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Abstract: Digital shearography is a technique that has recently been applied to material inspections
that cannot be performed by the naked eyes, including the detection of air bubble defects in tires.
Although digital shearography detects bubbles that are not visible to the naked eyes, the process
of determining tire defects still relies on field operators, with inconsistent results depending on
the experiences of the field operator personnel. New or different types of bubble defects that AI
models have not previously recognized are often missed, resulting in an inadequate quality detection
model. In this paper, we propose a bubble defect detection method based on an incremental YOLO
architecture. The data for this research was provided by the largest tire manufacturer in Taiwan. In
our research, we classify the defects into six distinct categories, pre-process the images to allow better
detections of less-noticeable defects, increase the amount of training data used, and generate an initial
training model with the YOLO framework. We also propose an incremental YOLO method using
small-model training for previously unobserved defects to improve the model detection rate. We have
observed detection accuracy and sensitivity of 98% and 90% in the experimental results, respectively.
The methods proposed in this paper can assist tire manufacturers in achieving semi-automatic quality
inspections and labor cost reductions.

Keywords: tire bubble defect detection; digital shearography; YOLO; deep learning

1. Introduction

Industry 4.0 enables data communication, collection and analysis by machines, en-
abling faster, more agile and efficient processes to manufacture quality products with
minimal expenditure. Since 2012, researches on computer vision tasks based on convolu-
tional neural networks have progressed fairly rapidly [1,2].

During the tire manufacturing process, air may be trapped in the tire to form bubbles.
The bubbles can compromise the tire’s structural integrity, leading to the risk of a punctured
tire if the pressure is not distributed evenly. Therefore, tire manufacturers inspect the tires
for bubble defects before they are sold to reduce the risk of punctures. The tire bubbles are
difficult to detect by the naked eye since they are internal defects. The operator puts the tire
into the machine, and air bubbles in the tire cause the tire surface to bulge in the vacuum.
Digital shearography [3] is used to obtain speckle images of the tire at different angles for
manual inspections. However, tired or inexperienced inspectors can lead to inaccuracies
and inconsistency in the inspection outcomes.

The tire defect detection process is extremely labor and time-intensive, even though it
is only a small part of the quality control process in the tire manufacturing industry. Many
difficulties arise during the inspection due to the inconsistent and subjective assessments
by inspectors with different experiences. To ensure product quality and reduce labor costs,
deep learning has been gradually incorporated in the industry by many manufacturers
to reduce labor-intensive work and improve production efficiency effectively. With the
help of artificial intelligence, operators only need to confirm the bubble defects detected by
machine, which can reduce the workload of labors. Manufacturers do not need to recruit a
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lot of labor to detect bubble defects one by one; developments in automation technology
can also address the problems caused by inconsistent inspection standards.

In our previous research [4–6], we divided the entire speckle image into several blocks,
and a convolutional neural network is used to detect the tread bubbles and the sidewall
separately. However, there is still room for improvement regarding the detection speed and
detection rate. In this paper, we use an object detection method to improve the bubble defect
detection speed and detection rate. In addition, to address the situation where the model
developed in the laboratory is actually introduced into the field with a reduced defect
detection rate, we propose an incremental YOLO (You Only Look Once) architecture to
add on-site misidentified samples to model training to improve the model’s flaw detection
accuracy on the actual site. The YOLO machine learning algorithm uses features learned by
a deep convolutional neural network to detect objects in real time. YOLO has the advantage
of being much faster than other networks and still maintaining high accuracy. Experimental
results show that the improved YOLOv3 SPP outperforms other YOLO series architectures
(Tiny YOLO, YOLOv3 and YOLOv3 SPP) in bubble defect detection [7–10]. Furthermore,
the proposed incremental learning also demonstrates the effectiveness of improving the
detection accuracy of bubble defects in real field.

The rest of this paper is organized as follows. First, the proposed method is described
in detail in Section 2. Then, we present the experimental results and discuss the results in
Section 3 and, finally, the conclusions are delivered in Section 4.

2. Proposed Method

Since the tire factory cannot provide enough defect images for model training, in
practice, it often happens that the recognition rate of the model trained in the laboratory is
greatly reduced when it is actually imported into the field. In order to shorten the time for
importing the model into the field, this paper proposes an incremental learning method for
bubble detection on tire tread and sidewalls. We test the lab-trained model with images
from the tire production site and collect misidentified samples, incrementally train by
freezing the Yolo Backbone, and only re-train the Neck and Prediction network layers to
improve defect detection rates [11]. The main steps are described as follows:

1. Manually mark the position and type of the bubble and classify it into one of the six types;
2. Perform image enhancement and increase the number of training samples;
3. After resizing, use the YOLO architecture proposed in this paper for model training;
4. Overlay the detected defects on the original image for visualization.

We apply incremental learning to the inspection process to account for potentially
overlooked defects. Incremental learning allows small models to be trained on the missed
defects and improves the model’s accuracy. The process is as shown in Figure 1.
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2.1. Data Sample Categorization and Enhancement

Speckle images with dimensions of 1360 × 1024 pixels are used as input for inspection.
Defects can be classified into different categories based on their location, size and shape.
Using only a binary classification to separate images with and without bubbles would
likely result in higher misjudgment rates. In this research, we divided the bubble defects
into six categories, as listed below in Figure 2.
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To improve the accuracy for the hard-to-spot defects that are likely to be overlooked
during the inspection, we used an image enhancement technique called Contrast Limited
Adaptive Histogram Equalization (CLAHE) [12] to increase the visibility of the subtle
bubbles present in the image. As shown in Figure 3, the bubbles in the red frame are much
more obvious than the original image.
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As deep learning network training requires a large amount of sample data to attain
a higher detection rate, insufficient defect samples in the dataset provided by the tire
manufacturer may affect the effectiveness of the model. To address this issue, we combined
the original and enhanced images in the model training set to increase sample data [13].
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2.2. Image Resize

Since the sizes of the grids in the YOLOv3 architecture [8] are 32 × 32, 16 × 16 and
8 × 8, we resize the 1360 × 1024 input images to 1344 × 1024 so that the dimensions are
multiples of 32. For computational convenience, we further divided the entire speckle
image into multiple 480 × 480 sub-images. Figure 4 shows what the bubbles look like at
three different scales (32 × 32, 16 × 16 and 8 × 8). Obviously, the area of the bubbles is
smaller than the 32 × 32 grid. The finer grids allow for more features in the bubble defects
to be learned.
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2.3. Framework: Modify the YOLOv3 SPP Architecture

The YOLOv3 architecture [8] is mainly divided into four sections: the Input terminal,
Backbone, Neck and Prediction, as shown in Figure 5. The functions of each section are
given below,

1. Input terminal: Image pre-processing and data augmentation;
2. Backbone: Feature extraction for lower-level, shallow features which are relatively

similar, including edges, colors and textures;
3. Neck: Feature enhancement conducted by processing and enhancing the shallow

features extracted by the backbone and allowing the model to learn the characteristics
of tire bubbles.

4. Prediction: Outputting a final prediction containing the loss function and the Non-
Max Suppression Algorithm of the bounding and anchor boxes.
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The original YOLOv3 SPP [14] uses Darknet 53 as the backbone with a three-scale
detection network. Since the bubble defects only occupy a small portion of the speckle
image, therefore, we modify the YOLOv3 SPP architecture, adjust it to a two-scale output
and modify the backbone network. As shown in Figure 6, we removed the large-scale
network layers in the Darknet 53 architecture, adding the same number of layers back to
the small-scale network layer to improve small-scale feature acquisition. As the large-scale
sections consist of many channels, removing the layers from the backbone network reduces
the number of parameters by nearly 1/3, significantly reducing the required computing
resources. The FPN [11] structure is referenced for re-joining the backbone network and
the prediction layer. Furthermore, we have found that the addition of the SPP method
effectively increases the range of backbone features and significantly separates the most
important context features. The addition of a layer of SPP structure after up-sampling
achieves two-scale local and global feature fusion.
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2.4. The Incremental YOLO Architecture

Previous methods merge new data into the training datasets before retrain to reduce
missed detections due to incorrect identification of defective images by the original model.
Although this method improves the detection rate of the model, it is a time-consuming
process. We propose an incremental YOLO approach with the concept of transfer learning.
Since we can only train the object detection model on images with objects, we have manually
relabeled and added the misidentified images to the incremental YOLO training dataset.
For incremental training, we retained the shallow features in the original model while
training the deeper features of the network layer. As a result, the bubble defects missed
during inspection accumulate and are used to rapidly update the model to improve the
detection rate.

We froze the Backbone section for incremental training and only trained the Neck
and Prediction network layers to improve the detection rate. Since the backbone network
mainly extracts low-level features such as edges, colors, and textures of images. The neck
layer is mainly to process and enhance the low-level features extracted by the backbone,
so that the model can learn features suitable for tire bubbles. To reduce the computational
load of feature extraction and efficiently learn the image features of the field, we froze
the backbone layer and retrained the neck layer in incremental learning to strengthen
the bubble features of the field. As shown in Figure 7, the blue box indicates the frozen
Backbone section, while the red box indicates the sections where the incremental YOLO
architecture performs parameter adjustments.
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3. Experimental Results
3.1. Dataset and Experimental Environment

The tire speckle images used in this paper were provided by Taiwan’s largest tire
manufacturer. The dataset consists of tire tread and sidewall images taken from different
angles. Each set contains 24 to 26 images of size 1360 × 1024 pixels. One tire speckle image
may include more than one bubble. The training and the testing dataset are independent.
The training dataset contains 2450 images with 3116 bubble defects. The dataset is classified
into six defect categories, as listed in Table 1. The sample tire tread images consist mostly of
grooved bubbles, with 1421 images in the category, followed by butterfly-shaped bubbles.
The remaining categories only account for a small part of the overall training data. The
dataset consists of 1763 tread samples, containing a total of 2247 bubbles. A similar pattern
exists for the sidewall images, with 321 grooved images containing 377 grooved bubbles,
followed by butterfly-shaped bubbles and images from the remaining categories. There are
altogether 687 sidewall samples containing 869 bubbles. Altogether, the dataset contains
2450 training images and a total of 3116 bubbles.

Table 1. Training Dataset.

Data Class
Samples Bubbles

Tread Sidewall Tread Sidewall

Groove 1156 321 1421 377

Butterfly spot 322 265 431 347

Horizontal 91 22 134 49

Scratches 88 10 137 17

Noise 45 61 48 69

Not obvious 61 8 76 10

Total 1763 687 2247 869

Training 2450 3116

The testing dataset is described in Table 2. Binary classification of normal and defective
images is used in this study, as the primary purpose is to detect defective bubbles without
ensuring the correct categorization. The test data contains 500 normal tread sample images
and 810 tread images with bubble defects, as well as 500 normal sidewall sample images
and 505 sidewall images with bubble defects.

Table 2. Testing Dataset.

Data Class # of Image

Tread
Non-bubbles 500

Bubbles 810

Sidewall
Non-bubbles 500

Bubbles 505

The experiments were performed in a Windows environment, using an Intel Core
i7-8700K processor and a GeForce GTX 1080 Ti GPU with the Python Keras framework.

We used four evaluation methods to verify the results of this experiment: Accuracy,
Sensitivity, Specificity and Precision. The equations are as follows;

Accuracy = (TP + TN)/(P + N) (1)

Sensitivity = TP/P (2)
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Specificity = TN/N (3)

Precision = TP/(TP + FP) (4)

In the above equations, P represents the total number of images containing bubble
defects, N represents the total number of images without defects. TP represents the number
of true positives, which are the correctly identified images with defects, and TN represents
the number of true negatives, which are the correctly identified images without defects. FP
represents the number of false positives, which are images without defects and incorrectly
marked as defective, and FN represents the number of false negatives, which are images
with defects and incorrectly marked as normal. As the purpose of quality control in tire
manufacturing is to detect all bubble defects, we use sensitivity as the main evaluation
standard for this paper since false positives have a lesser effect compared to false negatives.

In order to verify that the proposed modified YOLOv3 SPP architecture is superior to
other YOLO series architectures in bubble defect detection, this experiment will compare
Tiny YOLO, YOLOv3, YOLOv3 SPP and other methods. In addition, we will also verify
through experiments that the incremental learning method proposed in this paper can
effectively improve the bubble defects detection accuracy on the actual site.

3.2. Results Obtained by the Tiny YOLO Architecture

The Tiny-YOLO architecture is a YOLO-based object detector [7]. It is designed to
contain a simpler network structure and utilize fewer computing resources. From Table 3,
the sensitivity of the Tiny YOLO architecture is 79.77%. The incremental Tiny YOLO
architecture achieves a better bubble detection rate by an additional 5%.

Table 3. Results Obtained by (a) the Tiny YOLO Architecture, (b) the incremental Tiny YOLO Architecture.

Result
(a) (b)

Tread Sidewall Tread Sidewall

TP 638 411 690 424
TN 496 486 500 2
FP 4 14 0 8
FN 172 94 120 81

Sensitivity 79.77% 84.71%

3.3. Results Obtained by the YOLOv3 Architecture

Experimental results in Table 4 show that the detection rates of the YOLOv3 architec-
ture. For tire sidewall images, a larger input size has better recognition. We have noticed
that the increased small-scale output of the YOLOv3 architecture improves the detection
rate by an average of 2% compared to the Tiny YOLO architecture. This also proves that the
model is more sensitive to bubble features at a smaller scale during the feature extraction
stage. Adding the incremental YOLO architecture can further increase the detection rate by
about 6%.

Table 4. Results Obtained by (a) the YOLOv3 Architecture, (b) the Incremental YOLOv3 Architecture.

Result
(a) (b)

Tread Sidewall Tread Sidewall

TP 650 419 722 435
TN 499 496 497 490
FP 1 4 3 10
FN 160 86 88 70

Sensitivity 81.29% 87.98%
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3.4. Results Obtained by the YOLOv3 SPP Architecture

Spatial Pyramid Pooling (SPP) [14] is a pooling layer, using 1 × 1, 5 × 5, 9 × 9, and
13 × 13 maximum pooling methods to achieve multi-scale fusions verification including
local and global features. In this experiment, we added an SPP layer to the YOLOv3
backbone network to improve the detection accuracy at the cost of higher computing
resource requirements.

Table 5 shows the detection results after adding an SPP structure to the YOLOv3
architecture to achieve local and global feature fusions. The results show that both tread
and sidewall samples have higher detection accuracies than those obtained by the YOLOv3
architecture. For both the sidewall and the tread, after adding the SPP structure, the
detector extracts more feature information than the YOLOv3 architecture in the feature
extraction stage, which effectively increases the reception range of the backbone feature
and significantly improves the detection rate. Adding the incremental YOLO architecture
further increases the detection rate by approximately 6%.

Table 5. Results Obtained by (a) the YOLOv3 SPP Architecture, (b) the Incremental YOLOv3
SPP Architecture.

Result
(a) (b)

Tread Sidewall Tread Sidewall

TP 714 431 770 459
TN 497 492 489 477
FP 3 8 11 23
FN 96 74 40 46

Sensitivity 87.07% 93.46%

3.5. Results Obtained by the Modified YOLOv3 Architecture

Although the results obtained by the modified YOLOv3 architecture are slightly lower
when compared to those obtained by the YOLOv3 SPP architecture, we have observed
a slightly improved detection rate relative to the YOLOv3 architecture in both the tread
and sidewall defect detections, as seen by comparing Tables 4 and 6. The modified scale
prediction network layer improves the detection rates and decreases the number of outputs,
since reducing the large-scale feature extraction and strengthening the small-scale feature
extraction increase the extracted bubble features. For the tire bubble detection, similarly,
the two-output modification is more suitable for verification. The incremental YOLO
architecture further increases the detection rate by about 4%.

Table 6. Results Obtained by (a) the Modified YOLOv3 Architecture, (b) the Incremental YOLOv3 Architecture.

Result
(a) (b)

Tread Sidewall Tread Sidewall

TP 668 442 736 431
TN 500 490 499 485
FP 0 10 1 15
FN 142 63 74 74

Sensitivity 84.81% 88.75%

3.6. Results Obtained by the Modified YOLOv3 SPP Architecture

Table 7 shows the experimental results of the proposed architecture. The proposed
architecture has achieved higher accuracies than the YOLOv3 SPP architecture in the tire
tread and sidewall detections due to the backbone network modifications, where large-scale
feature extraction layers were removed, and small-scale layers were strengthened to allow
the network to learn detailed defect features. Verifying results using two outputs instead
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of three outputs also resulted in better accuracy. By adding the SPP structure before the
two outputs, the detection rate of the architecture is increased significantly while reducing
nearly 40 million parameters. Adding the incremental YOLO architecture further increases
the detection rate by about 6%.

Table 7. Results Obtained by (a) the Modified YOLOv3 SPP Architecture, (b) the Incremental YOLOv3
SPP Architecture.

Result
(a) (b)

Tread Sidewall Tread Sidewall

TP 758 459 801 495
TN 490 487 481 432
FP 10 13 19 68
FN 52 46 9 10

Sensitivity 92.54% 98.56%

3.7. Comparision Results of Different YOLO Architectures

Table 8 summarizes the results of the five architectures. Compared to the Tiny YOLO
architecture, the YOLOv3 architecture has performed better in detection. Similarly, the
modified YOLOv3 architecture performed slightly better than the original YOLOv3 detector.
The SPP structure in the YOLOv3 SPP architecture has also significantly improved the
detection rates of the YOLOv3 architecture. Finally, the modified YOLOv3 SPP architecture
proposed in this paper has achieved the highest accuracy, with a 5.5% increase in accuracy
compared to the unmodified YOLOv3 SPP model.

Table 8. Results Obtained by Different Architecture (a) Tiny YOLO (b) YOLOv3 (c) YOLOv3 SPP (d)
Modified YOLOv3 (e) Proposed modified YOLOv3 SPP Model.

Result
Tread Sidewall

Sensitivity
TP TN FP FN TP TN FP FN

(a) 638 496 4 172 411 486 14 94 79.77%
(b) 650 499 1 160 419 496 4 86 81.29%
(c) 714 497 3 96 431 492 8 74 87.07%
(d) 668 500 0 142 442 490 10 63 84.81%
(e) 758 490 10 52 459 487 13 46 92.54%

3.8. Comparision of the Different Incremental YOLO Architectures

Table 9 lists the comparison results of the above five architectures in conjunction
with the incremental learning. The proposed improved YOLOv3 SPP method achieves
the highest sensitivity among the results obtained using the incremental learning. The
proposed model’s detection rate is 6% higher than the modified YOLOv3 SPP method
without the incremental YOLO architecture (see Table 8), significantly reducing the number
of false negatives in defect detection. The proposed method’s detection time is shorter
than all other methods except the Tiny YOLO architecture. Nevertheless, despite the
Tiny YOLO architecture’s simple, easy-to-use network structure and low computing re-
source requirements, it is unsuitable for the detection task due to its poor detection rates.
Hence, our proposed method provides a semi-automated defect detection approach for tire
manufacturers, effectively reducing labour costs and improving inspection accuracy.
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Table 9. Results and detection times of the incremental YOLO architecture with different architectures
(a) Tiny YOLO (b) YOLOv3 (c) YOLOv3 SPP (d) Modified YOLOv3 (e) Proposed Model.

Result
Tread Sidewall

Sensitivity Time
TP TN FP FN TP TN FP FN

(a) 690 500 0 120 424 2 8 81 84.71% 70(s)
(b) 722 497 3 88 435 490 10 70 87.98% 132(s)
(c) 770 489 11 40 459 477 23 46 93.46% 134(s)
(d) 736 499 1 74 431 485 15 74 88.75% 133(s)
(e) 801 481 19 9 495 432 68 10 98.56% 125(s)

4. Conclusions

This paper proposes a semi-automated tire defect detection process using a dataset
of speckle images provided by the largest tire manufacturer in Taiwan, and labeled by
professionals into six defect categories. To supplement the dataset, we have enhanced
images of defects that are difficult to detect and added them to the dataset during training
to improve accuracy. Using the training sample, we obtained a detection rate of 92.54%
with the initial model in the first stage. During the second stage, we implemented an
incremental YOLO architecture upon the architecture in the first stage, which improved the
detection rate to 98.56%, reduced the detection speed, and provided better detection rates
than previous studies for the hard-to-detect bubbles. During the quality control process
in tire manufacturing, the model is likely to encounter new defects that were not present
in the training data. We can incrementally train the model to recognize new defects with
the proposed incremental YOLO architecture, which significantly improves the accuracy
compared to the original model. For defect recognition, the original and incremental models
had misjudged rates of 2.3% and 7.7%, respectively. The misjudgments are primarily due
to less visible defects in the speckle images. As a result, more research may be required to
further improve the detection rate.
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