
Citation: Lyu, P.; Wei, M.; Wu, Y.

Multi-Vehicle Tracking Based on

Monocular Camera in Driver View.

Appl. Sci. 2022, 12, 12244. https://

doi.org/10.3390/app122312244

Academic Editor: Emanuele

Carpanzano

Received: 24 October 2022

Accepted: 25 November 2022

Published: 30 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Multi-Vehicle Tracking Based on Monocular Camera
in Driver View
Pengfei Lyu 1 , Minxiang Wei 1,* and Yuwei Wu 2

1 College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China

2 College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China

* Correspondence: weimx@nuaa.edu.cn

Abstract: Multi-vehicle tracking is used in advanced driver assistance systems to track obstacles,
which is fundamental for high-level tasks. It requires real-time performance while dealing with object
illumination variations and deformations. To this end, we propose a novel multi-vehicle tracking
algorithm based on a monocular camera in driver view. It follows the tracking-by-detection paradigm
and integrates detection and appearance descriptors into a single network. The one-stage detection
approach consists of a backbone, a modified BiFPN as a neck layer, and three prediction heads. The
data association consists of a two-step matching strategy together with a Kalman filter. Experimental
results demonstrate that the proposed approach outperforms state-of-the-art algorithms. It is also
able to solve the tracking problem in driving scenarios while maintaining 16 FPS on the test dataset.

Keywords: multi-vehicle tracking; object detection; data association; Kalman filter

1. Introduction

Cameras are an attractive sensor choice for intelligent vehicles because they are passive
and easy to deploy. Some existing driving assistance systems rely on cameras to detect
pedestrians [1] or for lane keeping [2]. Meanwhile, as a research hot-spot in the field of
computer vision, the objective of multi-target tracking is to estimate the trajectories of a
specific class of objects, such as vehicles [3,4]. Furthermore, multi-vehicle tracking based
on a monocular camera plays a vital role in advanced driver assistance systems.

Currently, there are two main target tracking paradigms: detection-free-tracking
(DFT) and tracking-by-detection (TBD) [5]. DFT usually initializes the tracking target
manually, which is suitable for tracking a specified target. However, it cannot track a
new object that appears in a driving scene. TBD means tracking-by-detection, which can
automatically detect the appearance of new targets or the disappearance of existing targets.
Therefore, TBD can meet actual demand for the random disappearance or dynamical
change of targets in driving scenes. There are various TBD approaches in multi-target
tracking development. For instance, DeepSORT [6] uses two-stage processing and achieves
pretty good performance. It first obtains bounding boxes of detected objects through
the detection network and then uses the pre-trained deep convolution neural network to
perform the appearance description. Recently, the single-shot TBD method [7] integrates
the detection network and the appearance descriptor into a single framework which avoids
re-computation and simultaneously outputs the embedding information and detected
bounding box. This kind of framework is suitable for advanced driver assistance systems,
which are time-critical applications.

As one of the basic problems of computer vision, target detection is the foundation of
many other visual tasks, such as target tracking. To a certain extent, the quality of the target
detection module determines the performance of the multi-target tracking performance
based on the TBD paradigm. The object detection method includes one-stage and two-stage
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detection algorithms. The Faster-RCNN [8] is a representative work of a two-stage detector.
On the contrary, the YOLOv3 [9] is a classic one-stage object detection approach, which
ignores the region proposal stage and replaces it by a single network to directly output
the predicted bounding boxes and classification scores in the image. Although two-stage
detection algorithms are generally more accurate than the one-stage detection approaches
when detecting small targets, the one-stage detectors are faster. In this way, a one-stage
detector is useful for vehicles detection whose size is generally larger within a safe distance
between the ego-vehicle and surrounding vehicles.

Data association (DA) is the other part of the TBD approach. Its objective is to match
detection results between adjacent frames of the video stream based on some metrics, such
as the cosine distance and Intersection-over-Union (IoU) distance. To improve matching
accuracy, the motion state prediction and linear assignment of the object are studied by
some studies in the literature. Kalman filter [10] is an important method to solve the motion
model, which includes the prediction and updating step. First, it predicts the object state
based on the system state space model. Then, it corrects the prediction using the received
measurements. Moreover, the optimal Hungarian algorithm [11] is normally employed to
solve the linear assignment problem. Each object in the frame is assigned a Kalman filter.
Thus, the number of Kalman filters and the dimension of the cost matrix which is fed into
the Hungarian algorithm increase as the number of tracking objects increases.

In this work, we focus on multiple vehicle tracking problems. The proposed method
only uses the current and previous images that come from a monocular camera in driver
view. It can track multiple vehicles in as real time as possible based on the single-shot TBD
method. Here are our contributions:

• Following the TBD paradigm, we design a detector, which is composed of a backbone
block, a neck layer, and three prediction heads, to enhance the multi-vehicle tracking
(MVT) performance;

• For data association, we derive the Kalman filter that is used to update the tracks,
which decreases the identity switch to improve the HOTA and other relevant metrics;

• Quantitative and qualitative evaluations demonstrate that our method achieves good
performance and can solve the multiple vehicle-tracking problems in the driver view
with monocular cameras (e.g., illumination variants and deformations) while main-
taining a good frame rate.

The paper is structured as follows: Section 2 mainly introduces the existing related
research work. Section 3 presents the general structure of the proposed algorithm and
the derivation of Kalman filtering. Section 4 introduces the implementation details, in-
cluding the acquisition of anchor setting, training and testing details of the algorithm.
Section 5 shows the experimental results compared with state-of-the-art algorithms on
public datasets. Section 6 presents the conclusions and outlook of the follow-up work.

2. Related Work

System latency is a major concern in autonomous vehicles. However, existing feature
extractors are usually time-consuming. In addition, existing MOT frameworks usually
deal with detection and association separately, resulting in the accumulation of delays and
errors. To avoid such problems, the ability to use a shared neural network for detection
and tracking may reduce latency and enhance accuracy.

Assuming that the object moves slightly between consecutive frames, the Tracktor [12]
uses an object detector and converts it into a tracker. It adapts to the Faster R-CNN
detector [8] by adding a regression head, which regresses the position of the bounding
box of the object in the new frame from the previous frame. However, there are two
disadvantages. First of all, it is suitable for high frame-rate videos with less inter-frame
motion. Secondly, it fails to capture the appearance of tracked objects, and when several
objects are close together and under temporary occlusion, the model becomes unreliable.
To solve the second problem, Tractor++ came into being. It integrates appearance features
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generated by a separate Siamese network, and it achieves better tracking accuracy at the
cost of efficiency. However, this part offsets the advantage of Tracktor.

To obtain better long-term correlation, Wang first proposed a synchronous detection
and tracking method based on appearance features called JDE [7]. It uses a unified network
to combine output detections with their corresponding appearance embedding. JDE
extends YOLOv3 [9] with a re-identification branch that is trained using the triplet loss
and jointly learned with the detection loss. For each new frame, JDE uses the combination
of all embedding of detections belonging to the trajectory wave to update the appearance
embedding of the trajectory wave. The similarity score is a combination of the cosine
distance between the appearance embedding and the Mahalanobis distance between the
current detection and the predicted bounding box of the trajectory wave computed using
the Kalman filter. Then, the Hungarian algorithm is used to find the optimal allocation.
JDE speeds up the reasoning time. However, it is only evaluated on the pedestrian tracking
dataset. Meanwhile, the detection module and Kalman filter can be further improved.

These multi-object tracking algorithms always focus on pedestrian tracking in monitor
view. Few such works pay attention to multi-vehicle tracking from the driver’s point
of view. JDE methods show better results and take less running time than the non-joint
learning method. Therefore, we propose a new detection structure based on the idea of
JDE and improve the update strategy of the noise matrix. The proposed method can be
used as the basis of autonomous driving or ADAS.

3. Proposed Algorithm
3.1. Over View of Tracking Framework

As shown in Figure 1, the proposed tracking method is composed of the joint de-
tection and embedding (JDE) [7] module and the data association (DA) module. JDE is
based on a one-stage object detection network which simultaneously outputs the detection
results and the appearances of detected targets. DA is a post process which is used to
match the detection result from the JDE module with the tracking information from the
previous frame.
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Figure 1. The whole structure of the algorithm consists of a detection module and a post-
processing module.

3.2. JDE Module

There are three prediction heads at the end of our designed one-stage detection
architecture. The detection part combines a CSPDarkNet-53 as backbone and a modified
bi-directional feature pyramid network (BiFPN) as the neck layer [13].

CSPDarkNet-53 is an upgraded version of the DarkNet-53 [9] which is a feature
extractor used for object detection. Its core unit is the CSPResNet, which divides a basic
feature map into two parts by using CSPNet strategy, and then merges these parts through
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a cross-stage hierarchical structure. In the way, this convolutional neural network is used
as a backbone in YOLOv4 [14] and transferred to our JDE without any modification.

The BiFPN is a multi-scale feature fusion block which balances efficiency and accuracy.
It fuses three feature maps that are output by the backbone block and enables features to
flow in both the top–down and bottom–up directions. Different from traditional methods,
BiFPN can learn the importance of the input feature maps which have different resolutions
by adding an additional weight. Then, these fused features are fed into the corresponding
prediction head, which has some convolution layers. As shown in Figure 1, the proposed
architecture combines two BiFPN blocks. What is more, we can extend the framework more
deeply and widely by increasing the number of BiFPN blocks as well as its input features.

Each prediction head is composed of a series of convolution layers and outputs a
three-dimension map with size (4A + 2A + E)× H×W, where A is the number of anchors
that are assigned to its corresponding feature scale, and E is the number of appearance
embedding. The three-dimension map consists of the box coordinate offsets regression of
size 4A×H×W, the box classification of size 2A×H×W, and the appearance embedding
of size E× H ×W.

3.3. Loss Function

There are three subtasks of each prediction head in our multi-vehicle tracker, so the
total loss function L consists of classification loss, regression loss, and embedding loss of
all prediction heads,

L =
N

∑
i=1

(wi
clsL

i
cls + wi

regLi
reg + wi

embL
i
emb) (1)

where N = 3 is the number of prediction heads, wi
cls and Li

cls are the weight and loss
function for the foreground/background classification task, wi

reg and Li
reg are the weight

and loss function for the bounding box regression task, wi
emb and Li

emb are the weight and
loss function for the appearance embedding task, and i = 1, 2, 3. All wi

∗ are carefully tuned
for optimal performance.

In addition, Lcls is formulated as a cross-entropy loss as below:

Lcls = −(y log(p) + (1− y)log(1− p)) (2)

where y is a binary indicator (0 or 1) for foreground and background classification, and p is
a probability which predicted as positive class.

When it comes to regression loss, we use smooth L1 loss:

Lreg =

{
0.5x2, |x| < 1

|x| − 0.5, otherwise.
(3)

Moreover, Lemb is formulated as the same in [7] as below:

Lemb = − log
exp( f T g+)

exp( f T g+) + ∑i(exp( f T g−i ))
(4)

where f T is a selected anchor instance in a mini-batch, g+ is the weight of the positive
sample with respect to f T , and g−i is the weight of the negative sample.
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Let m and v denote the 1st moment vector and 2nd moment vector, respectively. α is
the learning rate of the model. β1, β2 and ε are hyper-parameters. The parameters m, v,
and θ are updated during training as follows:

mt ← β1mt−1 + (1− β1)
∂Loss
∂θt−1

,

vt ← β2vt−1 + (1− β2)
∂Loss
∂θt−1

2
,

m̂t ←
mt

1− βt
1

,

v̂t ←
vt

1− βt
2

,

θt ← θt−1 − α
m̂t√
v̂t + ε

.

(5)

3.4. Data Association Module

The DA is the other part of the TBD paradigm. After the detection results are acquired,
the non-maximum suppression (NMS) algorithm is used to find out the best bounding
boxes in these detection results.

As demonstrated in Figure 2, the data association algorithm has two match steps,
an embedding match and an IoU match, and a Kalman filter. First of all, the current
frame detections and the last frame tracks are matched by an embedding match, which
outputs matched tracks, unmatched tracks, and unmatched detections. Then, the last two
outputs are matched again with the IoU match. It also has three same format outputs.
All of the matched tracks, as well as matched detections, are fed into the Kalman filter.
The unmatched tracks will be deleted after 30 frames if they are unmatched in the future
matched cycles. The unmatched current frame detections are created as new tracks and put
in the inactive tracking pool. The Kalman filter and the matching work together to produce
an active tracking pool that outputs the final object bounding boxes with tracked IDs if the
condition is met.
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Figure 2. The pipeline of the data association algorithm that has two match steps and a Kalman filter.

3.5. Motion Model

In multiple vehicle tracking, we use the constant velocity as a motion model with a
Kalman filter [15] when we assume the tracking system as a linear Gaussian process. In the
following section, we derive the constant velocity motion model for objects represented with
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aspect ratio and height as well as the detected bounding box-center coordinate. Suppose
each target follows a linear Gaussian model:

fk|k−1(x|ε) = N (x; Fk−1ε, Qk−1) (6)

gk(z|x) = N (z; Hkx, Rk) (7)

where fk|k−1(·|ε) is the state transition probability of a single object at time k when given
the previous state ε. gk(z|x) is the likelihood function of the single object, which defines the
probability that z is observed under conditions as state x. N (·; m, P) is a Gaussian density
whose mean and covariance are m and P, respectively. Fk−1 is the state transition matrix and
Qk−1 denotes the covariance matrix of the process noises. Hk is the measurement matrix.
Rk denotes the covariance matrix of the measurement noises, which can be measured from
the detection and ground truth of training datasets.

Our objective now is to obtain the formulation of Fk, Qk, Hk, and Rk. Suppose that the
centers of the detection box to be estimated are denoted by (xb,k, yb,k) and that the aspect
ratio and the height of the bounding box detected at the coordinates of the image to be
estimated are represented by ab,k and hb,k, respectively, at time k. The velocity of the centers
of the detected box, the bounding box, the aspect ratio, and the height are indicated by
(ẋb,k, ẏb,k), ȧb,k, and ḣb,k, respectively. The state space model can also be expressed as a
vector–matrix representation as follows:



xb,k
yb,k
ẋb,k
ẏb,k
ab,k
hb,k
ȧb,k
ḣb,k


︸ ︷︷ ︸

Xk

=



1 0 δt 0 0 0 0 0
0 1 0 δt 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 δt 0
0 0 0 0 0 1 0 δt
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

Fk−1



xb,k−1
yb,k−1
ẋb,k−1
ẏb,k−1
ab,k−1
hb,k−1
ȧb,k−1
ḣb,k−1


︸ ︷︷ ︸

Xk−1

+



δt2

2 wx,k−1
δt2

2 wy,k−1
δtwx,k−1
δtwy,k−1
δt2

2 wa,k−1
δt2

2 wh,k−1
δtwa,k−1
δtwh,k−1


︸ ︷︷ ︸

Wk−1

(8)

where w∗,k−1 denotes a piece-wise constant white acceleration that can be described by a
zero-mean Gaussian white noise as w∗,k−1 ∼ N (0, σ2

∗,k−1). The σ2
∗,k−1 is a variance which

determines the relaxation level of the constant velocity assumption. δt is the time between
frames. Equation (8) can be also represented as:

Xk = Fk−1Xk−1 + Wk−1 (9)

where the value of the state transition matrix Fk−1 is given in Equation (8) and
Wk−1 ∼ N (0, Qk−1). Therefore, Qk−1 can be obtained by computing the covariance of
Wk−1 as:

Qk−1 = Cov(Wk−1) = E[Wk−1WT
k−1] (10)

where E[Wk−1WT
k−1] denotes the mean of Wk−1 and WT

k−1. Now Qk−1 can be obtained as:

Qk−1 =



δt4

4 σ2
wx 0 δt3

2 σ2
wx 0 0 0 0 0

0 δt4

4 σ2
wy 0 δt3

2 σ2
wy 0 0 0 0

δt3

2 σ2
wx 0 δt2σ2

wx 0 0 0 0 0
0 δt3

2 σ2
wy 0 δt2σ2

wy 0 0 0 0

0 0 0 0 δt4

4 σ2
wa 0 δt3

2 σ2
wa 0

0 0 0 0 0 δt4

4 σ2
wh

0 δt3

2 σ2
wh

0 0 0 0 δt3

2 σ2
wa 0 δt2σ2

wa 0
0 0 0 0 0 δt3

2 σ2
wh

0 δt2σ2
wh


(11)
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There are two significant ideas in the derivation of Qk−1:

• E[wx,k−1wx,k−1] = σ2
wx . Meanwhile, E[wy,k−1wy,k−1] = σ2

wy , E[wa,k−1wa,k−1] = σ2
wa ,

and E[wh,k−1wh,k−1] = σ2
wh

where σ2
wx is variance (σwx =

√
σ2

wx is the standard deviation).

• E[wx,k−1wy,k−1] = 0 since between the x-axis and y-axis, there is no correlation. Simi-
larly, E[wx,k−1wa,k−1] = 0, E[wa,k−1wh,k−1] = 0, etc.

This completes the derivation for Fk−1 and Qk−1. We set the different values for the
variance (σ2

wx , σ2
wy , σ2

wa , and σ2
wh

) after tuning them individually during our experiments.
To speed up the operation, the observations at time k can be represented by the

following state space model in vector matrix form.


zx,k
zy,k
za,k
zh,k


︸ ︷︷ ︸

Zk

=


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


︸ ︷︷ ︸

Hk



xb,k
yb,k
ẋb,k
ẏb,k
ab,k
hb,k
ȧb,k
ḣb,k


︸ ︷︷ ︸

Xk

+


vx,k
vy,k
va,k
vh,k


︸ ︷︷ ︸

Vk

(12)

where (zx,k, zy,k) are the center points of a detection box at time k. za,k and zh,k are the aspect
ratio and height of a detection box in image coordinates at time k. vx,k, vy,k, va,k, and vh,k are
observation noises corresponding to zx,k, zy,k, za,k, and zh,k, respectively, which are basically
zero-mean Gaussian white noises. For instance, vx,k ∼ N (0, σ2

zx,k
).

The measurement matrix Hk projects the state space to the observation space and
Equation (12) can also be represented as

Zk = HkXk + Vk (13)

where the value of Hk is given in Equation (12) and Vk ∼ N (0, Rk). Thus, the value of Rk
can be obtained by computing the covariance of Vk as:

Rk = Cov(Vk) = E[VkVT
k ] (14)

Here, the covariance matrix of the measurement noise Rk is expressed as:

Rk−1 =


σ2

vx 0 0 0
0 σ2

vy 0 0
0 0 σ2

va 0
0 0 0 σ2

vh

 (15)

where E[vx,kva,k] = 0, E[vx,kvy,k] = 0, E[va,kvh,k] = 0 and so on, since there is not any
correlation between each other. This completes the derivation for Hk and Rk. We set the
different values for the variance (σ2

vx , σ2
vy , σ2

va , and σ2
vh

) after tuning them individually
during our experiments.

Then, every track is assigned a filter and follows the prediction and update process to
acquire an estimated state. To some extent, the speed of the tracking phase depends on the
number of objects being tracked.

1. Kalman Filter Prediction

The predicted state X̂k|k−1 is

X̂k|k−1 = FkX̂k−1|k−1. (16)

The predicted estimate covariance Pk|k−1 is

Pk|k−1 = FkPk−1|k−1FT
k + Qk. (17)
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2. Kalman Filter Update

The measurement residual ỹk is

ỹk = Zk − HkX̂k|k−1. (18)

The residual covariance Sk is

Sk = HkPk|k−1HT
k + Rk. (19)

The Kalman gain Kk is
Kk = Pk|k−1HT

k S−1
k . (20)

The updated state estimate X̂k|k is

X̂k|k = X̂k|k−1 + Kk ỹk. (21)

The updated estimate covariance Pk|k is

Pk|k = (I − Kk Hk)Pk|k−1. (22)

4. Implementation Details

This paper implements experiments on a PC equipped with an Nvidia GeForce RTX
3090 GPU, Intel i9-10900K 3.70 GHz CPU, and 32GB RAM.

4.1. Anchor Setting

In this article, we focus on vehicle tracking, which contains the class of car and van
in the KITTI tracking dataset. It is complicated for us to select reasonable bounding box
priors, which are a set of hyper-parameters because of the special appearance of these
vehicles. The improper prior size may cause the predicted bounding box to be far from
the corresponding ground truth and then affect the tracking performance. The number of
anchor priors is set to 12 for each prediction head in our training phase. Hence, the K-means
approach is applied to the tracking dataset, which only includes vehicles, since there are
other classes in the entire dataset, such as pedestrians, cyclists, etc. The bounding box prior
is generated in the following steps:

(1) K-means clustering. Input: all of ground truth bounding boxes of vehicles in the
training dataset. Output: 12 width-height pairs of bounding boxes.

(2) Initialization. Select 12 bounding boxes from the training dataset randomly as the
center of the cluster.

(3) Cluster. Calculate the IoU distance from each bounding box to the center of each
cluster. Then, divide these bounding boxes into the nearest cluster.

(4) Update. With the classified 12 clusters in step (3), the cluster center in each cluster is
updated according to the median of all bounding boxes.

(5) Repeat step (3) and (4) until the cluster centers are no longer changing to meet the
given termination condition.

In the design of anchor boxes, 12 appropriate clusters are: (23,18), (31,22), (37,30),
(60,26), (53,40), (81,38), (67,56), (122,51), (107,76), (173,94), (230,150), and (333,183).

4.2. Training and Testing

In the training phase, the model is trained for a total of 80 epochs on the synthetic
dataset. The multi-step learning rate is adopted and initialized to 10−2, reducing the
learning rate of each parameter group by the decay factor once the number of epochs
reaches one of the milestones. We set the milestones in the middle and in three-quarters of
the epochs, and the decay factor is set at 0.1. The input images are resized to 1088× 608 and
some data augmentation techniques such as rotation, scaling and color dithering are used.
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In the testing phase, the IoU threshold required to qualify as detected and the object
confidence threshold are set to 0.5. The IoU threshold for non-maximum suppression is
set to 0.4. The deletion condition for the final unmatched tracks is 30 frames, which means
that the tracks will be removed if the condition is not satisfied. Each tracked target is
assigned a Kalman filter as the motion model. Therefore, the number of objects can also
affect tracking speed.

5. Experiments
5.1. Dataset and Metrics

All of the training and testing data are provided by Karlsruhe Institute of Technology
and Toyota Technological Institute (KITTI) [16]. The KITTI computer vision benchmark
contains a large number of datasets for different tasks, such as the object detection dataset
consisting of 7481 training images and 7518 test images and the tracking dataset consisting
of 21 training sequences and 29 test sequences. Cars, pedestrians, and cyclists are annotated
with 2D bounding boxes. We use synthetic datasets that consist of training images in both
detection and tracking benchmarks. Since we study multi-vehicle tracking, annotations and
images containing objects such as pedestrians are removed. Then, schemes such as image
augmentation are used to enlarge the dataset during training, which improves the training
results. In the following, the tracking performance is evaluated on the test sequence of
the object tracking benchmark. Following the submission policy of the KITTI team, we
submitted our test results to them and obtained metric scores.

Due to the complexity of multi-object tracking, there are a large number of metrics
to evaluate its performance. From all video sequences, we compute more than 20 metrics
by using evaluation tool that official organization provides, such as the HOTA tracking
metrics (HOTA, DetA, AssA, DetRe, DetPr, AssRe, AssPr, LocA) [17], the CLEARMOT
metrics (MOTA, MOTP, MT, ML, Frag, etc.) [18], identity metrics (IDs, IDSW, etc.), and frag-
mentation (Frag) [19] metrics. HOTA is able to comprehensively evaluate the performance
of detection and data association in the TBD paradigm. While Frag focuses more on
association performance, MOTA evaluates detector capabilities and focuses more on detec-
tion performance.

5.2. Experimental Results

Our tracking performance is compared with the advanced trackers (JRMOT [20],
MOTSFusion [21], SRK_ODSEA [22], Quasi-Dense [23], FANTrack [24], extraCK [25],
and Point3DT [26]) in recent years on the KITTI 2D car tracking benchmark. The re-
sults of these evaluation metrics, which are provided by the KITTI official team [17], are
shown in Tables 1–3. The up arrow after each metric, which is in the first row of these
tables, means the bigger the better, and vice versa. The HOTA metrics of the proposed
method in detail are demonstrated in Figure 3. Based on the results, our algorithm achieves
state-of-the-art performance. For instance, the HOTA, AssA, AssRe, and IDSW of our
tracker rank first in these comparisons. Other metric scores also rank high on the list.

Table 1. Comparison results of several algorithms for eight metrics such as HOTA.

MOT-Approach HOTA↑ DetA↑ AssA↑ DetRe↑ DetPr↑ AssRe↑ AssPr↑ LocA↑
MVT 71.00% 66.91% 75.85% 71.13% 80.72% 78.93% 85.90% 83.46%

JRMOT [20] 69.61% 73.05% 66.89% 76.95% 85.07% 69.18% 88.95% 86.72%
MOTSFusion [21] 68.74% 72.19% 66.16% 76.05% 84.88% 69.57% 85.49% 86.56%
SRK_ODSEA [22] 68.51% 75.40% 63.08% 78.89% 86.00% 65.89% 87.47% 86.88%
Quasi-Dense [23] 68.45% 72.44% 65.49% 76.01% 85.37% 68.28% 88.53% 86.50%

FANTrack [24] 60.85% 64.36% 58.69% 69.17% 80.82% 60.78% 88.94% 84.72%
extraCK [25] 59.76% 65.18% 55.47% 69.21% 81.69% 61.82% 75.70% 84.30%

Point3DT [26] 57.20% 55.71% 59.15% 64.66% 68.67% 63.20% 78.30% 80.07%
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Table 2. Comparison results of several algorithms for seven metrics such as TP.

MOT-Approach TP↑ FP↓ FN↓ MT Rate↑ PT Rate↓ ML Rate↓ FRAG↓
MVT 29,656 4736 650 66.92% 24.00% 9.08% 521

JRMOT [20] 30,325 4067 787 70.92% 24.46% 4.62% 273
MOTSFusion [21] 30,100 4292 713 72.77% 24.31% 2.92% 569
SRK_ODSEA [22] 31,062 3330 489 78.00% 19.54% 2.46% 531
Quasi-Dense [23] 30,072 4320 549 69.54% 26.61% 3.85% 567

FANTrack [24] 28,130 6262 1305 62.77% 28.46% 8.77% 701
extraCK [25] 28,463 5929 675 62.31% 31.85% 5.85% 750

Point3DT [26] 27,955 6437 4424 60.46% 26.77% 12.77% 756

Table 3. Comparison results of several algorithms for seven metrics such as MOTA.

MOT-Approach MOTA↑ MOTP↑ MODA↑ IDSW↓ sMOTA↑ #Dets #Tracks

MVT 84.08% 80.71% 84.34% 189 67.45% 30,306 968
JRMOT [20] 85.10% 85.28% 85.89% 271 72.11% 31,112 960

MOTSFusion [21] 84.24% 85.03% 85.45% 415 71.14% 30,813 929
SRK_ODSEA [22] 87.79% 85.41% 88.90% 380 74.62% 31,551 1039
Quasi-Dense [23] 84.93% 84.85% 85.84% 313 71.69% 30,621 979

FANTrack [24] 75.84% 82.46% 78.00% 743 61.49% 29,435 1582
extraCK [25] 79.29% 82.06% 80.80% 520 64.44% 29,138 871

Point3DT [26] 67.56% 76.83% 68.42% 294 48.73% 32,379 1086
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Figure 3. The detailed information of the evaluation metrics, HOTA, DetA, AssA, DetRe, DetPr,
AssRe, AssPr, and LocA. The alpha is a threshold to compute the scores.

The qualitative results of our visual-based multi-vehicle tracking algorithm on KITTI [16]
are shown in Figure 4. The color of each bounding box indicates the target identity.
The number of frames, fps and tracked objects are shown in the upper left corner of each
image. Our tracker achieves about 16 frames per second (fps) in this testing video sequence.
If we optimize the structure, it can be deployed on an edge AI device that is applied to
advanced driver assistance systems. In frame 52, there are six cars detected, and there are
five cars detected in frame 55. Compared with the two frames, we can see that the cars
(with ID 54, 55, 57, and 59) are tracked successfully. It is worth noting that the vehicle with
ID 52 and 61 is not detected in frame 55 due to insignificant features and thus is not tracked.
However, they are on an unstructured road that does not influence driving. The car with
ID 63 appears in the field of view in frame 55 and is detected in time and given a new
ID. The qualitative analysis shows that our algorithm balances real-time performance and
accuracy while solving illumination changes and deformations in the image sequence.
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Figure 4. Qualitative results of our visual-based tracker on KITTI. The color of each bounding box
indicates the target identity. The number of frames, fps and tracked objects is shown in the upper left
corner of each image.

5.3. Analysis and Discussions

To discuss the generalization of the algorithm, we analyze the algorithm visually on
the test sequence 00. As shown in Figure 5, the vehicles with IDs 83, 115, 102, 113, 117,
and 87 are all well detected and tracked. Although the detection of the vehicle with ID 101
between frames 113 and 117 failed at frame 175, the vehicle with ID 101 with a dark purple
bounding box was re-detected in the subsequent 179 frames and retained its original ID.
This means that our tracker is extremely robust.

Figure 5. Three-frame tracking results on test sequence 00 of the KITTI tracking benchmark.
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In the TBD paradigm, the detection result determines the performance upper bound of
the algorithm, and the data association determines whether the upper bound can be reached.
To some extent, the data association capability of the proposed method achieves its detection
performance. This can be seen from the comparison results in several tables, where the
performance of our tracker for data association is relatively high, while the detection results
are good. The performance of the vehicle-tracking algorithm is also confirmed in the
qualitative analysis. Even if a target is lost in an intermediate frame, subsequent targets can
still be assigned the same ID. This is also due to the excellent performance of the motion
model and the matching mechanism that incorporates embedding.

On the KITTI dataset, the frame rate of our algorithm is about 16 fps, which is deter-
mined by both the size of the input image and the number of objects.

In the future, we will consider three technologies to optimize the runtime of the
deployment on Nvidia devices. First, the architecture of the detection model can be
changed according to its size, depth, and width. Secondly, quantization can be used to
change the digital representation of data and network weights. For example, we can
replace floating-point numbers with integers. Finally, we will choose the appropriate
image resolution. We will conduct hardware acceleration and quantitative experiments
with TensorRT on the target platform. For TensorRT reasoning, we can export the trained
PyTorch model to ONNX and parse it into the optimized TensorRT runtime engine in a C++
environment on the target system. TensorRT allows us to choose the required quantization
when building the engine. There are three options: Float32, Float16 and Int8.

6. Conclusions

This article proposes a multi-vehicle tracking method suitable for advanced driver
assistance systems based on monocular cameras in the driver view. The approach is based
on the tracking-by-detection paradigm. At the same time, joint detection and appearance
embedding are used to improve tracking speed. In the detection phase, we use a modified
one-stage detection network equipped with an adjusted BiFPN block with three predic-
tion heads consisting of a sequence of convolutional neural networks. In addition, the
k-means algorithm is used on the training dataset to obtain proper priors. On the other
hand, the tracking phase mainly consists of a two-step matching method and a Kalman
filter. Finally, experimental results demonstrate that our approach achieves state-of-the-
art performance on public benchmarks and that it can handle deformation and illumina-
tion variations. While maintaining high performance, our tracker can achieve a speed
of about 16 FPS on the KITTI tracking dataset. Raw data and demos are available at
https://github.com/LvpengfeiNJ/MVT-MCDV-ADAS-Tracking (accessed on 24 October 2022).

In the future work, we will further explore the number of convolution layers of the
prediction head which can make the detection performance the best. We will also study
how to deploy this multi-vehicle tracking algorithms to edge AI devices and look into ways
to minimize the loss of performance during deployment.
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Abbreviations
The following abbreviations are used in this manuscript:

TBD Tracking-by-detection
DA Data association
MVT Multi-vehicle tracking
JDE Joint detection and embedding
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
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