updated based on monitoring overdue time and monitoring
period entropy.

• A target exclusion mechanism is proposed to improve the utilization rate of multi-UAV
in cooperative monitoring.

3.1. Heuristic Function Based on Monitoring Expectation Period

In order to increase the monitoring frequency and reduce the visiting delay of each
task node, the improved heuristic function, ηij, is as follows:

ηij =
1

Tjdij
(17)

where dij represents the distance between node i and j. Comparing with the traditional
heuristic function in ACO, Equation (17) takes into account the expected period (Tj) of the
neighbor task nodes, which is helpful in reducing its monitoring overdue time.

3.2. Target Exclusion Mechanism

When multiple UAVs perform tasks at the same time and do not consider the path
privacy issue, multiple UAVs will be evenly distributed on the minimum Hamiltonian
cycle of the graph [25]. The ants select generalized nodes (task nodes or virtual nodes
are both possible) depending on stochastic probability. Therefore, there is a slim chance
that the UAV follows its previous UAV when selecting its next node, which results in
some nodes being monitored frequently while other task nodes are missed for a long
time. Consequently, monitoring overdue events happen. In order to prevent UAVs from
following synchronically, this research proposes a target exclusion mechanism, as shown in
Figure 1.
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As an example, when UAV1 in Figure 1 selects node n2 as the candidate task node,
UAV1 exclusively occupies node n2 and the node n2 will be locked. However, UAV2, which
is currently located at node n4, cannot select the locked node as its candidate. Only one of
n1 and n3 will be chosen as the UAV1’s next waypoint. The target exclusive mechanism can
fundamentally solve the UAV following problem.
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3.3. Greedy Strategy for Node Selection

This section proposes a greedy strategy, which can help UAV select the optimal node
among its neighbors. The strategy is motivated by the idea that the greater the overdue
time of the ant’s adjacent node j is, the greater the probability that node j will be selected
by the ants in the next step. First calculate the overdue time of all adjacent nodes. Since
some adjacent nodes may not be overdue, the calculated overdue time by fk−1,j + c− Tj is
possibly negative and inconvenient to compute the transition probability. Therefore, this
research constructs a pseudo-overdue time, Rj(t), which is guaranteed to be positive.

Rj(t) = fk−1,j + c− Tj + T0, ∀k ∈ P (18)

where j represents the adjacent node of the current node. T0 represents the upper bound
of the expected period of all monitoring nodes. Usually, it can be calculated by T0 =
maxi∈V{Ti} offline.

The transition probability is not only related to the overdue time of its neighbor node,
but also related to the adjacency constraints, exclusive flags, and pheromone distribution of
the ants’ current adjacent nodes. The improved ant transition probability pz

ij is as follows:

pz
ij =


τα

ij (t)η
β
ij(t)Rj(t)aij(1−oj)

∑
s∈allowz

τα
is(t)η

β
is(t)Rs(t)ais(1−os)

, j ∈ allowz

0 , other

(19)

where i is the current node of the ant whose adjacent node is denoted by j. α and β stand
for the importance factor of the pheromone and the heuristic function, respectively, τij(t)
represents the pheromone concentration on the edge eij after the optimization of each ant at
the t-th iteration. aij stands for the adjacency relationship between node i and j, oj represents
the exclusive state of the node j, z ∈ {1, 2, 3, . . . , Z} represents the ant number, z is the ant
quantity, and allowz represents the set of nodes that the ant z can visit next time. After the
transition probability of the ants is calculated, the roulette method is used to select the next
node according to the maximum probability.

3.4. Pheromone Update Based on Monitoring Overdue Time and Monitoring Period Entropy

The traditional ant colony algorithm updates the pheromone mainly based on the
path length that ants travelled. In order to promote the evolution of the ant colony to the
direction with the smallest cost function value, this study updates the pheromone according
to the optimization objective (16).

τij(t + 1) = (1− ρ)τij(t) +
Z

∑
z=1

∆τz
ij (20)

∆τz
ij =

{
Q
Jz

, ant z from node i to node j
0 , other

(21)

where ρ ∈ (0, 1) represents the pheromone volatile factor. ∆τz
ij represents the pheromone

concentration released by the ant z on the edge between node i and j in the current iteration.
Q is a constant, representing the total pheromone amount released by the ants at one time,
and Jz represents the path cost of the ant z calculated according to (16).

To sum up, the scheme of the proposed OMACO algorithm is shown in Figure 2. The
steps are as follows in Algorithm 1:
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Algorithm 1: Overdue-aware multiple ant colony optimization (OMACO).

Step 1: Initialization (node quantity N, adjacency matrix A, ant quantity Z, maximum iterations
Nc, pheromone importance factor α, heuristic function importance factor β, pheromone volatility
factor ρ, pheromone quantity Q, and maximum monitoring horizon K, weight parameter w).

Step 2: Discretization of the graph.
Step 3: Calculate the target exclusion set O0.
Step 4: Calculate the ant transition probability pz

ij according to (19).
Step 5: Select the next node according to the roulette method, and update the node waiting

time fk,i.
Step 6: Update the ant’s taboo table.
Step 7: Update the target exclusive flag oi.
Step 8: Calculate the monitoring overdue time and monitoring period entropy according to (11)

and (13).
Step 9: Update pheromone according to (20) and (21).
Step 10: Determine whether the iteration reaches the maximum iterations. If so, the procedure

ends; otherwise, go to Step 3.
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4. Simulation Experiments and Discussions

In this section, simulation experiments are carried out for multi-UAV persistent moni-
toring tasks in complete and incomplete environments to evaluate the path planning model
and solution algorithm proposed in this study.

4.1. Algorithm Feasibility Analysis

Assume that three UAVs perform tasks in a complete environment containing 10 task
nodes with known locations to be monitored, which are labeled as numbers in Figure 3.
Task nodes and virtual nodes are illustrated by red and green dots, respectively. The
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blue solid lines represent adjacency relationships within the graph. All the simulation
parameters are listed in Table 1. The expected periods of the task nodes are shown in Table 2.
All simulation examples in this paper are implemented on a computer with Matlab R2020a
installed and the system configuration is Intel Core i7-9750H, 2.59 GHz, 16 GB RAM.
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Table 1. Simulation parameters.

Parameters Value Notes

v 8 m/s UAV speed
δ 40 m interval for discretization
Z 15 ant quantity
c 5 s constant

Nc 200 maximum iteration
α 1.2 pheromone importance factor
β 4 heuristic function importance factor
ρ 0.3 pheromone volatility factor
Q 10 pheromone quantity
K 500 monitoring Horizon
w 0.6 weight parameter

Table 2. Expected period of 10 task nodes.

Node 1 2 3 4 5 6 7 8 9 10

Ti (s) 370 380 350 375 365 390 380 380 375 360

Figure 4 shows the persistent monitoring flight path of the three UAVs obtained by
the proposed method in this paper, where the x-axis represents the time, and the y-axis
represents the node that the UAV arrived at the corresponding time step. The solid line
represents the UAV flight path consisting of passing nodes.
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Figure 5 shows the expected period and the actual monitoring period of the task
nodes. It can be seen that the actual monitoring period of all task nodes is less than
the expected period, which indicates that the monitoring process of the UAV meets the
monitoring frequency requirements of all nodes. Figure 5 also shows that each node has
been visited multiple times in the monitoring horizon, obtaining multiple actual monitoring
periods which are all lower than their expected periods, i.e., meeting the monitoring
frequency requirements.
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More importantly, the actual monitoring period of each node is different, that is,
the waiting time when each node is monitored has a good random distribution. The
simulation shows that the method proposed in this paper can cover all monitoring nodes,
meet the monitoring frequency requirements, and also improve the privacy protection of
the monitoring path.

4.2. Comparative Analysis with Traditional ACO

In order to evaluate the performance of the proposed OMACO algorithm, this section
compares the optimization ability of OMACO and the traditional ACO. Figure 6 shows the
monitoring path solved by the traditional ACO with the same parameters to Section 3.1.
Different from Figure 4, the path sequences (node 6→ 7→ 9) repeat up to eight times in
Figure 6, and the UAV3 trajectory (blue) between steps 450 and 500 can be seen following by
UAV1 (red). This leads to the same monitoring period and is very harmful to the monitoring
privacy protection. However, the UAV path in Figure 4 has no obvious repetitive path
or circular trajectory, and there is no UAV following the other. Therefore, compared
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with the traditional ACO, the proposed OMACO algorithm can obtain better privacy
protection performance.
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Figure 7 shows the actual monitoring period obtained by using the traditional ACO.
There exist many nodes that have been monitored overdue many times, resulting in
the waiting time of the task node frequently exceeding the expected period. Therefore,
the proposed OMACO algorithm is superior to the traditional ACO in improving the
monitoring frequency.
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Figure 7. The actual monitoring period of each node obtained by ACO algorithm.

Table 3 shows a detailed comparison between OMACO and ACO on each task node
monitoring data. Based on the proposed OMACO algorithm, most task nodes have been
visited more times than that of ACO. Therefore, the average visit number is higher than the
traditional ACO. Correspondingly, the average actual period will decrease and be less than
ACO. Also, it is found that the ACO algorithm is not appropriate for our problem because
the node No.10 exceeds its upper bound.

Figure 8 shows the iterative curves of the objective functions obtained by OMACO
and ACO, and the related data are shown in Table 4. In the first iteration, the algorithm
designed in this research has a lower value of objective function than ACO. This is because
the waiting time of the task node has already been considered by OMACO when calculating
the transition probability based on the greedy strategy. In fact, the node selection strategy
has been optimized before the initial ant path. The traditional ACO only relies on the
heuristic function and pheromone to decide the node transition probability. Consequently,
the pheromone is equal on all path segments in the initial iteration which leads to a
randomly path generated.
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Table 3. Monitoring results comparison between OMACO and ACO.

Node
Number of Visits Average of Actual Monitoring Period

OMACO ACO OMACO ACO

1 12 12 198.33 198.75
2 9 7 253.33 350.00
3 14 8 167.14 278.75
4 11 8 232.50 286.25
5 12 9 204.17 242.22
6 9 15 260.00 165.00
7 10 12 220.00 188.33
8 9 7 266.11 335.00
9 11 15 219.09 166.33
10 14 6 170.00 365.00 *

Average 11.1 9.9 219.07 257.56
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Table 4. Solution comparison between OMACO and ACO.

OMACO ACO

Iterations 4 28
Minimum Cost 0.433 0.814

The OMACO algorithm gets the optimal solution of 0.433 in the 4th iteration while
the traditional ACO only obtains the optimal solution of 0.814 in the 28th iteration. Since
the OMACO algorithm introduces the overdue time for optimization, it is significantly
better than the ACO in terms of reducing the monitoring overdue time and improving the
monitoring path privacy.

4.3. Algorithm Scalability Analysis

This section demonstrates the simulation experiments with three UAVs performing
persistent monitoring in an incomplete environment which contains 15 task nodes. Other
parameter settings are the same as in Section 3.1. Figure 9 shows the environment topology
where 15 task nodes connected incompletely will be persistently monitored by the UAVs.
The expected period of 15 nodes is shown in Table 5.
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Table 5. Expected period of 15 task nodes.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti (s) 700 750 1050 950 950 850 950 850 700 850 850 750 700 700 750

In order to further evaluate the scalability of the OMACO algorithm, the algorithm is
tested in the incomplete environment and the results are shown in Figures 10 and 11. It
can be seen that the OMACO algorithm can obtain the optimal path of the UAV swarm in
an incomplete environment, satisfying the objective that the actual monitoring period of
each node be not higher than the expected period. It can be concluded that the OMACO
algorithm can solve the problem of UAV flight paths in different monitoring environments,
satisfying the requirements for monitoring overdue events and monitoring privacy.
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5. Conclusions

This research has studied the problem of multi-UAV persistent monitoring path
planning from the perspective of monitoring privacy protection, reducing monitoring
overdue events, and improving the privacy protection of the monitoring trajectory. A
multi-UAV path planning mathematical model was established based on the monitoring
overdue time and monitoring period entropy. Based on the overdue time, the heuristic
function, transition probability and pheromone update, the strategy of the traditional
ACO is improved. The simulation results show that the proposed OMACO algorithm can
solve the optimal UAV flight path efficiently in both complete and incomplete monitoring
environments and has better performance than ACO. This study is promising for the
prevention of intelligent intrusions while meeting the requirements of regular monitoring.

However, as the complexity of the monitoring environment increases, there may be
adversarial targets destroying monitoring tasks, and the privacy protection requirements
may be more stringent. Subsequent consideration will be given to localize adversarial
objects cooperatively while executing persistent monitoring assignments.
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