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Abstract: The purpose of hyperspectral unmixing (HU) is to obtain the spectral features of materials
(endmembers) and their proportion (abundance) in a hyperspectral image (HSI). Due to the exis-
tence of spectral variabilities (SVs), it is difficult to obtain accurate spectral features. At the same
time, the performance of unmixing is not only affected by SVs but also depends on the effective
spectral and spatial information. To solve these problems, this study proposed an efficient attention-
based convolutional neural network (EACNN) and an efficient convolution block attention module
(ECBAM). The EACNN is a two-stream network, which is learned from nearly pure endmembers
through an additional network, and the aggregated spectral and spatial information can be obtained
effectively with the help of the ECBAM, which can reduce the influence of SVs and improve the
performance. The unmixing network helps the whole network to pay attention to meaningful feature
information by using efficient channel attention (ECA) and guides the unmixing process by sharing
parameters. Experimental results on three HSI datasets showed that the method proposed in this
study outperformed other unmixing methods.

Keywords: hyperspectral unmixing; convolutional neural network; endmember bundle; spectral
variability; attention mechanism

1. Introduction

Hyperspectral images (HSIs) have many applications. When they are used in remote
sensing, for instance, different ground objects can be distinguished [1]. Often, HSI pixels
contain reflections from many different ground objects and are then referred to as mixed
pixels. The presence of mixed pixels will reduce the HSI processing performance [2,3].
Therefore, hyperspectral unmixing (HU) is used to obtain the spectral features and abun-
dances of the substances (endmembers) in mixed pixels [4].

Originally, a linear mixing model (LMM) based on the photon interaction mechanism
at work in the target object was adopted for HU [5]. An LMM is very interpretable. Vertex
component analysis (VCA) [6] and N-FINDR [7] are representative models too, but mixed
pixels are common in different scenes; therefore, there are limitations to these methods [8].
A nonlinear mixing model (NLMM) can be considered for mixed pixels. In principle,
an NLMM needs to consider more complex factors. Although the traditional unmixing
method shows excellent performance [9–11], outliers and high noise distortions can cause
it to lose a lot of detailed information from HSIs during dimensionality reduction [12].
In addition, there is a large amount of redundant information in HSIs, which increases
processing difficulties.

At present, there are many LMM-based methods for HU following the traditional
view that the endmember spectrum has no spectral variability. However, this assumption
is usually not valid for real datasets because the radiation or reflectivity of materials may
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change significantly with changes in the environment, including changes in the illumi-
nation and atmosphere, perhaps resulting in estimation errors propagated throughout
the unmixing process. Therefore, spectral variability (SV) has attracted wide attention.
Fu et al. [13] proposed a dictionary adjustment method to solve the SV problem, where SV
is regarded as an endmember dictionary in the spectral library that does not match the
observed spectral features. In fact, some SVs are caused by additive perturbations that de-
stroy the original pure endmember spectrum. An interference matrix can be used to model
this kind of spectral variation. Thouvenin et al. [14] considered SVs as additional end-
member disturbance information and developed a perturbed LMM model (PLMM) on the
basis of minimum volume constrained non-negative matrix factorization (MVCNMF) [15];
however, this model lacks specific physical meaning. To clarify the physical meaning,
Drumetz et al. [16] proposed the extended LMM (ELMM), which effectively simulates
changes in reflectivity due to changes in lighting by multiplying the diagonal matrix and
the endmember. Although the physical meaning of this method is clear, the ELMM model
assumes that all wavelengths have a fixed scaling ratio, and thus, this model has some
limitations when the endmembers are under the influence of a more complex environment.
In a variety of complex hyperspectral scenes, an LMM’s data unmixing and reconstruction
ability is limited.

An NLMM is constructed from an LMM by considering specific nonlinear factors to
improve the unmixing performance. Initially, the Hapke model [17], which is based on
radiative transfer theory (RTT), was proposed. It uses a mathematical model to express
complex nonlinear mixed phenomena and then solves the model. However, it has serious
limitations, including difficulties with complex and vegetation-covered scenes. Later,
in keeping with the physical meaning of the model, a simplification in the form of the
bilinear mixture model (BMM) [18], which can be applied to two-layer mixed scenarios,
was proposed. Fan et al. [19] made further improvements, allowing the model to tackle a
variety of mixed-material scenarios. However, these models have some limitations. For
example, an endmember must be extracted in advance by another algorithm before its
abundance can be estimated. This issue leads to many limitations in the event of complex
SV scenarios. Data-driven NLMM has also attracted much attention. Unlike the model-
based NLMM, the data-driven method does not require that the nonlinear mixed form be
known and only needs data to carry out endmember extraction and abundance inversion.
The kernel method is a representative data-driven method. It projects the obtained original
nonlinear data onto a high-dimensional space and then performs linear HU in that space.
Relevant algorithms mainly include kernel fully constrained least squares (FCLS) [20,21]
and non-negative matrix factorization (NMF) unmixing based on the kernel model [22,23].

Recently, deep learning (DL) has developed rapidly, and it has been widely used in
computer vision and natural language processing [24,25]. DL has attracted much attention
in terms of HU due to its strong feature representation and learning abilities. Initially,
some basic network frameworks were applied to HU [26], but these methods required
ground truth or endmember training sets with known abundances, which caused an issue
given that ground truth availability is very limited. Autoencoder (AE) networks have
been widely used in HU due to their characteristics and good performances [27–29]. An
AE network can reconstruct the output data to find the low-dimensional representation
(abundance score) of an HSI. In addition, a convolution neural network (CNN) is able
to extract structural features from an HSI, and thus, it is also very suitable for HU tasks.
Su et al. [30] proposed a deep autoencoder network (DAEN) for unmixing hyperspectral
data with outliers. In [31], Hong proposed a framework called WU-NET, which was used
to deal with SV. In addition, the two-stream autoencoder network (TANET) [32] uses
super-pixel segmentation as a preprocessing technique to extract endmember bundles for
two-stream autoencoder unmixing. However, during dimensionality reduction, the AE will
inevitably lose feature information from an HSI. In [33], an end-to-end pixel-based CNN
was proposed to solve the unmixing task, and the multilayer perceptron (MLP) structures
were used to obtain the pixel abundance. In [34], Arun et al. used CNNs for HU. Among
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them, a long short-term memory network was better at unmixing than a linear hybrid
encoder–decoder method.

Attention-based methods originated from natural language processing (NLP). In recent
years, attention mechanisms have been used in many fields, such as image classification [35–37]
and target detection [38,39]. At present, attention mechanisms are shown to play a good
role in capturing HSI features. Sun et al. [40] designed a successive pooling attention
network for the semantic segmentation of remote sensing images. Fu et al. [41] designed a
recurrent thrifty attention network for remote sensing recognition by using a self-attention
mechanism. Zeng et al. [42] designed a residual network based on an attention mechanism
to conduct HU for limited training samples. Zhu et al. [43] improved its performance by
using a squeeze excitation (SE)-driven attention mechanism to consider the differences
between optical detection and ranging LiDAR heights to guide the unmixing process.
Attention-based networks have great potential for capturing features, and there is still a
lot of room for exploration in this field. Hence, our network optimizes the modeling by
considering the HSI feature information in the unmixing process.

This study re-examined the limitations of the nonlinear hybrid model and the existing
solution mixing schemes to propose workarounds for these shortcomings. By extracting
the information from the HSI with physically meaningful endmembers, the attention
module can also learn the hyperspectral feature information. Accordingly, an efficient
attention-based CNN for HU was proposed in this study.

The main contributions of this study are as follows:

1. This study proposed an efficient attention-based convolutional neural network called
the EACNN, which simulates endmembers in a physically meaningful and self-
supervised way and captures hyperspectral information effectively, allowing for the
HU of complex scenes.

2. Inspired by the attention mechanism approach, an efficient convolution block attention
module (ECBAM) for HU was proposed. It can effectively extract the rich spatial–
spectral information of HSI.

3. A joint attention feature extraction strategy was proposed. For the HSI data, the
network is only allowed to learn its useful bands for HU. On the other hand, the
endmember bundles aggregate spatial information to a certain extent, and the amount
of data is less than that of the original HSI; therefore, it is more efficient to extract
spatial information from the endmember bundles.

The rest of the paper is structured as follows. Section 2 briefly introduces the relevant
category models for advanced HU, while Section 3 provides details for related methods
and the proposed EACNN network framework. Next, Section 4 validates the proposed
method and evaluates the experimental results from different datasets. Section 5 discusses
the above experiments. Finally, conclusions are reached in Section 6.

2. Relevant Research Works

In previous work, researchers proposed many unmixing algorithms, such as fully con-
strained least-squares unmixing (FCLSU) [44], graph-regularized l1/2-NMF (GLNMF) [45],
unmixing based on the graph Laplacian (GraphL) [46], the Merriman–Bence–Osher (MBO)
scheme for solving a graph’s total variation subproblem (gtvMBO) [47], deep autoencoder
unmixing (DAEU) [27] and the endmember-guided unmixing network with pixelwise
(EGU-pw) [48]. Their advantages and disadvantages are shown in Table 1.
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Table 1. Advantages and disadvantages of different unmixing algorithms.

Method Advantages Disadvantages

FCLSU The addition of the `2-norm as a regularization term
effectively improves the computational efficiency

The obtained solution tends toward a local
optimum solution

GLNMF
Constructs the nearest-neighbor graph of the local
window to represent the structural characteristics

of data
Global feature information is lost

GraphL Introduces a normalized graph Laplacian to improve
the efficiency

Improved efficiency but insufficient use of HSI
feature information

gtvMBO
Graph total variation (gtv) regularization is introduced

to capture the similarity between spectra and
improve scalability

Regularization schemes are designed only for
endmembers, leading to biased estimates of

the abundance

DAEU Spectral features are obtained via a stacked
non-negative sparse autoencoder

During dimensionality reduction, feature information
is lost

EGU-pw Shared network weights improve the unmixing
performance and make it more interpretable

Using the AE network, feature information is lost in
the dimensionality reduction process and the captured

features are limited

Although the FCLSU algorithm performs unmixing well, its final solution tends
toward a local optimum solution, which is unfavorable for HSIs containing large amounts
of data. The GLNMF approach hinges on converting a non-negative matrix with higher
dimensions into two non-negative matrices with lower dimensions. However, when it
is directly applied to the estimation of abundance, it often falls into the local minimum
problem. The GraphL and gtvMBO methods improve the efficiency using the Laplacian
graph operation, but their optimizations are aimed at the endmembers only, with no
consideration of the abundance.

With the development of technology, researchers put forward the DAEU, which uses
a neural network, with its strong ability to fit nonlinear problems and process a large
amount of data. It extracts the hidden input features through its encoder and reconstructs
the input through a decoder, which can achieve good results. However, during dimen-
sionality reduction, it will lose rich HSI feature information, which greatly reduces its
unmixing performance. The EGU-pw is an end-to-end, two-stream deep unmixing net-
work that simulates the physical properties of endmembers in the real world through
self-supervision technology. Although it produces excellent results, it also ignores the rich
HSI feature information.

3. Proposed Method

Figure 1 shows the basic EACNN framework, including its endmember network
(EN) and unmixing network (UN). First, through an effective clustering method, the
required pseudo-pure endmember bundles are obtained by aggregating the HSI feature
information. Next, the EN maps the pseudo-pure endmember bundles to the network layer,
which obtains the global spatial and spectral information in the HSI through an efficient
convolutional block attention module (ECBAM). The UN obtains the spectral information
in the HSI that is useful for learning via effective channel attention (ECA) [49]. Finally, the
EACNN uses a parameter-sharing strategy to make the two networks communicate closely,
allowing the EN to embed the inherent physical properties of the endmembers into the
UN, the UN to feed back its information to guide the EN, and the two sides to promote
each other in such a manner as to make the whole network learn in a more accurate and
reliable way.
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Figure 1. Network architecture of the proposed efficient attention-based convolutional neural network
(EACNN).

Next, the proposed EACNN framework is described in detail.

3.1. Endmember Network

In the traditional blind unmixing process, an unsupervised unmixing task can be
accomplished by adding an abundance non-negativity constraint (ANC) and abundance
sum-to-one constraint (ASC) to the network; however, the accuracy and robustness will be
limited and no clear physical meaning can be assigned to the endmembers. Therefore, the
EN learns the physical properties of endmembers by using pure or relatively pure pseudo-
endmember bundles as the input. Inspired by [50], the endmember bundles required for
the EN can be obtained via the following steps.

Based on [51–53], the spectral characteristics of adjacent pixels are highly correlated,
which indicates that pure spectral pixels are more likely to appear in areas with uniform
spatial distributions. First, the HSI is randomly divided into partially overlapping blocks,
with the number of partitions set according to [52]. Then, the number of endmembers is
automatically estimated using the HySime algorithm, and the endmembers are extracted
from each block via VCA. Finally, the repeated endmembers are removed using the K-
means clustering algorithm, and the extracted endmembers are aggregated into K clusters.
According to the experiment, the K value should be set to about 20% of the pixels in the
HSI. The participation of the extracted endmember bundles in unmixing can both clarify
the physical meaning of unmixing and effectively reduce the influence of SV on the whole-
network unmixing process, which is more conducive to the accurate estimation of the
abundances in the HSI.

The endmember bundle input extracted by this method is defined as {xi}Pe
i=1 ∈ RB,

with B bands consisting of Pe pixels, the pure abundance
{

yNe
i=1

}
∈ RC has C categories

and the ith endmember of the lth EN is defined as t(l)i , which is expressed as

t(l)i =

g
(

W(l)
EN, B(l)

EN, xi

)
, l = 1

g
(

W(l)
EN, B(l)

EN, t(l−1)
i

)
, l = 2, . . . , k

(1)
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where g(·) is the nonlinear activation function. WEN and BEN represent the weights and
biases of each layer.

As shown in Figure 1, the EN convolution layer uses the 1 × 1 convolution core. After
each output of the convolution layer, a batch normalization (BN) layer is used. The output
of the BN layer is

t(l)BNi
= αt̂(l)i + β (2)

where Ê(l)
i is the z-score of E(l)

i and α and β represent the parameters for network learning.
After the first convolution layer, a dropout layer is used to effectively alleviate overfit-

ting, remove noise and diminish the SV to a certain extent to enhance the generalization
ability of the model. The output of the dropout layer is denoted as E(l)

Di
. An effective convo-

lutional attention module is used for unmixing. As shown in Figure 2, the ECBAM consists
of two attention modules, namely, the efficient channel attention and spatial attention
modules. First, efficient channel attention produces the input. To effectively aggregate
the spatial feature information, it is implemented using a fast 1D convolution of size k,
where the kernel size k represents the coverage of local cross-channel interactions and is
confirmed using an adaptive method.
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Figure 2. Schematic diagram of the efficient convolutional block attention module (ECBAM).

Given an intermediate feature map F ∈ RW×H×C as the input, where W, H and
C represent the width, height and channel dimension, because our goal was to obtain
useful spectral information from HSIs by capturing local cross-channel interaction, we only
focused on the interaction between each channel and its k neighbors. Therefore, the weight
of yi is calculated using

wi = σ

(
k

∑
j=1
α

j
iy

j
i

)
, yj

i ∈ Ωk
i (3)

where Ωk
i represents the set of k channels adjacent to yi. By capturing the local feature

information across channels, only the part of the network between all channels needs to be
learned so that the overall efficiency is very high. For this operation, the attention of each
channel includes the parameters of k × C. At the same time, in order to further reduce
the complexity of the unmixing module, all channels have the same parameters, which are
expressed as follows:

wi = σ

(
k

∑
j=1
αjyj

i

)
, yj

i ∈ Ωk
i (4)
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In general, ECA is accomplished using a 1D convolution with a kernel size of k, which
is expressed as follows:

MCa(F) = σ(C1D(GAV(F)) (5)

where C1D indicates a 1D convolution and GAV denotes the global average pooling.
The kernel size k determines the interaction coverage captured, which is adaptive

to the channel dimension C. The mapping ϕ between the kernel size k and channel C is
expressed as follows:

C = ϕ(k) (6)

The mapping ϕ is known from [49], and k is nonlinearly proportional to C. The
approximate mapping ϕ is mapped using the following exponential function:

C = ϕ(k) = 2(ε∗k−b) (7)

Finally, the value of k can be obtained as follows:

k = λ(C) =

∣∣∣∣ log2(C)

ε
+

b
ε

∣∣∣∣
odd

(8)

where |v|odd represents the odd number closest to v.
The spatial attention map is generated with the spatial attention module. First, average

pooling and max pooling operations are applied along the channel axis, and then average
and max operations are performed on the input features in the channel dimension. Two 2D
features are obtained then a hidden layer containing a single convolution kernel is used to
convolute them. Finally, these features are concatenated together according to the channel
dimension to obtain a 2D spatial attention map. The specific calculation used in the spatial
attention module is as follows:

MSa(F) = σ
(

f7×7([AvgPool(MSa(F)); MaxPool(MCa(F))])
)

= σ
(

f7×7
([

FSa
avg; FSa

max

])) (9)

where σ denotes the sigmoid function and f7×7 denotes the convolution operation with a
filter size of 7 × 7.

Overall, for a given intermediate feature F ∈ RH×W×C, the ECBAM can be generalized
as follows:

F′ = MCa(F)⊗ F
F′′ = MSa

(
F′
)
⊗ F′

(10)

The last nonlinear activation function of the first two convolution blocks is defined as
a(l)i , which can be expressed as follows:

a(l)i = g
(

t(l)Dropi

)
(11)

Next, we imposed ASC constraints on the last two convolution blocks through the
ReLU layer as follows:

aReLUi
(l) = gReLU(t

(l)
BNi

) = max(0, t(l)BNi
) (12)

The ANC constraint was imposed through the softmax layer:

a
Soft(l)i

= gSoft

(
t(l)i

)
=

et(l)i

C
∑

j=1
et(l)j

(13)
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The cross-entropy is used to measure the EN loss, which can be expressed as follows:

LEN =
−1
Ne

Ne

∑
i=1

[
yi log aSofti + (1− yi) log

(
1− aSofti

)]
(14)

The results obtained when applying just the ANC and ASC constraints in the blind
unmixing method were not very satisfactory because the blind unmixing network was
prone to producing no physical noise when dealing with conditions such as noise, un-
known materials and meaningful spectral features. According to previous experiments,
the endmember bundles can effectively guide the unmixing process to derive physical
meanings for the endmembers. Embedding the network to guide the UN unmixing process
should help it to obtain more accurate representations of the abundance.

3.2. Unmixing Network

The UN structure is roughly similar to that of the EN because the UN and EN can
share weights in the unmixing process, allowing the attributes of the endmembers to be
fully taken into account in the unmixing process. The UN is made up of two similar parts:
the unmixing and reconstruction modules.

In order to effectively share the information obtained by the EN with the UN, the
sharing strategy involves learning in a partially shared fashion following the extraction of
spectral feature information.

Due to the existence of many different SVs in hyperspectral data, linear activation
functions cannot be used in unmixing. At the same time, a linearization operation cannot
fully reproduce the original spectral details of an HSI with complex SVs. Therefore, across
the whole network, a large number of nonlinear activation functions are used. The UN
learns by sharing some parameters. Note that the ECBAM is used in the EN because
the endmember bundle input processes the spatial information. With a certain degree of
aggregation, the extraction of spatial feature information for the EN is efficient, and to a
certain extent, the extracted information can be guaranteed to promote network learning.
At this time, the UN’s extraction of spatial information from the original HSI will add
factors that are irrelevant to the unmixing and may even affect the unmixing performance.
Thus, the proposed method favors a balance between accuracy and efficiency to further
improve the estimation of abundances. The UN and EN have similar settings; for specific
settings, please refer to the EN outlined above.

Through its extraction and reconstruction of the detailed features of the HSI, the
network can obtain satisfactory unmixing results. It should be noted that HSIs contain a
wider range of information and a larger amount of data than natural images of the same
size; therefore, lightweight modules can be used in multi-scale feature extraction. Only a
few parameters can effectively improve the network performance.

The abundances of an unmixing module can be derived directly through asoft. The
optimization of the UN reconstruction module LUN is obtained by minimizing the recon-
struction error:

LUN = min
wUN,BUN

‖X− rm(gu(wUN, BUN, X))‖2
F

s.t.wUN = wEN, BUN = BEN

(15)

where rm and gu correspond to the mapping functions of the unmixing and reconstruc-
tion modules with respect to the weights WUN and biases BUN of the unmixing module,
respectively. The overall EACNN loss can be expressed as follows:

Loss = LEN + LUN (16)
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As shown in [46], the endmembers can be obtained indirectly. Further, the endmem-
bers (E = {e i}C

i=1) can be estimated via a simple linear model when abundances are known:

minE‖X− Ey‖2
F s.t. E ≥ 0 (17)

It should be noted that our model uses a large number of nonlinear activation functions,
while the linear model is simply convenient for visualizing endmembers and comparing
the endmembers to reference endmembers. The specific network parameters are shown in
Table 2.

Table 2. Specific network details of the EACNN.

Endmember Network Unmixing Network

Convolution block 1

1 × 1 Conv 5 × 5 Conv
Batch normalization Batch normalization

Dropout Dropout
Tanh Tanh

Convolution block 2
1 × 1 Conv 3 × 3 Conv

Batch normalization Batch normalization
Tanh Tanh

Attention block 1 Efficient convolutional block
attention module Efficient channel attention

Convolution block 3
1 × 1 Conv 1 × 1 Conv

Batch normalization Batch normalization
ReLU ReLU

Convolution block 4
1 × 1 Conv 1 × 1 Conv

Softmax Softmax

Convolution block 5
1 × 1 Deconv

Batch normalization
Sigmoid

Convolution block 6
1 × 1 Deconv

Batch normalization
Sigmoid

Attention block 2 Efficient channel attention

Convolution block 7
3 × 3 Deconv

Batch normalization
Sigmoid

Convolution block 8
5 × 5 Deconv

Batch normalization
Sigmoid

4. Experimental Results

One synthetic and two real datasets that are commonly used in HU tasks were selected
and the datasets were obtained from [54]. Through quantitative evaluation and testing, the
unmixing performances of several advanced unmixing algorithms were compared with
the proposed EACNN. The network used the above datasets as training and the ground
truth for verification; the details were as follows:

(1) Synthetic dataset: the first dataset contained 200× 200 pixels and 224 effective spectral
bands, while the ground truth contained five randomly selected endmembers.

(2) Jasper Ridge dataset: this contained 100 × 100 pixels and 198 effective spectral
bands, while the ground truth contained four endmembers: “Road”, “Soil”, “Water”
and “Tree”.
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(3) Samson dataset: the last dataset contained 95 × 95 pixels and 156 effective spec-
tral bands, while the ground truth contained three endmembers: “Rock”, “Tree”
and “Water”.

4.1. Experimental Details and Evaluation Indicators

Several of the most advanced algorithms in blind unmixing, including the FCLSU,
GLNMF, GraphL, gtvMBO, DAEU and EGU-pw, were compared with the EACNN.

For the existing advanced algorithm models, the optimal parameter settings given in
the literature were adopted. For the proposed EACNN, the power was set to 0.99 and the
dropout rate was set to 0.9. The learning rate was iteratively updated by multiplying the
initial rate by (1 − (iter)/(maxIter))power. The network model ended after 300 batches.

To evaluate the unmixing performance, the abundance and endmembers were evalu-
ated using the root-mean-square error (RMSE) and spectral angle distance (SAD), respec-
tively. These values are defined as follows:

RMSE(ŷj, yj) =
1
N

N

∑
j=1

√
‖ŷj − yj‖

2
2

(18)

where ŷj and yj are the estimated abundance and actual abundance, respectively;

SAD(êi, ei) = arccos
(

êt
iei

‖êi‖2‖ei‖2

)
(19)

where êi and ei represent the extracted endmembers and reference endmembers, respectively.

4.2. Results for the Synthetic Dataset

The synthetic dataset was simulated by randomly selecting five reference endmembers
from the United States Geological Survey (USGS) spectral library. The complete hyper-
spectral dataset contained a total of 200 × 200 pixels, where each pixel was recorded on
224 spectral bands from 0.4 µm to 2.5 µm. The simulated dataset contained non-Gaussian
SV noise and other complex SVs caused by causes. Please refer to [55] for detailed informa-
tion on the synthetic dataset.

The resulting abundance maps, endmembers and quantitative measurements obtained
during unmixing are given in Figures 3 and 4 and Table 3, respectively. Thanks to the
different SVs in the composite dataset, it can be clearly seen that the FCLSU algorithm
performed well on the composite dataset without taking the endmember variation into con-
sideration and that the results for the GLNMF algorithm in terms of abundance estimation
and endmember extraction were poor, which may have been due to the fact that when SVs
are present, the GLNMF algorithm could not be well constructed, and its abundance map
has serious noise. The gtvMBO algorithm’s unmixing was biased due to its non-negative
endmember constraint. Compared with the traditional unmixing method, the DL-based
model estimated the endmembers well, further indicating its potential. Although the
results of the two endmembers extracted by the EACNN were a little different from those
extracted by the EGU-pw, its performance indicators revealed that EACNN performed
very well. Its stability and effectiveness were demonstrated, and it produced more accurate
unmixing results in blind HU tasks.
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Table 3. Experimental results for the synthetic data. The best one is shown in bold.

Methods FCLSU GLNMF GraphL gtvMBO DAEU EGU-pw EACNN

SAD

Material 1 0.0275 0.1133 0.0172 0.0438 0.0072 0.0061 0.0062
Material 2 0.0270 0.0738 0.0213 0.0308 0.0069 0.0056 0.0021
Material 3 0.0066 0.0227 0.0039 0.0055 0.0032 0.0017 0.0016
Material 4 0.0132 0.0436 0.0115 0.0191 0.0037 0.0021 0.0022
Material 5 0.0072 0.0213 0.0056 0.0061 0.0033 0.0040 0.0029

Mean SAD 0.0163 0.0549 0.0119 0.0210 0.0049 0.0039 0.0030

RMSE 0.0461 0.1322 0.0355 0.0535 0.0329 0.0206 0.0197

4.3. Results for the Jasper Ridge Dataset

The spectral resolution of the Jasper Ridge dataset is 9.46 nm and it has a total of
512 × 614 pixels. Each pixel was recorded on 224 spectral bands in the wavelength range
of 0.38 µm to 2.5 µm. Although the HSI is too complex, it is impossible to obtain its basic
facts. Therefore, a widely used region was selected for the experiment. This region had
a sub-region size of 100 × 100 pixels and encompassed 198 spectral bands. The research
scenario consisted of four endmembers: “Road”, “Soil”, “Water” and “Tree”.

Table 4 shows the estimates of abundance and endmembers for the Jasper Ridge
dataset, and Figure 5 shows the abundance map for this dataset. Figure 6 shows the
endmember extraction results. The FCLSU and gtvMBO strictly adhered to the ASC
constraints, resulting in poor estimation in terms of the endmembers and abundances.
While it retained the details, the GLNMF did not capture the global feature information
well, presumably due to the complexity of the ground feature distribution. It can be seen
from Figure 5 that GraphL and gtvMBO performed well at distinguishing narrow roads
due to their use of a graph structure and that non-local similarity played an important role
in the narrow pixel information provided in the abundance map. However, it can be seen
that there was a lot of noise in the abundances obtained by GraphL. In addition, the DAEU
performed well. EGU-pw, which has a two-stream architecture, achieved excellent results
by refactoring the HSI. Compared with the former, the EACNN pays more attention to the
capture of feature information and network guidance, and thus, achieved excellent Mean
SAD and RMSE values.
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Table 4. Experimental results for the Jasper Ridge dataset.

Methods FCLSU GLNMF GraphL gtvMBO DAEU EGU-pw EACNN

SAD

Road 0.6121 0.7670 0.3344 0.1152 0.1235 0.1082 0.1135
Soil 0.1672 0.1141 0.0788 0.1460 0.1187 0.0786 0.0816

Water 0.2286 0.0629 0.3918 0.3915 0.1565 0.1832 0.1273
Tree 0.1642 0.0983 0.2170 0.2434 0.1583 0.1089 0.0988

Mean SAD 0.2931 0.2606 0.2555 0.2240 0.1392 0.1197 0.1053

RMSE 0.1481 0.1115 0.1453 0.1360 0.1215 0.0896 0.0700
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4.4. Results for the Samson Dataset

The spectral resolution of the Samson dataset is 3.13 nm. Each pixel was recorded
on 156 spectral bands ranging from 0.401 µm to 0.889 µm in terms of wavelength. A
region encompassing 95 × 95 pixels was selected for the experiment. In this region, the
hyperspectral data were not degraded by blank bands or serious noise bands. It contained
three endmembers: “Soil”, “Tree” and “Water”.

Finally, experiments were conducted on the Samson dataset. Because this dataset
was not degraded by blank bands or serious noise bands, it can more directly reflect the
performances of the different unmixing methods. Table 5 shows the abundances and
endmembers estimated for the Samson dataset.

Table 5. Experimental results for the Samson dataset.

Methods FCLSU GLNMF GraphL gtvMBO DAEU EGU-pw EACNN

SAD
Rock 0.0313 0.0239 0.0254 0.0453 0.0693 0.0317 0.0328
Tree 0.0468 0.0284 0.0613 0.0964 0.0531 0.0572 0.0519

Water 0.1126 0.1823 0.3249 0.3734 0.1105 0.1096 0.1026

Mean SAD 0.0636 0.0782 0.1372 0.1717 0.0776 0.0661 0.0624

RMSE 0.1801 0.1870 0.1392 0.0958 0.0332 0.0232 0.0171

As can be seen in Figure 7, all the methods captured the approximate shape of the
endmembers and their change, but the reflectance values were different. The performances
of the FCLSU and GLNMF algorithms on this dataset were relatively general. There was
some obvious noise in the GLNMF abundance map, and the abundance estimation for
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GraphL was 0.04 higher than those of the FCLSU and GLNMF algorithms, but the estimated
endmember results were not very ideal. In addition, because the gtvMBO method imposes
non-negative constraints on the endmembers via its hard threshold operators, it had many
endmember estimation results close to zero. In contrast, because the distribution of the
dataset was simple and there were no complex SVs, it was very obvious that compared with
the traditional unmixing methods, the DL-based model obtained very excellent unmixing
results. Compared with DAEU and EGU-pw, the EACNN further improved the abundance
estimation for the Samson dataset by nearly 0.016 and 0.006, respectively. In other words,
compared with the unmixing method based on an AE, the EACNN puts more emphasis
on the spatial and spectral information contained in the HSI in the unmixing process and
guides the network in obtaining the best results through its convolution operation and
attention mechanisms.
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4.5. Ablation Experiments and Analyses

It can be seen from Table 6 that the ablation experiments on the network modules veri-
fied the importance of all the modules in the proposed EACNN network model, including
the ECBAM and ECA attention modules and their combinations with different networks.
Finally, the reliability and fairness of the ablation experiment were ensured by setting the
hyperparameters consistently.

Table 6. Analysis of the ablation experiment for the Samson dataset.

Structure RMSE

EN + UN (no spectral bundles) 0.0351
EN(ECBAM) + UN(ECA) (no spectral bundles) 0.0286

EN + UN (no feature extraction module) 0.0232
EN(ECA) + UN(ECBAM) 0.0203

EN(ECBAM) + UN(ECBAM) 0.0197
EN(ECA) + UN(ECA) 0.0195

EN(CBAM) + UN(ECA) 0.0175
EN(ECBAM) + UN(ECA) 0.0171

In fact, the main limitation faced by the EACNN algorithm is the accuracy and robust-
ness of the endmember bundle extraction algorithm. After consideration of the inherent
attributes of the endmembers in the EACNN method, the abundance estimation was
significantly improved.

Using the same endmember bundles after removing the attention modules in the
ECBAM and ECA, the EACNN obtained the worst unmixing result, which shows that
the single two-stream network had some limitations with regard to HU. Thus, adding the
ECBAM and ECA attention modules to the two-stream network improved the abundance
and endmember estimation, especially the estimation of abundance. For the ablation exper-
iment, it should be noted that the ECBAM attention module comprehensively obtained the
spatial and spectral information from the HSI and had a better effect on the endmember
bundles aggregating the HSI spatial information than the HSI itself. Hence, the ECBAM
attention module was combined with the EN to add the endmember bundles and share
its parameters with the UN, which can reasonably embed more detailed endmember in-
formation. In addition, especially for targets with complex ground feature distributions
and serious SVs, when the HSI dataset is large, its role in obtaining spatial information is
limited, and capturing the dependencies between all bands is not efficient and unnecessary.
The introduction of the ECA to the UN obtained more effective spectral information for
unmixing from the HSI and increased the complexity of the model while posting obvious
improvements. It brought about further improvements to the network in terms of the
abundances and endmembers. The results in the above experiments explained the pro-
posed point of view well and also showed that the EACNN’s multi-attention joint learning
obtained the information that the network needed to pay attention to and help guide the
network in improving unmixing results.
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5. Discussion

This section discusses the results of the synthetic dataset, the real datasets and the
ablation experiment in Section 4. First, the quantitative analysis of six different algorithms
on the synthetic dataset, Jasper Ridge dataset and Samson dataset found that compared
with other algorithms, the abundance results obtained using FCLSU on the three datasets
were not satisfactory, and it could be seen that the effect fluctuated according to the complex
distribution of real ground objects. On the other hand, according to the visual effect of the
abundance map, it can be seen that the visualization quality of the three methods—GLNMF,
GraphL and gtvMBO—fluctuated greatly, especially for GLNMF. Due to the SV caused
by various factors in the synthetic dataset, the visualization effect of GLNMF was the
most affected, which also showed that GLNMF could not handle the influence of SV well.
The method based on deep learning achieved good results on the above three datasets,
which showed its potential in the task of unmixing. Due to the dimensionality reduction
factor, DAEU lost the rich spatial–spectral information in HSI, and the abundance map
obtained by DAEU displayed the phenomenon of identification error, especially in the
Samson dataset, which was less affected by noise. The result of EGU-pw was excellent, but
its use of the feature information of HSI was still insufficient.

On the other hand, by making full use of spatial–spectral information, the EACNN’s
unmixing performance was improved. By sharing the parameters of two networks, the
overall network obtained more comprehensive feature information and reduced the influ-
ence of SVs. Experiments on synthetic, real datasets and the final ablation experiments
showed that our model displayed good performance.

Of course, the proposed method also had some shortcomings, and it also had some
dependence on the extraction effect of the endmember bundle. In the future, we will seek a
more simple and efficient way, such as a multi-modal method, to improve the precision of
HU while balancing performance and efficiency.

6. Conclusions

In this study, we proposed an efficient attention-based convolutional neural net-
work that reduced the effects of spectral variability for hyperspectral unmixing called the
EACNN, which mainly includes two parts: the EN and UN. The EN learns from pure or
nearly pure endmember bundles and then shares its parameters with the UN. Compared
with other advanced algorithms, sharing parameters with the same weights takes into
account the potential inherent properties of endmembers, which can better guide the net-
work in learning the endmembers, thus making the unmixing results more accurate and
acceptable. In the past, many unmixing networks lost the spatial and spectral informa-
tion of hyperspectral images in varying degrees under dimensionality reduction learning,
thus losing the significance of these images. Thanks to the ECA and ECBAM attention
mechanism, the EACNN can learn feature information from differently scaled HSIs to
help the network to develop in a better direction. Endmember bundles are well-equipped
to deal with SVs. We will search for more specific physical constraints in future work to
stabilize the physical meaning of DL-based unmixing and improve the framework to make
it more efficient.
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Abbreviations

The abbreviations used in this paper are as follows:
AE Autoencoder
CNN Convolutional neural network
HU Hyperspectral unmixing
SV Spectral variability
HSI Hyperspectral image
EACNN Efficient attention-based convolutional neural network
ECBAM Efficient convolutional block attention module
LMM Linear mixing model
NLMM Nonlinear mixing model
VCA Vertex component analysis
DL Deep learning
NLP Natural language processing
SE Squeeze excitation
NMF Non-negative matrix factorization
ELMM Extended linear mixing model
RTT Radiative transfer theory
BMM Bilinear mixture model
EN Endmember network
UN Unmixing network
ANC Abundance non-negativity constraint
ASC Abundance sum-to-one constraint
ECA Effective channel attention
FCLSU Fully constrained least-squares unmixing
MBO Merriman–Bence–Osher
DAEU Deep autoencoder unmixing
EGU Endmember-guided unmixing
RMSE Root-mean-square error
SAD Spectral angle distance

References
1. Hong, D.; He, W.; Yokoya, N.; Yao, J.; Gao, L.; Zhang, L.; Chanussot, J.; Zhu, X. Interpretable hyperspectral artificial intelligence:

When nonconvex modeling meets hyperspectral remote sensing. IEEE Geosci. Remote Sens. Mag. 2021, 9, 52–87. [CrossRef]
2. Jin, Q.; Ma, Y.; Mei, X.; Li, H.; Ma, J. Gaussian mixture model for hyperspectral unmixing with low-rank representation. In

Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), Yokohama, Japan,
28 July–2 August 2019; pp. 294–297.

3. Jin, Q.; Ma, Y.; Mei, X.; Li, H.; Ma, J. UTDN: An Unsupervised Two-Stream Dirichlet-Net for Hyperspectral Unmixing. In
Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2021), Toronto, ON,
Canada, 6–11 June 2021; pp. 1885–1889.

4. Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [CrossRef]
5. Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview:

Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379.
[CrossRef]

6. Nascimento, J.M.P.; Dias, J.M.B. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci.
Remote Sens. 2005, 43, 898–910. [CrossRef]

7. Winter, M.E. N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data. Spies
International Symposium on Optical Science(SPIE). In Imaging Spectrom V; International Society for Optics and Photonics:
Bellingham, WA, USA, 1999; Volume 3753, pp. 266–275.

8. Gader, P.; Parente, M.; Heylen, R. A Review of Nonlinear Hyperspectral Unmixing Methods. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2014, 7, 1844–1868.

9. Halimi, A.; Altmann, Y.; Dobigeon, N.; Tourneret, J.Y. Nonlinear Unmixing of Hyperspectral Images Using a Generalized Bilinear
Model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4153–4162. [CrossRef]

10. Altmann, Y.; Halimi, A.; Dobigeon, N.; Tourneret, J.Y. Supervised nonlinear spectral unmixing using a postnonlinear mixing
model for hyperspectral imagery. IEEE Trans. Image Process. 2012, 21, 3017–3025. [CrossRef]

11. Heylen, R.; Scheunders, P. A Multilinear Mixing Model for Nonlinear Spectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2016,
54, 240–251. [CrossRef]

http://doi.org/10.1109/MGRS.2021.3064051
http://doi.org/10.1109/79.974727
http://doi.org/10.1109/JSTARS.2012.2194696
http://doi.org/10.1109/TGRS.2005.844293
http://doi.org/10.1109/TGRS.2010.2098414
http://doi.org/10.1109/TIP.2012.2187668
http://doi.org/10.1109/TGRS.2015.2453915


Appl. Sci. 2022, 12, 12158 19 of 20

12. Ye, Q.; Li, Z.; Fu, L.; Zhang, Z.; Yang, W.; Yang, G. Nonpeaked Discriminant Analysis for Data Representation. IEEE Trans. Neural
Netw. Learn. Syst. 2019, 30, 3818–3832. [CrossRef] [PubMed]

13. Fu, X.; Ma, W.; Bioucas-Dias, J.M.; Chan, T. Semiblind Hyperspectral Unmixing in the Presence of Spectral Library Mismatches.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 5171–5184. [CrossRef]

14. Thouvenin, P.; Dobigeon, N.; Tourneret, J. Hyperspectral Unmixing With Spectral Variability Using a Perturbed Linear Mixing
Model. IEEE Trans. Signal Process. 2016, 64, 525–538. [CrossRef]

15. Miao, L.; Qi, H. Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix
Factorization. IEEE Trans. Geosci. Remote Sens. 2007, 45, 765–777. [CrossRef]

16. Imbiriba, T.; Borsoi, R.A.; Bermudez, J.C.M. Generalized Linear Mixing Model Accounting for Endmember Variability. In
Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 1862–1866.

17. Hapke, B. Bidirectional reflectance spectroscopy 1: Theory. J. Geophys. Res. Earth Surf. 1981, 86, 3039–3054. [CrossRef]
18. Somers, B.; Cools, K.; Delalieux, S.; Stuckens, J.; Zande, D.; Verstraeten, W.W.; Coppin, P. Nonlinear Hyperspectral Mixture

Analysis for tree cover estimates in orchards. Remote Sens. Environ. 2009, 113, 1183–1193. [CrossRef]
19. Fan, W.; Baoxin, H.U.; Miller, J.; Mingze, L.I. Comparative study between a new nonlinear model and common linear model for

analysing laboratory simulated-forest hyperspectral data. Int. J. Remote Sens. 2009, 30, 2951–2962. [CrossRef]
20. Zhang, L.; Wu, B.; Huang, B.; Li, P. Nonlinear estimation of subpixel proportion via kernel least square regression. Int. J. Remote

Sens. 2007, 28, 4157–4172. [CrossRef]
21. Broadwater, J.; Chellappa, R.; Banerjee, A.; Burlina, P. Kernel fully constrained least squares abundance estimates. In Proceedings

of the 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007), Barcelona, Spain, 23–28 July 2007.
22. Dobigeon, N.; Févotte, C. Robust nonnegative matrix factorization for nonlinear unmixing of hyperspectral images. In Proceedings

of the 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville,
FL, USA, 26–28 June 2013; pp. 1–4.

23. Fang, B.; Li, Y.; Zhang, P.; Bai, B. Kernel sparse NMF for hyperspectral unmixing. In Proceedings of the 2014 International
Conference on Orange Technologies, Xi’an, China, 20–23 September 2014; pp. 41–44.

24. Mario, S.; Fausto, S.; Vincenzo, B. A new board for CNN stereo vision algorithm. In Proceedings of the 2000 IEEE International
Symposium on Circuits and Systems (ISCAS), Geneva, Switzerland, 28–31 May 2000; pp. 702–705.

25. Fahad, S.K.A.; Yahya, A.E. Inflectional Review of Deep Learning on Natural Language Processing. In Proceedings of the 2018
International Conference on Smart Computing and Electronic Enterprise (ICSCEE), Shah Alam, Malaysia, 11–12 July 2018;
pp. 1–4.

26. Licciardi, G.A.; Frate, F.D. Pixel Unmixing in Hyperspectral Data by Means of Neural Networks. IEEE Trans. Geosci. Remote Sens.
2011, 49, 4163–4172. [CrossRef]

27. Palsson, B.; Sigurdsson, J.; Sveinsson, J.R.; Ulfarsson, M.O. Hyperspectral Unmixing Using a Neural Network Autoencoder. IEEE
Access 2018, 6, 25646–25656. [CrossRef]

28. Qu, Y.; Guo, R.; Qi, H. Spectral unmixing through part-based non-negative constraint denoising autoencoder. In Proceedings
of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017;
pp. 209–212.

29. Qu, Y.; Qi, H. uDAS: An Untied Denoising Autoencoder With Sparsity for Spectral Unmixing. IEEE Trans. Geosci. Remote Sens.
2019, 57, 1698–1712. [CrossRef]

30. Su, Y.; Li, J.; Plaza, A.; Marinoni, A.; Gamba, P.; Chakravortty, S. DAEN: Deep Autoencoder Networks for Hyperspectral
Unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4309–4321. [CrossRef]

31. Hong, D.; Chanussot, J.; Yokoya, N.; Heiden, U.; Heldens, W.; Zhu, X.X. WU-Net: A Weakly-Supervised Unmixing Network for
Remotely Sensed Hyperspectral Imagery. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote
Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 373–376.

32. Jin, Q.; Ma, Y.; Mei, X.; Ma, J. TANet: An Unsupervised Two-Stream Autoencoder Network for Hyperspectral Unmixing. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 1–15. [CrossRef]

33. Zhang, X.; Sun, Y.; Zhang, J.; Wu, P.; Jiao, L. Hyperspectral Unmixing via Deep Convolutional Neural Networks. IEEE Geosci.
Remote Sens. Lett. 2018, 15, 1755–1759. [CrossRef]

34. Arun, P.V.; Buddhiraju, K.; Porwal, A. CNN based sub-pixel mapping for hyperspectral images. Neurocomputing 2018, 311, 51–64.
[CrossRef]

35. Xiao, T.; Xu, Y.; Yang, K.; Zhang, J.; Peng, Y.; Zhang, Z. The application of two-level attention models in deep convolutional neural
network for fine-grained image classification. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 842–850.

36. Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Visual Attention-Driven Hyperspectral Image Classification. IEEE Trans. Geosci.
Remote Sens. 2019, 57, 8065–8080. [CrossRef]

37. Sun, L.; Fang, Y.; Chen, Y.; Huang, W.; Wu, Z.; Jeon, B. Multi-Structure KELM with Attention Fusion Strategy for Hyperspectral
Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [CrossRef]

38. Liu, N.; Han, J.; Yang, M. PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3089–3098.

http://doi.org/10.1109/TNNLS.2019.2944869
http://www.ncbi.nlm.nih.gov/pubmed/31725389
http://doi.org/10.1109/TGRS.2016.2557340
http://doi.org/10.1109/TSP.2015.2486746
http://doi.org/10.1109/TGRS.2006.888466
http://doi.org/10.1029/JB086iB04p03039
http://doi.org/10.1016/j.rse.2009.02.003
http://doi.org/10.1080/01431160802558659
http://doi.org/10.1080/01431160600993454
http://doi.org/10.1109/TGRS.2011.2160950
http://doi.org/10.1109/ACCESS.2018.2818280
http://doi.org/10.1109/TGRS.2018.2868690
http://doi.org/10.1109/TGRS.2018.2890633
http://doi.org/10.1109/TGRS.2021.3094884
http://doi.org/10.1109/LGRS.2018.2857804
http://doi.org/10.1016/j.neucom.2018.05.051
http://doi.org/10.1109/TGRS.2019.2918080
http://doi.org/10.1109/TGRS.2022.3208165


Appl. Sci. 2022, 12, 12158 20 of 20

39. Wu, X.; Li, W.; Hong, D.; Tian, J.; Tao, R.; Du, Q. Vehicle Detection of Multi-source Remote Sensing Data Using Active Fine-tuning
Network. ISPRS J. Photogramm. Remote Sens. 2020, 167, 39–53. [CrossRef]

40. Sun, L.; Cheng, S.; Zheng, Y.; Wu, Z.; Zhang, J. SPANet: Successive Pooling Attention Network for Semantic Segmentation of
Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4045–4057. [CrossRef]

41. Fu, L.; Zhang, D.; Ye, Q. Recurrent Thrifty Attention Network for Remote Sensing Scene Recognition. IEEE Trans. Geosci. Remote
Sens. 2021, 59, 8257–8268. [CrossRef]

42. Zeng, Y.; Ritz, C.; Zhao, J.; Lan, J. remote sensing attention-based residual network with scattering transform features for
hyperspectral unmixing with limited training samples. Remote Sens. 2020, 12, 400. [CrossRef]

43. Han, Z.; Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Chanussot, J. Multimodal Hyperspectral Unmixing: Insights From Attention
Networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

44. Heinz, D.C.; Chein, I.C. Fully constrained least squares linear spectral mixture analysis method for material quantification in
hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [CrossRef]

45. Lu, X.; Wu, H.; Yuan, Y.; Yan, P.; Li, X. Manifold Regularized Sparse NMF for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote
Sens. 2013, 51, 2815–2826. [CrossRef]

46. Qin, J.; Lee, H.; Chi, J.T.; Lou, Y.; Chanussot, J.; Bertozzi, A.L. Fast Blind Hyperspectral Unmixing Based On Graph Laplacian.
In Proceedings of the 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing
(WHPERS), Amsterdam, The Netherlands, 24–26 September 2019; pp. 1–5.

47. Qin, J.; Lee, H.; Chi, J.T.; Drumetz, L.; Chanussot, J.; Lou, Y.; Bertozzi, A.L. Blind Hyperspectral Unmixing Based on Graph Total
Variation Regularization. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3338–3351. [CrossRef]

48. Hong, D.; Gao, L.; Yao, J.; Yokoya, N.; Chanussot, J.; Heiden, U.; Zhang, B. Endmember-Guided Unmixing Network (EGU-Net):
A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing. IEEE Trans. Neural Netw. Learn. Syst. 2021,
33, 6518–6531. [CrossRef] [PubMed]

49. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020; pp. 11531–11539.

50. Somers, B.; Zortea, M.; Plaza, A.; Asner, G.P. Automated Extraction of Image-Based Endmember Bundles for Improved Spectral
Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 396–408. [CrossRef]

51. Jin, Q.; Ma, Y.; Pan, E.; Fan, F.; Huang, J.; Li, H.; Sui, C.; Mei, X. Hyperspectral Unmixing with Gaussian Mixture Model and
Spatial Group Sparsity. Remote Sens. 2019, 11, 2434. [CrossRef]

52. Eches, O.; Dobigeon, N.; Tourneret, J. Enhancing Hyperspectral Image Unmixing With Spatial Correlations. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 4239–4247. [CrossRef]

53. Giampouras, P.V.; Themelis, K.E.; Rontogiannis, A.A.; Koutroumbas, K.D. Simultaneously Sparse and Low-Rank Abundance
Matrix Estimation for Hyperspectral Image Unmixing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4775–4789. [CrossRef]

54. Remote Sensing Laboratory School of Surveying and Geospatial Engineering. Available online: https://rslab.ut.ac.ir/data
(accessed on 10 July 2022).

55. Drumetz, L.; Veganzones, M.A.; Henrot, S.; Phlypo, R.; Chanussot, J.; Jutten, C. Blind Hyperspectral Unmixing Using an Extended
Linear Mixing Model to Address Spectral Variability. IEEE Trans. Image Process. 2016, 25, 3890–3905. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2020.06.016
http://doi.org/10.1109/JSTARS.2022.3175191
http://doi.org/10.1109/TGRS.2020.3042507
http://doi.org/10.3390/rs12030400
http://doi.org/10.1109/TGRS.2022.3155794
http://doi.org/10.1109/36.911111
http://doi.org/10.1109/TGRS.2012.2213825
http://doi.org/10.1109/TGRS.2020.3020810
http://doi.org/10.1109/TNNLS.2021.3082289
http://www.ncbi.nlm.nih.gov/pubmed/34048352
http://doi.org/10.1109/JSTARS.2011.2181340
http://doi.org/10.3390/rs11202434
http://doi.org/10.1109/TGRS.2011.2140119
http://doi.org/10.1109/TGRS.2016.2551327
https://rslab.ut.ac.ir/data
http://doi.org/10.1109/TIP.2016.2579259

	Introduction 
	Relevant Research Works 
	Proposed Method 
	Endmember Network 
	Unmixing Network 

	Experimental Results 
	Experimental Details and Evaluation Indicators 
	Results for the Synthetic Dataset 
	Results for the Jasper Ridge Dataset 
	Results for the Samson Dataset 
	Ablation Experiments and Analyses 

	Discussion 
	Conclusions 
	References

