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Abstract: Artificial intelligence (AI)-based multispectral remote sensing has been the best supporting
tool using limited resources to enhance the lithological mapping abilities with accuracy, supported by
ground truthing through traditional mapping techniques. The availability of the dataset, choice of
algorithm, cost, accuracy, computational time, data labeling, and terrain features are some crucial
considerations that researchers continue to explore. In this research, support vector machine (SVM)
and artificial neural network (ANN) were applied to the Sentinel-2 MSI dataset for classifying
lithologies having subtle compositional differences in the Kohat Basin’s remote, inaccessible regions
within Pakistan. First, we used principal component analysis (PCA), minimum noise fraction (MNF),
and available maps for reliable data annotation for training SVM and (ANN) models for mapping
ten classes (nine lithological units + water). The ANN and SVM results were compared with the
previously conducted studies in the area and ground truth survey to evaluate their accuracy. SVM
mapped ten classes with an overall accuracy (OA) of 95.78% and kappa coefficient of 0.95, compared
to 95.73% and 0.95 by ANN classification. The SVM algorithm was more efficient concerning
computational efficiency, accuracy, and ease due to available features within Google Earth Engine
(GEE). Contrarily, ANN required time-consuming data transformation from GEE to Google Cloud
before application in Google Colab.

Keywords: ANN; SVM; lithological mapping; machine learning; remote sensing

1. Introduction

Remote sensing sensors record reflected or absorbed electromagnetic (EM) spectra of
various wavelengths to identify objects according to their typical response due to vary-
ing chemical and physical properties. Each rock type may exhibit distinctive spectral
absorption/reflection in the relevant electromagnetic spectrum, according to their mineral
compositions [1]. Different minerals have discriminative responses in near-infrared (NIR),
short-wave infrared (SWIR), and thermal infrared (TIR) spectral wavelengths [1–3]. Map-
ping lithological units may provide information about the spatial distribution of various
rock units and their structural occurrences to interpret and map potential zones of min-
eralization [4–10]. Hence, researchers utilize these spectral bands to explore and identify
different minerals/lithologies through different techniques applied to remote sensing (RS)
data integrated by field surveys and lab geochemical/spectral data [3].

Appl. Sci. 2022, 12, 12147. https://doi.org/10.3390/app122312147 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312147
https://doi.org/10.3390/app122312147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0005-8945
https://orcid.org/0000-0001-5797-3397
https://orcid.org/0000-0001-9921-9405
https://orcid.org/0000-0002-6254-7947
https://orcid.org/0000-0002-1133-5661
https://doi.org/10.3390/app122312147
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312147?type=check_update&version=1


Appl. Sci. 2022, 12, 12147 2 of 20

Traditional remote sensing, e.g., band ratios, MNF, decorrelation stretching, and
principal component analysis (PCA) [5,6,9,11–17], has been widely applied to mainly
ASTER [5,9,10,12,16–21], Landsat 8 OLI [5,10,14], and Sentinel-2 [11–13], or their fused com-
bination, to map different lithologies [10,22]. Researchers have reported better results for
the use of Sentinel-2 data after the application of these traditional techniques [11]. However,
creating geological maps through remote sensing data is still challenging, with complexities
involving sub-pixel-level nonlinear mixing of minerals response [23]. In addition, these
techniques are time-consuming, requiring considerable manual interpretation and expert
knowledge [24]. The mixed albedo from different lithologies, instrumental limitations, and
environmental factors invite robust data mining machine learning (ML) algorithms and
deep learning (DL) algorithms to reveal detailed geological information [4,8,25–30].

Machine learning algorithms have been broadly classified into (1) supervised, (2) un-
supervised, (3) self-supervised, and (4) reinforcement learning algorithms [31]. Supervised
algorithms, e.g., naive Bayes, random forests, SVM, ANN [32], and DL algorithms [31],
such as convolution neural network (CNN) and recurrent neural network (RNN), are
used to predict the outputs matching given targets. Unsupervised learning, e.g., k-nearest
neighborhood, fuzzy-c-means, PCA, and ICA, learn by finding interesting features in data
through reconstruction, transformation, or classification without considering matching
of input with targets [32]. The self-supervised class of algorithms match the targets with
output data; however, the targets are self-generated from the input data instead of given
targets [31]. Reinforcement learning generally involves information retrieval from the
changing environment and learning to take the best action, reinforced by a reward maxi-
mization mechanism [33]. ML algorithms are a widely used alternative to other techniques
for robust and automated classification [3,4,6,30,34]. However, the ML algorithms’ accu-
racy depends on data labels that can be defective due to lithological complexity or lower
spatial resolution [35]. Therefore, unsupervised techniques such as clustering, PCA, and
decorrelation stretching (DS) are used in the preprocessing stage to improve the reliability
of data annotation before applying the ML algorithm [6,28].

The remote sensing dataset’s spatial/spectral resolution and available bands are crucial
for selecting multispectral datasets to minimize data noise [24,35]. The freely available
10 m spatial resolution blue (B2), green (B3), red (B4), and NIR (B8), and 20 m SWIR1 (B11)
and SWIR2 (B12) bands of Sentinel-2 MSI dataset in Google Earth Engine (GEE) facilitate
economic means of lithological mapping [34,36]. GEE contains observations from aerial
imaging systems and multispectral satellite data related to various remote sensing (RS)
domains [6,34,37]. The cloud computing feature has reduced computational time and
enhanced observation efficiency; in addition, a programming interface is provided for
access to data processing features and ML algorithms.

Various lithological formations in the Kohat–Karak regions of Khyber Pakhtunkhwa
of Pakistan contain distinctive alluvium, limestone, Jatta Gypsum, and six other lithologies
(Figure 1 and Figure S1 [38]). These six lithological formations in the Kohat Plateau,
Pakistan, are outlined in Table A1 (Appendix A). Subtle compositional differences in these
formations comprise various proportions of sandstone, shale, and mudstone [39], resulting
from Himalayan molasse depositions. However, the lithologies of this region are difficult to
map through conventional mapping practices due to the complexly deformed, inaccessible,
and rugged terrain. For example, a previous study in the same area used conventional
remote sensing (RS) techniques for mapping the gypsum lithological unit only [19]. The
freely available 10 m spatial resolution blue (B2), green (B3), red (B4), and NIR (B8), and
20 m SWIR1 (B11) and SWIR2 (B12) bands of Sentinel-2 data have rarely been explored for
mapping lithologies in such terrain.
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Figure 1. Location of the study area in the Kohat–Karak districts of the Khyber Pakhtunkhwa prov-
ince of Pakistan (blue), the extent defined by corner points (1) 33 30′9.83″ N, 70 45′2.05″ E; (2) 33 
30′9.83″ N, 71 54′14.87″ E; (3) 32 55′37.63″ N, 71 54′14.87″ E; and (4) 32 55′37.63″ N, 70 45′2.05″ E. The 
extent of a published geological map of the area (Figure S1 [38]) is in black. 

Recently, Bachri [4] reported 85% accuracy from SVM classification of 10 lithological 
classes using Landsat 8 OLI with digital elevation model (DEM) and geomorphometric 
attributes of ALOS/PALSAR. Some studies reported SVM 83.16% [22] accuracies using 
Sentinel-2 applied to fused Sentinel-2+ASTER data. The RF algorithm has also been con-
sidered as the best model with reported accuracies of 91% [40] after application to Senti-
nel-2 and 85.75% [41] with application to a fusion of Sentinel-2+ASTER+DEM data. In 
other case studies, the maximum likelihood classifier (MLC) has been reported as the best, 
with accuracies of 70% [42] and 76% [43] applied to Sentinel-2 data. Therefore, different 
ML algorithms perform better in different lithological formations for a diverse choice of 
satellite data. Additionally, the computational cost for such studies has rarely been re-
ported previously. This paper aims to present a lithological mapping solution with the 
following objectives: 
1. Apply better means of data annotation to obtain higher map accuracy than previous 

ML lithological mapping solutions at lower computational cost and higher spatial res-
olution. 

2. Present a novel system architecture to improve the existing geologic map of the Kohat 
Plateau using Sentinel-2 MSI datasets by (1) extracting training data from PCA, MNF, 
and previous maps for better annotation, and (2) comparison of SVM vs. ANN ML 
lithological classification. 

3. Obtain a medium spatial resolution (1:30,000), high-accuracy ML map for the region 
with subtle compositional differences in the region as a prospecting tool for further 
mineral exploration. 

2. Materials and Methods 
2.1. Geology of the Study Area 

The Kohat Plateau within the study area (Figure 1) is characterized by a blend of 
lithologies owing to a broad spectrum of depositional environments from carbonate plat-
form to marginal marine and again to carbonate platform in the Eocene. An unconformity 
follows in Oligocene continental settings from the Miocene onwards, as shown in Table 
A1 (Appendix A) and Figure S1 [38]. The region mainly contains the deformed sedimen-
tary rocks from the Paleocene to Pliocene sequences formed due to the collision of the 

Figure 1. Location of the study area in the Kohat–Karak districts of the Khyber Pakhtunkhwa
province of Pakistan (blue), the extent defined by corner points (1) 33 30′9.83” N, 70 45′2.05” E; (2)
33 30′9.83” N, 71 54′14.87” E; (3) 32 55′37.63” N, 71 54′14.87” E; and (4) 32 55′37.63” N, 70 45′2.05” E.
The extent of a published geological map of the area (Figure S1 [38]) is in black.

Recently, Bachri [4] reported 85% accuracy from SVM classification of 10 lithological
classes using Landsat 8 OLI with digital elevation model (DEM) and geomorphometric
attributes of ALOS/PALSAR. Some studies reported SVM 83.16% [22] accuracies using
Sentinel-2 applied to fused Sentinel-2+ASTER data. The RF algorithm has also been
considered as the best model with reported accuracies of 91% [40] after application to
Sentinel-2 and 85.75% [41] with application to a fusion of Sentinel-2+ASTER+DEM data. In
other case studies, the maximum likelihood classifier (MLC) has been reported as the best,
with accuracies of 70% [42] and 76% [43] applied to Sentinel-2 data. Therefore, different
ML algorithms perform better in different lithological formations for a diverse choice
of satellite data. Additionally, the computational cost for such studies has rarely been
reported previously. This paper aims to present a lithological mapping solution with the
following objectives:

1. Apply better means of data annotation to obtain higher map accuracy than previous
ML lithological mapping solutions at lower computational cost and higher spatial
resolution.

2. Present a novel system architecture to improve the existing geologic map of the Kohat
Plateau using Sentinel-2 MSI datasets by (1) extracting training data from PCA, MNF,
and previous maps for better annotation, and (2) comparison of SVM vs. ANN ML
lithological classification.

3. Obtain a medium spatial resolution (1:30,000), high-accuracy ML map for the region
with subtle compositional differences in the region as a prospecting tool for further
mineral exploration.

2. Materials and Methods
2.1. Geology of the Study Area

The Kohat Plateau within the study area (Figure 1) is characterized by a blend of
lithologies owing to a broad spectrum of depositional environments from carbonate plat-
form to marginal marine and again to carbonate platform in the Eocene. An unconformity
follows in Oligocene continental settings from the Miocene onwards, as shown in Table A1
(Appendix A) and Figure S1 [38]. The region mainly contains the deformed sedimentary
rocks from the Paleocene to Pliocene sequences formed due to the collision of the Eurasian
and Indian plates. Tectonically, the Kohat Plateau falls in a compressional regime due to
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a tectonic collision between the Indian and Asian plates northward of the MBT [44]. The
compressional tectonics resulted in thrust sheets in the Kohat Plateau, which predominantly
exposes Paleogene–recent strata [45,46]. As a result, thrusts, broad synclines, tight anticline
structures, and tight symmetrical folds striking in the east–west direction are found. The
fluctuating depositional environments in the Eocene indicate the interplay of tectonics and
climate, which becomes predominantly continental from the Miocene onwards in response
to Himalayan orogeny [47]. A detailed study of the structural geology and stratigraphy of
the Kohat region is discussed by Ali et al. [48]. Apart from Quaternary era surface alluvium
depositions, all the tertiary era depositions are ordered from oldest to most recent: Jatta
Gypsum, Mami Khel Clay [49], Kohat [50] (Eocene); Murree [51], Kamlial [52] (Miocene);
Chinji [52], Nagri [52], and Dhok-Pathan (Pliocene) formations [53]. Jatta Gypsum is the
oldest formation, with evaporite origin overlaying the Bahadur Khel salt deposition; Mami
Khel/Kuldana formations are the early clasts of erosion from the Himalayan mountains in
the Eocene era. The purple-reddish-brown shale containing the high-iron Murree Forma-
tion (Miocene) overlays the Kohat Formation. The Kamlial Formation (Miocene) is mostly
greenish-grey sandstone, similar to the Nagri Formation but with a relatively lower shale.
The Chinji Formation has claystone lumps with pointed heaps of sandstone/silty clay
reddish clasts bearing high ferric oxide content (hematite). The Nagri Formation consists
of micaceous sandstone with 50% sandstone and 50% shale. The Dhok-Pathan Formation
contains 70% sandstone and 30% clay shale. The various formations of the Siwalik Group
are distinguished by gross sandstone percentages, with the Chinji Formation having less
than 50% sand and a greater amount of mudstone, the Nagri Formation more than 50%
sand, and the Dhok-Pathan Formation, again, less than 50% sand [47]. The differentiation
of these formations would rely on compositional variations of quartz, feldspar, mudstone,
and heavy minerals and the presence of mica in lithofragments.

The semiarid climate with outcrop exposures of variable lithological colors and hydro-
carbon potential of the area makes the Kohat Plateau favorable for lithological mapping
using spectral remote sensing data. However, for automated mapping of these formations
through remote sensing, robust ML algorithms and suitable datasets are required to dis-
tinguish between subtle variations due to varying colors (due to associated minerals) and
compositions of sandstone, shale, and conglomerates (Table A1 in Appendix A).

2.2. Multispectral Data and Google Earth Engine

GEE is a cloud-based platform for processing large-scale geospatial data for mineral
mapping, environmental monitoring, and analysis. The GEE provides free and easy access
to Landsat and Sentinel satellite datasets [36,37]. Due to GEE development, the research
enthusiasm in remote sensing and geospatial multispectral data science has increased [34].
GEE is a free-to-use platform providing access to:

• Multispectral remote sensing dataset of various satellites, such as Landsat, Sentinel,
and Modis, along with an explorer web app and other ready-to-use products.

• Different AI/ML algorithms with high-speed parallel processing using Google com-
putational infrastructure.

• The two most popular programming languages are JavaScript and Python, supporting
(APIs) application.

• Programming interface with the development environments.

These GEE core features enable users to visualize and process large-scale multispec-
tral geospatial data with high-speed supercomputers using available machine learning
algorithms. Generally, SWIR and TIR bands are considered the most important for distin-
guishing lithologies [1]. The Sentinel-2 MSI datasets have a spatial resolution of 20 m for
SWIR bands but lack TIR bands. In contrast, Landsat 8 OLI datasets contain TIR bands with
a spatial resolution of 100 m and therefore have limited spatial detail, i.e., 1:100,000 [54].
Thus, the spectral responses in the TIR band may be diluted due to the mixed response
from features due to its limited temporal, spatial, and spectral resolutions [17,23].
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Additionally, vegetation and soil cover further make it difficult to map the deposits [24].
The Sentinel-2 satellite with the MSI on board [55] has a high revisit frequency, and mission
coverage provides local, regional, national, and international data. In addition, due to the
relatively higher spatial resolution SWIR bands, Sentinel-2 is generally more suitable for
mineral exploration and lithological mapping [2]. However, robust ML algorithms must be
required to deal with limited data (without TIR bands) for identifying various rock types.

Limestone shows spectral variations in the SWIR range (2.10–2.30 µm) and TIR range
(10.25–11.65 µm) [17,21]. Gypsum shows a wide range of varying absorption features in
SWIR ranges (1.2–1.38 µm, 1.61–1.75 µm, and 2.21 µm) depending upon the low-frequency
vibrational modes of associated crystal molecular water, O–H stretching fundamentals,
and combinations of H–O–H bending [9]. Similarly, shale displays absorption features at
1.40 µm attributed to OH/H2O stretches, 1.90 µm related to H2O stretches, and 2.20 µm
due to a combination of the OH-stretching fundamental with Al–OH bending mode [10].
Therefore, Sentinel-2 bearing SWIR bands and high spatial resolution can be used for
distinguishing these formations through robust ML classification algorithms, such as SVM
and ANN [26].

2.3. Supervised Classification Algorithms

A classification function maps the input data (features) to the output class or (tar-
get labels) by minimizing the prediction error, often learning the complex input–output
relationship patterns. Inputs are shown in the form of n-vectors {X1, X2 . . . Xn} while
outputs are represented in the form of finite k class labels {Y1, Y2 . . . Yk}. Datasets are
divided into training and testing sets, and models are trained using training data, while
testing data are used for cross-validation to evaluate the performance of trained machine
learning models [32]. SVM and ANN supervised classification algorithms are the most
widely used algorithms in ML applications, providing valuable insights through cloud
computing involving geospatial data.

2.3.1. Support Vector Machine (SVM)

The SVM is widely applied in mineral exploration, especially in processing remote
sensing data [6,26,29,56]. As defined by Vapnik [57], SVM can solve a quadratic opti-
mization problem by creating nonlinear decision boundaries in high-dimensional variable
space [58]. According to basic SVM theory, many hyperplanes can split different classes for
a nonlinearly separable dataset, including points from two classes. Therefore, only a subset
of “k” training samples, known as support vectors, are used to identify a hyperplane that
best divides classes (i.e., the decision boundary). The optimal decision boundary between
different classes is defined as those with the maximum margin M = 2

‖w‖ (distance) between
the support vectors. SVM identifies M in nonseparable linear instances while considering
a cost parameter C, which provides a penalty for misclassifying support vectors. The
objective function must be adjusted to include this penalty component for wide-margined
decision boundaries with misclassified support vectors, as shown below.

Minimize
‖w‖

2
+ C

k

∑
n=1

εn (1)

Subject to the hyperplane boundary conditions

yn(w.x + b) ≥ 1− εn
εn > 0 and n = 0, 1, 2, 3 . . . . . . k

(2)

where ‖w‖ is the Euclidean norm of w, the hyperplane orientation vector that controls the
hyperplane’s orientation; b is the hyperplane’s offset from the origin, and εn is the positive
slack variable indicating the error distance between nth misclassified support vector and
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its marginal hyperplane. SVM uses an implicit transformation ϕ(x) of input data “x” for
cases where classes are not linearly differentiable [59].

Z(xi, xj) = ϕ(xi).ϕ(xj) (3)

where w is the Euclidean norm of w, the hyperplane orientation vector that controls the
hyperplane’s orientation; b is the hyperplane’s offset from the origin, and εn is the positive
slack variable indicating the error distance between nth misclassified support vector and
its marginal hyperplane. SVM uses an implicit transformation ϕ(x) of input data “x” for
cases where classes are not linearly differentiable [59].

Z(xi, xj) = ϕ(xi).ϕ(xj) (3)

Equation (3) provides the inner product kernel Z(xi, xj) of pairwise positions in vari-
able space compared to input variables. Kernel functions allow SVM to handle nonlinear
relationships efficiently by creating linear hyperplanes that separate nonlinearly separable
support vectors by projecting samples from the original d-dimensional space into poten-
tially infinite-dimensional kernel space. In this situation, the decision function’s form is
expressed as:

M : M(x) = sgn(w.Z(xi, xj) + b) (4)

The choice of kernel functions is critical for SVM training and classification accuracy.
Different kernel types available for SVM are polynomial kernel (PL), radial basis function
(RBF) kernel, and sigmoid kernel (SIG). The polynomial with degree 1 is the simplest kernel;
hence, it learns patterns faster than other kernels. The two most essential parameters other
than kernel types that affect the performance of SVM are the penalty parameter C and the
gamma coefficient. If the penalty parameter limits the error level to be accepted in the
training data, the gamma parameter controls the degree of nonlinearity of the SVM model.
For example, a very high value of the cost parameter C results in a complex margin, which
reduces the training error. In contrast, a small value of the cost parameter creates a large
margin, resulting in a significant error in the training data [60].

Google Earth Engine’s built-in SVM classifier was used for lithological mapping. The
training data selected for training the ML algorithm were directly fed to SVM. The most
critical parameters that affect the performance of SVM are the kernel type, cost parameter
(C), and gamma coefficient [4]. The parameters were varied randomly using trial and
error to check the algorithm’s performance. Different kernels in combination with these
cost (penalty) parameters and gamma coefficient were tried. For remote sensing data, the
gamma parameter values were always set to the inverse of the number of bands used in
the study [28]; therefore, since there were six Sentinel-2 MSI bands, the gamma parameter
was set to 1/6.

2.3.2. Artificial Neural Network (ANN)

The ANN classifier is an artificial intelligence (AI) algorithm that mimics how humans
classify patterns, learn tasks, and solve problems [61]. The basic architecture of an ANN
consists of networks of primitive functions that can receive numerous weighted inputs and
are rated on how well they discriminate between the classes in training data (Figure 2).

Models differ depending on the primitive functions and network configurations
used [32,62]. The network connection weights are changed, and convergence continues
until the error reduction between iterations has reached a decay threshold [26,63]. The
important hypermeters that affect the performance of ANN are the activation function,
loss function, optimizer, hidden layer, number of nodes, and regularization layers [32]. A
deep neural network (DNN) represents machine learning when the system has some level
of complexity and uses many layers of nodes to derive high-level functions from input
information [64].
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Figure 2. The architecture of an artificial neural network.

An ANN can extract underlying patterns in a data collection without prior informa-
tion (e.g., a deposit model) and operate with sufficient accuracy even when the data are
noisy [25]. The features of Google Cloud and TensorFlow Keras API in Google Colab were
used to create an ANN model since GEE had no provision to apply an ANN model. First,
we authenticated GEE with Google Colab; the training data were imported from GEE to Co-
lab by uploading them onto the cloud in TF file format to enable working in the TensorFlow
ML platform. Then, we created an ANN model by calling TensorFlow Keras API. Keras is
a Python-based deep learning API that runs on top of TensorFlow [31]. It is used to create a
deep learning model to allow quick experimentation and results generation [31]. A Keras
sequential model with one input, four hidden, and an output layer (1–4–1) was created.
After each dense layer, a normalization layer was used to prevent model overfitting. A
normalization technique used was layer normalization, which finds normalized values
in each layer of the ANN model. The normalization statistics of the summed inputs to
the neurons within a hidden layer are directly estimated with this method [65]. An ReLU
(rectified linear unit) activation function was used to produce input for the next neuron,
which is defined as f(x) = max (0, x) for fast computing and learning of the model. We used
the softmax activation function at the output layer, a more generalized form of the sigmoid
function, which works well with multiclassification problems [66]. To check the perfor-
mance of the ANN model, we used the categorical cross-entropy error/loss function for
faster training while computing the error [66] and better generalization since it generalizes
discrete classification problems efficiently [67]. A comparative study of different optimizers
used in ANN is discussed by Mustapha et al. [54]; the most widely used Adam and SGD
were used to train the model.

2.3.3. Accuracy Measures

The overall (OA) producer (PA) and user (UA) accuracies from the confusion matrix
and the kappa coefficient were used to evaluate the performance of the ANN model and
SVM classifier [68]. The OA is the ratio of accurate pixels in the error matrix to the total
pixels present in the error matrix, i.e., pixels associated with class Y that are not correctly
classified as class Y. The UA reports the algorithm’s reliability as commission errors, i.e.,
pixels classified as class Y that are not associated with class Y. The PA includes omission
errors relating to specific classes, i.e., the number of instances where an algorithm wrongly
classifies a pixel as Y. The kappa coefficient is a statistical measure that shows how well
a classified map agrees with reference data using random classification analyses as the
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probability of agreements arising by chance [69]. The kappa coefficient value varies from
0 to 1; values closer to 1 suggest little ambiguity in a pixel’s class identity, and values near
0 indicate high classification uncertainty. Field visits for ground truth observations in the
study area were also conducted to validate the results generated by these ML algorithms.

3. Mapping Lithologies in the Kohat Plateau Using SVM and ANN

A schematic representation of the methodology is presented in Figure 3, starting
with processing Sentinel-2 MSI data using the GEE platform. Atmospherically corrected
multispectral Sentinel-2 MSI data were taken from the GEE dataset. Date (only images
from 2016 to 2020), cloud (pixels < 5% cloud), and vegetation (pixels < 5% vegetation) filters
were applied to select pertinent data in the study area. In addition, we used a median
filter which sorts all the pixels in ascending order and selects the median reflectance value
for each band. Median filtering is a nonlinear technique that can help preserve the sharp
features in an image by filtering the noise.
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3.1. Spectral Features of Lithologies in the Region

The reflectance values of all the training samples of Sentinel-2 data sampled from GEE
for each class are shown in Figure 4. The plot shows the normalized value, dividing the
samples’ reflectance values with peak reflectance values. The highest peak value of 1 is
shown by alluvium at 1.61 µm, while water shows the high absorption/smallest reflectance
value of 0.05 at 2.2 µm, as compared with other classes. The normalized reflectance value
of each class increased from 0.50–0.83 µm; all formations have a positive gradient (slope)
from 0.83–1.61 µm, except negative gradient of water in that range. The Kohat Formation
also slightly declines the reflectance value from 0.56–0.66 µm. There is a sharp decline in
the reflectance value of the Jatta Gypsum Formation after 1.61 µm. The overall average
reflectance value of Kamlial Sandstone, Dhok Patan, alluvium, and Jatta Gypsum was
higher than the Nagri, Kohat, Muree, Mami Khel, and Chinji formations. These reflectance
values could not distinguish between the lithologies of interest and therefore invited the
use of machine learning algorithms for better delineation and further analysis.
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Figure 4. Average surface reflectance based on training samples selected from Sentinel-2 data for ten
lithological units.

3.2. Preprocessing of Data

The ML task consists of (a) preprocessing, (b) training, and (c) testing the model.
Data preprocessing is necessary to transform available data into a format containing only
relevant information related to the problem [32]. For example, MNF [5] is commonly
used for denoising remote sensing data. It converts a noisy data cube into output images
with gradually increasing noise levels. As a result, the MNF output images gradually
decrease the image quality. MNF converts a linear transform in two steps: (1) Noise
whitening is performed, i.e., the noise in the data is rescaled and decorrelated using
a noise covariance matrix. Thus, the noise has no band-to-band correlations and unit
variance. (2) Standard PCA transform is performed on the noise-whitened data (Figure 3).
In the preprocessing stage, PCA is a widely accepted statistical technique that transforms
raw multivariate, often intercorrelated, dataset variables into a new set of uncorrelated
variables represented by a group of principal components. The first principal component
contains the most variability in the data, and each subsequent component has a lower
representation of variance in data [32]. PCA enhances spectral characteristics of surface
material by minimizing the irradiance effects that dominate all bands, removing redundant
data of different bands, confining information within a few crucial bands [18]. These bands
are retained as input to the ML algorithms for further analysis. Training samples were
selected carefully by analyzing the vegetation (Figure 5) and comparing (1) polygons for all
classes (Figure 5) from the previous geological map (Figure S1), (2) the chosen principal
components (Figure 6), and (3) MNF (Figure 6). The NIR (B8) and SWIR (B11 and B12)
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bands of Sentinel-2 were used to classify lithological units. The total area of the study
region is 6671.8 km2, 105.45 km along easting and 63.27 km along northing.
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Figure 5. NDVI (top) of the study area after preprocessing; sample polygons (bottom) collected
and annotated by information from published geological map (Figure S1), PCA and MNF results
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Figure 6. MNF (top) and false-color composite (bottom) of PC components (PC-3, PC-4, and PC-
5) of the study area defined by corner points (1) 33 30′9.83” N, 70 45′2.05” E; (2) 33 30′9.83” N,
71 54′14.87” E; (3) 32 55′37.63” N, 71 54′14.87” E; and (4) 32 55′37.63” N, 70 45′2.05” E.

Samples from the selected polygons were converted into 30 m pixels using GEE built-
in function to assign relevant labels before classification, as shown in Table 1. Out of
24,340 pixels, 70% were selected randomly for training, while 30% were used as test dataset
to evaluate the machine learning model.
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Table 1. The training and testing samples for different classes.

Lithological Units Time Scale Training Samples Testing Samples

Alluvium (A) Miocene 2561 1100
Dhok Patan (D) Miocene 1430 625

Nagri (N) Miocene 1701 725
Chinji(C) Miocene 1408 589

Kamlial Sandstone (KS) Miocene 1993 833
Murree (M) Miocene 548 261
Kohat (K) Eocene 3042 1297

Mami Khel Clay (MK) Eocene 564 249
Jatta Gypsum (G) Eocene 2745 1100

Water (W) NA 1073 496

4. Results

Hyperparameters used for training the respective algorithm are presented in Table 2,
and were obtained through trial and error. The most influencing hyperparameters that
affected the performance of SVM were kernel type, cost parameter, and gamma value.
The SVM reported the best performance using a polynomial kernel with degree one, cost
value of 0.02, and gamma value of 0.16. SVM shows the best result at a gamma value of
1/6, with the polynomial kernel of degree 1 and the cost parameter having a value of 0.02;
consequently, an accuracy greater than 95% was achieved for both training and evaluation
datasets (Table 3). For ANN, we used an Adam optimizer with a learning rate of 0.0001; the
SGD optimizer was nearly three times more computationally expensive during the training
compared to the Adam optimizer.

Table 2. Important hyperparameters of SVM and ANN used in the study.

SVM ANN

Kernel type 1st-degree polynomial Number of hidden layers 4

Gamma (g) 1/6 Activation function ReLU and softmax

Cost (C) 0.02 Loss function Categorical cross-entropy

Optimizer Adam with a learning rate of 0.0001

The same training samples, collected after preprocessing the data, were fed to both
algorithms. Both algorithms reported good results, with training and validation accuracy
of more than 90%. Table 3 compares the training accuracy, validation accuracy, and kappa
coefficient of SVM with ANN. Both algorithms agree with the training dataset by having a
kappa coefficient value of 0.95. SVM offers the training and testing accuracy of 95.98% and
95.61%, similar to respective accuracies of 94.48% and 95.73% for ANN.

Table 3. Training, validation accuracies, and kappa coefficient of SVM and ANN.

Algorithm Training Accuracy Testing Accuracy Kappa Coefficient

SVM 95.98 95.61 0.95

ANN 94.48 95.73 0.95

Tables 4 and 5 report the PA and UA of ANN and SVM for all the lithological units.
The UA for all lithologies was greater than 90% for the ANN model except for the Mami
Khel and Kamlial formations, with 88.1% and 88.6% accuracies. The highest UA shown by
the ANN model was 99.8% for water and 99.5% for Jatta Gypsum. The PA of ANN was
greater than 90% for all lithologies except for the Nagri and Muree formations, with 88.7%
and 77.4% accuracies. ANN showed the highest PA, 99.5% for Jatta Gypsum, and 99.1%
for the Kohat Formation. The SVM UA for all lithologies was greater than 90% except for
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the Murree Formation, with a UA of 84.9%. The highest UA reported by SVM was for
water, i.e., 100% and 99.6% for Jatta Gypsum. The PA of SVM was greater than 90% for
all lithologies, reporting the highest for Jatta Gypsum with 99.3% accuracy, except for the
Muree Formation with 81.9% accuracy. The overall accuracy (OA) was 95.78 for SVM and
95.73 for ANN.

Table 4. Confusion matrix of artificial neural network (ANN) (with Adam optimizer).

Formations G DP C N K MK M KS A W Producer Accuracy (%)

Jatta Gypsum (G) 1094 0 0 0 4 0 0 2 0 0 99.5

Dhok Patan (DP) 2 600 0 2 11 0 0 7 3 0 96.0

Chinji (C) 2 3 547 15 15 0 0 1 5 1 92.9

Nagri (N) 0 1 2 643 2 1 10 65 1 0 88.7

Kohat (K) 1 2 5 0 1285 0 1 1 2 0 99.1

Mami Khel (MK) 0 0 0 0 4 237 7 1 0 0 95.2

Murree (M) 0 0 2 0 10 25 202 20 2 0 77.4

Kamlial (KS) 1 7 1 10 3 6 1 796 8 0 95.6

Alluvium (A) 0 18 1 0 1 0 1 5 1074 0 97.6

Water (W) 0 1 6 0 3 0 0 0 0 486 98.0

User Accuracy (%) 99.5 94.9 97.0 96.0 96.0 88.1 91.0 88.6 98.1 99.8

Table 5. Confusion matrix of support vector machine (SVM).

Formations G DP C N K MK M KS A W Producer Accuracy (%)

Gypsum (G) 1128 1 0 0 0 0 0 8 0 0 99.2

Dhok Patan (DP) 0 578 3 8 6 0 0 3 27 0 92.5

Chinji (C) 0 0 584 6 6 0 0 0 12 0 96.1

Nagri (N) 3 4 7 691 1 0 1 32 1 0 93.4

Kohat (K) 0 3 7 0 1285 4 3 0 2 0 98.5

Mami Khel (MK) 0 0 0 0 3 225 16 0 0 0 92.2

Murree (M) 0 0 1 0 18 14 186 8 0 0 81.9

Kamlial (KS) 1 2 0 21 2 2 6 777 6 0 95.1

Alluvium (A) 0 21 15 2 2 0 7 2 1053 0 95.6

Water (W) 0 4 2 0 1 0 0 0 1 413 98.1

User Accuracy (%) 99.6 94.3 94.3 94.9 97.1 91.8 84.9 93.6 95.6 100.0

Figure 7 shows the classified map generated by SVM and ANN, with the Jatta Gypsum
deposit highlighted in orange. A previous study within the region [19] only focused on Jatta
Gypsum outcrops; this study mapped nine other lithologies, including Jatta Gypsum. Ground
validation of the mapped area was carried out during a field visit along a north–northeast to
south–southwest transect (Figure 8). The lithostratigraphic units observed in the field were:
Bahadur Khel Salt, Jatta Gypsum, Mami Khel Clay, Kohat, Murree, Kamlial, Chinji, Nagri,
and Dhok Patan, in conformity with ML maps. Jatta Gypsum overlaid the Bahadur Khel Salt
and conformed with the previously published maps and ground exposures. Kohat Limestone
capped most outcrops in the mapped area. The Murree Formation is thin in the mapped area
and has limited ground exposure. Thick deposits of the Siwalik Group and the Chinji, Nagri,
and Dhok Patan formations were observed along the transect segment between Banda Daud
Shah and Karak. The Chinji Formation was overlain by the Nagri Formation, which is overlain
by the Dhok Patan Formation. Some major differences in the ANN vs. SVM classification map
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are evident along the eastern extents between the Kamlial, Nagri, and Dhok Patan formations
and minor deviations near the southwestern end of the Jatta Gypsum Formation contacts with
the Kamlial and Chinji formations.
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Figure 8. Field photographs of the lithostratigraphic units in the mapped area. (a)—Looking north at
contacts among the Kohat, Murree, and Kamlial formations. (b)—Showing evaporites (Jatta Gypsum
and Bahadurkheil Salt). (c)—Looking northeast at contacts among the Jatta Gypsum, Chinji, and
Nargi formations. (d)—Looking north at the contact between the Chinji and Nagri formations (man’s
height = 6 feet).

5. Discussion

Previously published remote sensing map for this region [19] only mapped the Jatta
Gypsum Formation using ASTER data. The challenging problem of mapping other litholo-
gies of high mineralogical similarities was overcome successfully through AI algorithms
using relatively limited bands of Sentinel-2 MSI data. Improvements to the previously
published geological map (Figure S1) were reported regarding the accuracy and lithological
detail, as shown in Figures 7 and 8. We can see that the PA of both algorithms has some
excellent results for each class except for the Muree Formation. This may be associated with
the fact that this formation was thinly exposed on the ground compared to other formations
and may have been affected by atmospheric effects, vegetation cover, the spectral and spa-
tial resolution of the image, heterogeneity of the chemical and mineralogical composition of
the rock at the sub-pixel level, and soil cover. The UA of both algorithms was greater than
90% for all rock types and had an excellent agreement with the previously published GSP
maps. SVM had better accuracies for all formations compared to ANN and can therefore
be considered a more generalized representation of the area. In addition, the high computa-
tional efficiency of GEE and high-resolution Sentinel-2 data are further advantages. The
SVM classifier took five minutes to train and display results. Moreover, these accuracies
and cost-effective solutions were better than the previously reported case studies of recently
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reported ML-based lithological mapping strategies [22,40–43,70,71]. ANN with four hidden
layers, layer normalization with each hidden and input layer, categorical cross-entropy loss
function, and Adam optimizer showed the best results with a training accuracy of 94.48%.
However, the training time for this ANN model was 3 h. ANN was time-consuming since
there is no built-in library for ANN in the GEE, and therefore it required TensorFlow Keras
API through Google Colab. By linking GEE to Colab and uploading training data to Google
Cloud in TF format, the predictions were uploaded back to the GEE for visualization. This
process took 8 hrs. of data transfer for the same data size, compared to 5 min of SVM.

The region is a high hydrocarbon- and minerals-producing area; therefore, such
automated mapping tools would further lead to devising future strategies as an improved
tool for further exploration beyond this region. The study can be extended further using
explainable AI [72] to assess the learning of the model in the context of the response of input
variables (bands) to the outputs (various formations). Further, the surface maps can be
combined with AI-based spatial estimation models [72] applied to subsurface geochemical
and geophysical data to develop 3D geological models of potential mineralized zones. The
approaches will enable the mineral exploration and mining industry to achieve Industry
4.0 [73] through IoT [74–76] and blockchain [77] solutions for secure data sharing within
the mining industry.

6. Conclusions

This paper compares the two most popular supervised ML algorithms (SVM and ANN)
for lithological mapping of different rock types using RGB and SWIR multispectral remote
sensing data of Sentinel-2. Training samples were collected using previously available
geological maps and unsupervised techniques were applied to Sentinel 2 data for data
annotation. A map of nine different lithological units and water was generated with higher
accuracy and detail than the previously reported conventional band ratios/PCA map of the
Jatta Gypsum applied to ASTER satellite RS data. The results show that both the algorithms
map these lithologies with >95% OA and a kappa coefficient of 0.95. The accuracies also
exceeded the recently reported ML lithological mapping studies; therefore, SVM with the
lower computational cost is the best algorithm for this case, learning the features from
limited RGB, NIR, and SWIR bands of Sentinel-2 multispectral data. In the case of ANN,
the transformation of GEE data to Google Colab took 8 hrs + 3 hrs in training and, therefore,
is a time-consuming process. The potential of Sentinel-2 data has been reinforced with the
strength of the SVM classifier and better annotation, which can be extended to differentiate
similar lithologies beyond the region of interest with high accuracy and lower financial
and computational cost. In the era of Industry 4.0, the work can be further extended
to lineaments mapping combined with subsurface geophysical features to develop an
automated 3D geological model with AI-based spatial estimation techniques.
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Appendix A

Table A1. Stratigraphic sequencing and mineralogy of various formations in the region of interest.

Era Group Sub-Group Form. Description [39] Mineralogy

Pl
io
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ne

Si
w

al
ik

G
ro

up

Middle Siwalik

Dhok Patan

Upper member: sandstone,
light-gray; clay,

light-reddish-brown and gray;
conglomerate.

SiO2: 55.2–68.35%, Al2O3:
12.54–14.59%, Fe2O3: 3.07–6.03%,
MgO: 1.8–4.03%, CaO: 5.08–7.86,

Na2O: 2.35–2.61%, K2O:
1.51–2.91%, MnO: 0.06–0.96%,

TiO2: 0.36–0.67%, P2O5:
0.078–0.159% [53].

Lower member: sandstone,
micaceous; conglomerate lenses

and, basal cobble beds.
Formation = 70% sandstone and

30% clay.

Nagri

Sandstone, dark grey, micaceous,
abundant in mafic minerals;
conglomerate lenses. Clay,

brownish-greyish-red,
yellowish-brown and orange,

silty, nodular.
Formations = 50% sandstone; 50%

shale. Field differentiation
between Nagri and Dhok Patan is

difficult.

Quartz = 43.9–63.4%,
feldspar = 24.3–36.3%, and

lithofragments = 11.7–25.6%.
High in mafic silicates pyroxene,

amphibole, olivine, and mica.
Mica content in Nagri Formation

ranges from 1–8% at Bahadar
Khel anticline of the total

frameworks [52].

Lower Siwalik Chinji

Claystone: pointed heaps, mafic
contribution of 23 to 47%
(mudstone) and 56 to 69%

(sandstone).

Quartz = 44–59%,
feldspar = 24–32%, and

lithotypes = 12–32% at the
Bahadar Khel anticline [52].

M
io

ce
ne

R
aw

al
pi

nd
iG

ro
up Kamlial

Mostly sandstone with low shale.
Greenish-gray to grayish-green,

fine- to coarse-grained sandstone;
conglomerate lenses; micaceous;
abundant mafic minerals. Clay,

brownish-grey, green, and
brownish-red. Beds of silty clay,

siltstone, and claystone.

Quartz = 50–60%,
feldspar = 22–25%, and mica

3–15%; mostly biotite. Traces of
several heavy minerals exist,

including epidote, garnet,
monazite, ilmenite, rutile, apatite,

chromite, and fluorite [52].

Murree

Sandstone, purple,
dark-grayish-brown,

greenish-gray, medium to
coarse-grained, conglomeratic.

Shale, purple and reddish-brown.

Quartz = 66–89%,
carbonate = 1–25%, and

clays = 1–21%. Sandstone is
arenite because all sandstone
samples contain less than 15%
matrix. Quartz = 25–40%, rock

fragments = 16–40%, and feldspar
4–11%. Matrix from 1–10% with

iron [51].

Eo
ce

ne

C
ha

hr
at

G
ro

up Kohat

Habib Rahi Limestone member:
limestone; Sadkal member: shale,
green, greenish-gray; Kaladhand
member: limestone, thin-bedded;

interbedded with shale;
foraminifera common.

>95% as calcium carbonate [50].

Mami Khel

Clay, brownish-red, silty; some
beds of sandstone and

conglomerate.
Claystone + siltstone with no

significant sandstone.

Quartz = 35%, feldspar = 3%, rock
fragments = 20%. Heavy minerals

include tourmaline, zircon,
garnet, epidote, sphene and

apatite. Hematite and calcite are
the dominating cementing

material with minor chlorite [49].

Jatta Gypsum Jatta Gypsum: gypsum, bedded
to massive. Gypsum
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