Comparative Analysis of Biological Activities and Phenolic Content between Fresh and Steamed Sargassum fusiforme in Different Extraction Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Reagents
2.3. Extract Preparation
2.4. Measurement of Total Polyphenol Content
2.5. Measurement of Total Flavonoid Content
2.6. Measurement of DPPH Radical Scavenging Activity
2.7. Measurement of ABTS Radical Scavenging Activity
2.8. Measurement of Ferric Reducing Antioxidant Power (FRAP) Activity
2.9. Measurement of the Antioxidant Enzyme Activity
2.9.1. Superoxide Dismutase (SOD) Activity
2.9.2. Catalase (CAT) Activity
2.9.3. Ascorbate Peroxidase (APX) Activity
2.10. Measurement of Antiaging Activity
2.10.1. Collagenase Inhibitory Activity
2.10.2. Elastase Inhibitory Activity
2.11. Measurement of Tyrosinase Inhibitory Activity
2.12. Analysis of Phenolic Contents
2.13. Statistical Analysis
3. Results
3.1. Extraction Yield of SF and SSF Extracts in Different Solvents
3.2. Total Polyphenol and Flavonoid Contents in SF and SSF Extracts in Different Solvents
3.3. DPPH Radical Scavenging Activity in SF and SSF Extracts in Different Solvents
3.4. ABTS Radical Scavenging Activity in SF and SSF Extracts in Different Solvents
3.5. FRAP Activity in SF and SSF Extracts in Different Solvents
3.6. Antioxidant Enzyme Activity in SF and SSF Extracts in Different Solvents
3.7. Collagenase and Elastase Inhibitory Activities in SF and SSF Extracts in Different Solvents
3.8. Tyrosinase Inhibitory Activity in SF and SSF Extracts in Different Solvents
3.9. Analysis of Phenolic Compounds in SF and SSF Extracts in Different Solvents
3.10. PCA of the Total Polyphenol and Flavonoid Contents and the Antioxidant Activities in SF and SSF Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Luthuli, S.; Yang, Y.; Cheng, Y.; Zhang, Y.; Wu, M.; Choi, J.I.; Tong, H. Therapeutic and nutraceutical potentials of a brown seaweed Sargassum fusiforme. Food Sci. Nutr. 2020, 8, 5195–5205. [Google Scholar] [CrossRef]
- Wang, W.; Lu, J.B.; Wang, C.; Wang, C.S.; Zhang, H.H.; Li, C.Y.; Qian, G.Y. Effects of Sargassum fusiforme polysaccharides on antioxidant activities and intestinal functions in mice. Int. J. Biol. Macromol. 2013, 58, 127–132. [Google Scholar] [CrossRef]
- Lee, K.J.; Kang, E.H.; Yoon, M.; Jo, M.R.; Yu, H.; Son, K.T.; Jeong, S.H.; Kim, J.H. Comparison of Heavy Metals and Arsenic Species in Seaweeds Collected from Different Regions in Korea. Appl. Sci. 2022, 12, 7000. [Google Scholar] [CrossRef]
- Park, K.E.; Jang, M.S.; Lim, C.W.; Kim, Y.K.; Seo, Y.W.; Park, H.Y. Antioxidant activity on ethanol extract from boiled-water of Hizikia fusiformis. Appl. Biol. Chem. 2005, 48, 435–439. [Google Scholar]
- Yun, S.J. History and Recipe of Use of Seaweed in Korea. In Proceedings of the the EASDL Conference, Yongin, Republic of Korea, 1–13 April 2007. [Google Scholar]
- Statistics Korea. 2020 Fishery Production Trend Survey Results. Available online: http://kosis.kr (accessed on 27 July 2021).
- Tanaka, K.; Ohno, M.; Largo, D.B. An update on the seaweed resources of Japan. Bot. Mar. 2020, 63, 105–117. [Google Scholar] [CrossRef]
- Yokoi, K.; Konomi, A. Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic. Regul. Toxicol. Pharmacol. 2012, 63, 291–297. [Google Scholar] [CrossRef]
- Kwon, Y.R.; Kwang, Y.S. Quality characteristics of Hijikia fusiforme extracts with different extraction method. Korean J. Food Preserv. 2015, 22, 70–77. [Google Scholar] [CrossRef]
- Meinita, M.D.N.; Harwanto, D.; Sohn, J.H.; Kim, J.S.; Choi, J.S. Hizikia fusiformis: Pharmacological and Nutritional Properties. Foods 2021, 10, 1660. [Google Scholar] [CrossRef]
- Jung, S.H.; Hwang, W.D.; Nam, T.J.; Choi, Y.H. Apoptosis induction of human breast carcinoma cells by ethyl alcohol extract of Hizikia fusiforme. J. Life Sci. 2009, 19, 1581–1590. [Google Scholar]
- Jeon, M.H.; Kim, M.H. Effect of Hijikia fusiforme fractions on proliferation and differentiation in osteoblastic MC3T3-E1 cells. J. Life Sci. 2011, 21, 300–308. [Google Scholar] [CrossRef]
- Choi, E.O.; Kim, H.S.; Han, M.H.; Choi, Y.H.; Kim, B.W.; Hwang, J.; Hwang, H.J. Effects of Hizikia fusiforme extracts on adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. J. Life Sci. 2012, 22, 1399–1406. [Google Scholar] [CrossRef]
- Yan, Y.; Niu, Z.; Wang, B.; Zhao, S.; Sun, C.; Wu, Y.; Li, Y.; Ying, H.; Liu, H. Saringosterol from Sargassum fusiforme modulates cholesterol metabolism and alleviates atherosclerosis in ApoE-deficient mice. Mar. Drugs 2021, 19, 485. [Google Scholar] [CrossRef]
- Wang, L.; Oh, J.Y.; Kim, Y.S.; Lee, H.G.; Lee, J.S.; Jeon, Y.J. Anti-photoaging and anti-melanogenesis effects of fucoidan isolated from Hizikia fusiforme and its underlying mechanisms. Mar. Drugs 2020, 18, 427. [Google Scholar] [CrossRef]
- Wang, L.; Oh, J.Y.; Jayawardena, T.U.; Jeon, Y.J.; Ryu, B. Anti-inflammatory and anti-melanogenesis activities of sulfated polysaccharides isolated from Hizikia fusiforme. Int. J. Biol. Macromol. 2020, 142, 545–550. [Google Scholar] [CrossRef]
- Ye, Y.; Ji, D.; You, L.; Zhou, L.; Zhao, Z.; Brennan, C. Structural properties and protective effect of Sargassum fusiforme polysaccharides against ultraviolet B radiation in hairless Kun Ming mice. J. Funct. Foods 2018, 43, 8–16. [Google Scholar] [CrossRef]
- Hwang, E.K.; Park, C.S. Seaweed cultivation and utilization of Korea. Algae 2020, 35, 107–121. [Google Scholar] [CrossRef]
- Hamano-Nagaoka, M.; Hanaoka, K.i.; USUI, M.; Nishimura, T.; Maitani, T. Nitric acid-based partial-digestion method for selective determination of inorganic arsenic in hijiki and application to soaked hijiki. J. Food Hyg. Saf. 2008, 49, 88–94. [Google Scholar] [CrossRef]
- Kang, M.K.; Kim, J.S.; Kim, G.C.; Choi, S.Y.; Kim, K.M. Evaluation of physicochemical properties and enhancement of antioxidant activities of Dioscorea batatas by stepwise steaming process. J. East Asian Soc. Diet. Life 2015, 25, 1049–1057. [Google Scholar] [CrossRef]
- Cascais, M.; Monteiro, P.; Pacheco, D.; Cotas, J.; Pereira, L.; Marques, J.C.; Gonçalves, A.M. Effects of Heat Treatment Processes: Health Benefits and Risks to the Consumer. Appl. Sci. 2021, 11, 8740. [Google Scholar] [CrossRef]
- García-Vaquero, M.; Rajauria, G.; O’Doherty, J.V.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar. Drugs 2011, 9, 1056–1100. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef]
- Zhu, X.; Healy, L.; Zhang, Z.; Maguire, J.; Sun, D.W.; Tiwari, B.K. Novel postharvest processing strategies for value-added applications of marine algae. J. Sci. Food Agric. 2021, 101, 4444–4455. [Google Scholar] [CrossRef]
- Mekinić, G.I.; Skroza, D.; Šimat, V.; Hamed, I.; Čagalj, M.; Popović Perković, Z. Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules 2019, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Folin, O.; Denis, W. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 1912, 12, 239–243. [Google Scholar] [CrossRef]
- Moreno, M.I.N.; Isla, M.I.; Sampietro, A.R.; Vattuone, M.A. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Mtaki, K.; Kyewalyanga, M.S.; Mtolera, M.S.P. Assessment of Antioxidant Contents and Free Radical-Scavenging Capacity of Chlorella vulgaris Cultivated in Low Cost Media. Appl. Sci. 2020, 10, 8611. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lin, W.S.; Tung, J.W.; Cheng, Y.C.; Chang, M.Y.; Chen, C.Y.; Huang, S.L. Antioxidant Capacities of Jujube Fruit Seeds and Peel Pulp. Appl. Sci. 2020, 10, 6007. [Google Scholar] [CrossRef]
- Borrajo, P.; Pateiro, M.; Gagaoua, M.; Franco, D.; Zhang, W.; Lorenzo, J.M. Evaluation of the Antioxidant and Antimicrobial Activities of Porcine Liver Protein Hydrolysates Obtained Using Alcalase, Bromelain, and Papain. Appl. Sci. 2020, 10, 2290. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Jeong, Y.U.; Park, Y.J. Studies on Antioxidant, Anti-Inflammation, and Collagenase Inhibitory Effects of Extracts from Plants of The Salix genus. J. Soc. Cosmet. Sci. Korea 2018, 44, 335–341. [Google Scholar]
- Kim, Y.J.; Lee, J.S. Microbiological Characteristics of Whitening Tyrosinase Inhibitor-producing Wild Yeasts, Saccharomyces cerevisiae WJSL0191 and Papiliotrema laurentii ON30 and Production. Korean J. Mycol. 2020, 48, 285–296. [Google Scholar]
- Cannell, R.J.; Kellam, S.J.; Owsianka, A.M.; Walker, J.M. Results of a large scale screen of microalgae for the production of protease inhibitors. J. Med. Plant Res. 1988, 54, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Yagi, A.; Kanbara, T.; Morinobu, N. Inhibition of Mushroom-Tyrosinase by Aloe Extract. Planta Medica 1987, 53, 515–517. [Google Scholar] [CrossRef] [PubMed]
- Farvin, K.; Surendraraj, A.; Al-Ghunaim, A.; Al-Yamani, F. Chemical profile and antioxidant activities of 26 selected species of seaweeds from Kuwait coast. J. Appl. Phycol. 2019, 31, 2653–2668. [Google Scholar] [CrossRef]
- Tanna, B.; Brahmbhatt, H.R.; Mishra, A. Phenolic, flavonoid, and amino acid compositions reveal that selected tropical seaweeds have the potential to be functional food ingredients. J. Food Process. Preserv. 2019, 43, e14266. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Lee, W.; Ahn, G. Marine algal flavonoids and phlorotannins; an intriguing frontier of biofunctional secondary metabolites. Crit. Rev. Biotechnol. 2022, 42, 23–45. [Google Scholar] [CrossRef]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M. An overview to the health benefits of seaweeds consumption. Mar. Drugs 2021, 19, 341. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Jeon, Y.J.; Kim, Y.T. Comparison of Antioxidant and Physiological Activities of Various Solvent Extracts from Hizikia fusiformis. Korean J. Fish. Aquat. Sci. 2020, 53, 886–893. [Google Scholar]
- Zhang, F.; Liu, F.; Abbasi, A.M.; Chang, X.; Guo, X. Effect of steaming processing on phenolic profiles and cellular antioxidant activities of Castanea mollissima. Molecules 2019, 24, 703. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, R.; Siva, D.; Nawas, P. Screening of phytochemical profile and antibacterial activity of various solvent extracts of marine algae Sargassum swartzii. World Sci. News 2019, 115, 27–40. [Google Scholar]
- Struchkov, P.; Beloborodov, V.; Kolkhir, V.; Voskoboynikova, I.; Savvateev, A. Comparison of spectrophotometric methods of total flavonoid assay based on complex formation with aluminum chloride as applied to multicomponent herbal drug angionorm. J. Pharm. Negat. Results 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Kim, I.; Lee, J. Variations in anthocyanin profiles and antioxidant activity of 12 genotypes of mulberry (Morus spp.) fruits and their changes during processing. Antioxidants 2020, 9, 242. [Google Scholar] [CrossRef]
- Mihaylova, D.; Desseva, I.; Stoyanova, M.; Petkova, N.; Terzyiska, M.; Lante, A. Impact of in vitro gastrointestinal digestion on the bioaccessibility of phytochemical compounds from eight fruit juices. Molecules 2021, 26, 1187. [Google Scholar] [CrossRef]
- Grina, F.; Ullah, Z.; Kaplaner, E.; Moujahid, A.; Eddoha, R.; Nasser, B.; Terzioğlu, P.; Yilmaz, M.A.; Ertaş, A.; Öztürk, M.; et al. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical fingerprints of five Moroccan seaweeds. South Afr. J. Bot. 2020, 128, 152–160. [Google Scholar] [CrossRef]
- Mulyati, A.H.; Sulaeman, A.; Marliyati, S.A.; Rafi, M.; Fikri, A.M. Phytochemical analysis and antioxidant activities of ethanol extract of stingless bee propolis from Indonesia. AIP Conf. Proc. 2020, 2243, 030014. [Google Scholar]
- Sobuj, M.K.A.; Islam, M.; Haque, M.; Alam, M.; Rafiquzzaman, S. Evaluation of bioactive chemical composition, phenolic, and antioxidant profiling of different crude extracts of Sargassum coriifolium and Hypnea pannosa seaweeds. J. Food Meas. Charact. 2021, 15, 1653–1665. [Google Scholar] [CrossRef]
- Sasadara, M.; Wirawan, I. Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria sp.) Seaweed. IOP Conf. Ser. Earth Environ. Sci. 2021, 712, 012005. [Google Scholar] [CrossRef]
- Cox, S.; ABU-GHANNAM, N.; Gupta, S. Effect of processing conditions on phytochemical constituents of edible Irish seaweed Himanthalia elongata. J. Food Process. Preserv. 2011, 36, 348–363. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef]
- Przybylski, P.; Konopko, A.; Łętowski, P.; Jodko-Piórecka, K.; Litwinienko, G. Concentration-dependent HAT/ET mechanism of the reaction of phenols with 2, 2-diphenyl-1-picrylhydrazyl (dpph˙) in methanol. RSC Adv. 2022, 12, 8131–8136. [Google Scholar] [CrossRef]
- Sobuj, M.K.A.; Islam, M.; Mahmud, Y.; Rafiquzzaman, S. Effect of solvents on bioactive compounds and antioxidant activity of Padina tetrastromatica and Gracilaria tenuistipitata seaweeds collected from Bangladesh. Sci. Rep. 2021, 11, 19082. [Google Scholar] [CrossRef] [PubMed]
- Julião, D.R.; Afonso, C.; Gomes-Bispo, A.; Bandarra, N.M.; Cardoso, C. The effect of drying on undervalued brown and red seaweed species: Bioactivity alterations. Phycol. Res. 2021, 69, 246–257. [Google Scholar] [CrossRef]
- Fonseca, I.; Guarda, I.; Mourato, M.; Martins, L.; Gomes, R.; Matos, J.; Gomes-Bispo, A.; Bandarra, N.; Cardoso, C.; Afonso, C. Undervalued Atlantic brown seaweed species (Cystoseira abies-marina and Zonaria tournefortii): Influence of treatment on their nutritional and bioactive potential and bioaccessibility. Eur. Food Res. Technol. 2021, 247, 221–232. [Google Scholar] [CrossRef]
- Rajauria, G.; Jaiswal, A.K.; Abu-Ghannam, N.; Gupta, S. Effect of hydrothermal processing on colour, antioxidant and free radical scavenging capacities of edible Irish brown seaweeds. Int. J. Food Sci. 2010, 45, 2485–2493. [Google Scholar] [CrossRef]
- Amorim-Carrilho, K.; Lage-Yusty, M.A.; López-Hernández, J. Variation of bioactive compounds in dried seaweed Himanthalia elongata subjected to different culinary processes. CYTA J. Food 2014, 12, 336–339. [Google Scholar] [CrossRef]
- Zhang, T.; Hong, M.; Wu, M.; Chen, B.; Ma, Z. Oxidative stress responses to cadmium in the seedlings of a commercial seaweed Sargassum fusiforme. Acta Oceanol. Sin. 2020, 39, 147–154. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.; Wi, S.; Yu, I.; Yeo, K.H.; An, S.; Jang, Y.; Jang, S. Enhancement of Growth and Antioxidant Enzyme Activities on Kimchi Cabbage by Melatonin Foliar Application under High Temperature and Drought Stress Conditions. Hortic. Sci. Technol. 2021, 39, 583–592. [Google Scholar]
- Pliego-Cortés, H.; Wijesekara, I.; Lang, M.; Bourgougnon, N.; Bedoux, G. Current knowledge and challenges in extraction, characterization and bioactivity of seaweed protein and seaweed-derived proteins. Adv. Bot. Res. 2020, 95, 289–326. [Google Scholar]
- Yangthong, M.; Ruensirikul, J.; Kaneko, G. The Hot-Water Extract of Sargassum sp. as a Feed Ingredient for Spotted Scat (Scatophagus argus Linnaeus, 1766) Reared in Songkhla Lake: Effects on Growth, Feed Efficiency, Hematological Data and Body Composition. Fishes 2022, 7, 170. [Google Scholar] [CrossRef]
- O’Connor, J.; Meaney, S.; Williams, G.A.; Hayes, M. Extraction of protein from four different seaweeds using three different physical pretreatment strategies. Molecules 2020, 25, 2005. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. TrAC-Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Lee, H.K.; Choi, O.Y.; Choi, D.B.; Choi, H.S. Antioxidative and antimicrobial effects of ethanol extract of Codonopsis lanceolata by steaming times. Korean J. Food Nutr. 2021, 34, 107–113. [Google Scholar]
- Kang, M.W.; Chang, J.P.; Doh, E.S.; Kil, K.J.; Yoo, J.H. Antioxidant activities of water extracts from steamed Polygonati rhizoma. Korean J. Herbol. 2017, 32, 33–40. [Google Scholar] [CrossRef]
- Choi, W.Y.; Jeong, M.H.; Lee, H.Y. Optimization of extraction process for enhancement of antioxidant activity of Acer mono bark. J. Appl. Bot. Food Qual. 2014, 87, 46–55. [Google Scholar]
- Alves, A.; Sousa, E.; Kijjoa, A.; Pinto, M. Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics. Molecules 2020, 25, 2536. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, Y.C. Antioxidant Capacity and Anti-Wrinkle Efficacy of Rhamnus davurica Methanol Extract in a Cell-free System. J. Investig. Cosmetol. 2021, 17, 1–7. [Google Scholar]
- Susano, P.; Silva, J.; Alves, C.; Martins, A.; Gaspar, H.; Pinteus, S.; Mouga, T.; Goettert, M.I.; Petrovski, Ž.; Branco, L.B. Unravelling the dermatological potential of the brown seaweed Carpomitra costata. Mar. Drugs 2021, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Arguelles, E.; Sapin, A.B. Chemical composition and bioactive properties of Sargassum aquifolium (Turner) C. Agardh and its potential for pharmaceutical application. Philipp. J. Sci. 2021, 151, 9–24. [Google Scholar]
- Olivares, C.; Solano, F. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment. Cell Melanoma Res. 2009, 22, 750–760. [Google Scholar] [CrossRef]
- Baek, S.H.; Cao, L.; Jeong, S.J.; Kim, H.R.; Nam, T.J.; Lee, S.G. The comparison of total phenolics, total antioxidant, and anti-tyrosinase activities of Korean Sargassum species. J. Food Qual. 2021, 2021, 6640789. [Google Scholar] [CrossRef]
- Rousset, B. Antithyroid effect of a food or drug preservative: 4-hydroxybenzoic acid methyl ester. Experientia 1981, 37, 177–178. [Google Scholar] [CrossRef]
- Del Olmo, A.; Calzada, J.; Nuñez, M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Crit. Rev. Food Sci. Nutr. 2017, 57, 3084–3103. [Google Scholar] [CrossRef]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.; da Silva, G.J.; Pereira, L. Seaweed phenolics: From extraction to applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Song, C.H.; Seo, Y.C.; Choi, W.Y.; Lee, C.G.; Kim, D.U.; Chung, J.Y.; Chung, H.C.; Park, D.S.; Ma, C.J.; Lee, H.Y. Enhancement of antioxidative activity of Codonopsis lanceolata by stepwise steaming process. Korean J. Med. Crop Sci. 2012, 20, 238–244. [Google Scholar] [CrossRef]
- Ko, M.J.; Kwon, H.L.; Chung, M.S. Optimum conditions for extracting flavanones from grapefruit peels and encapsulation of extracts. Korean J. Food Sci. Technol. 2014, 46, 465–469. [Google Scholar] [CrossRef]
- Zhao, T.; Dong, Q.; Zhou, H.; Yang, H. Drying kinetics, physicochemical properties, antioxidant activity and antidiabetic potential of Sargassum fusiforme processed under four drying techniques. LWT 2022, 163, 113578. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Angeloni, S.; Mustafa, A.M.; Vittori, S.; Maggi, F.; Caprioli, G. Chemical composition, antioxidant and enzyme inhibitory properties of different extracts obtained from spent coffee ground and coffee silverskin. Foods 2020, 9, 713. [Google Scholar] [CrossRef]
- You, S.; Jang, M.; Kim, G.H. Inhibition of nitric oxide and lipid accumulation by Sargassum sp. seaweeds and their antioxidant properties. Korean J. Food Preserv. 2021, 28, 288–296. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive phenolic metabolites from Adriatic brown algae Dictyota dichotoma and Padina pavonica (Dictyotaceae). Foods 2021, 10, 1187. [Google Scholar] [CrossRef]
Solvent | Yield (%) | |
---|---|---|
SF | SSF | |
Ethanol | 8.5 ± 0.3 b | 7.8 ± 0.2 b |
Methanol | 6.4 ± 0.5 b | 2.9 ± 0.1 c |
Water | 25.0 ± 2.2 a | 19.0 ± 0.9 a |
Solvent | DPPH (IC50 = μg/μL) | ABTS (IC50 = μg/μL) | FRAP (IC50 = μg/μL) | |||
---|---|---|---|---|---|---|
SF | SSF | SF | SSF | SF | SSF | |
Ethanol | 34.8 ± 0.3 b | 19.8 ± 1.2 b | 13.9 ± 1.3 a | 11.3 ± 0.3 b | 17.4 ± 0.2 c | 3.5 ± 0.2 a |
Methanol | 5.8 ± 0.1 a | 8.4 ± 0.1 a | 14.1 ± 0.9 a | 6.7 ± 0.1 a | 6.1 ± 0.3 a | 4.2 ± 0.2 b |
Water | 68.5 ± 3.0 c | 25.4 ± 1.1 c | 18.5 ± 0.5 b | 56.5 ± 0.6 c | 11.5 ± 0.2 b | 10.0 ± 0.2 c |
Ascorbic acid | 0.5 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
Solvent | Collagenase Inhibitory Activity (%) | Elastase Inhibitory Activity (%) | Tyrosinase Inhibition Activity (%) | |||
---|---|---|---|---|---|---|
SF | SSF | SF | SSF | SF | SSF | |
Ethanol | 28.7 ± 0.9 a | 32.0 ± 0.3 b | 68.6 ± 0.1 a | 44.7 ± 0.1 a | 14.9 ± 2.3 c | 25.1 ± 1.1 b |
Methanol | 25.6 ± 3.4 ab | 56.9 ± 4.9 a | 39.8 ± 0.2 b | 16.0 ± 0.7 b | 23.3 ± 0.8 b | 30.5 ± 0.1 a |
Water | 23.1 ± 0.1 b | 28.9 ± 0.5 b | 14.0 ± 0.1 c | 12.4 ± 0.3 c | 28.2 ± 0.2 a | 22.9 ± 1.7 b |
Solvent | 4-hydroxy Benzoic Acid (μg/g) | Naringenin (μg/g) | Naringin (μg/g) | |||
---|---|---|---|---|---|---|
SF | SSF | SF | SSF | SF | SSF | |
Ethanol | 4.60 ± 0.08 b | ND | 0.21 ± 0.03 | 0.41 ± 0.07 | 298.08 ± 10.54 | 517.98 ± 9.64 |
Methanol | 10.46 ± 0.11 a | 1.62 ± 0.03 | ND | ND | ND | ND |
Water | 1.05 ± 0.04 c | 1.72 ± 0.08 | ND | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-H.; Kim, J.-S.; Jeong, J.-H.; Lee, S.-Y.; Kim, C.-S. Comparative Analysis of Biological Activities and Phenolic Content between Fresh and Steamed Sargassum fusiforme in Different Extraction Solvents. Appl. Sci. 2022, 12, 12161. https://doi.org/10.3390/app122312161
Lee H-H, Kim J-S, Jeong J-H, Lee S-Y, Kim C-S. Comparative Analysis of Biological Activities and Phenolic Content between Fresh and Steamed Sargassum fusiforme in Different Extraction Solvents. Applied Sciences. 2022; 12(23):12161. https://doi.org/10.3390/app122312161
Chicago/Turabian StyleLee, Hyun-Hwa, Jin-Sol Kim, Jun-Han Jeong, Sook-Young Lee, and Chun-Sung Kim. 2022. "Comparative Analysis of Biological Activities and Phenolic Content between Fresh and Steamed Sargassum fusiforme in Different Extraction Solvents" Applied Sciences 12, no. 23: 12161. https://doi.org/10.3390/app122312161
APA StyleLee, H. -H., Kim, J. -S., Jeong, J. -H., Lee, S. -Y., & Kim, C. -S. (2022). Comparative Analysis of Biological Activities and Phenolic Content between Fresh and Steamed Sargassum fusiforme in Different Extraction Solvents. Applied Sciences, 12(23), 12161. https://doi.org/10.3390/app122312161