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Abstract: In previous studies, the meshing force of a gear system is usually treated as being uniformly
distributed for the convenience of analysis. In practical applications, however, it is nonuniformly
distributed along the line of action due to machining errors, assembly errors, misalignment errors,
etc. When a nonuniformly distributed meshing force is coupled with the shaft deformation, dynamic
center distance, and time-varying meshing stiffness, the transmission performance of the gear system
will be seriously degraded. Therefore, a nonuniformly distributed meshing force cannot be ignored
when considering the gear systems used in complicated working conditions. In this study, the
gear’s nonuniformly distributed meshing force is analyzed. Then, an 18 degrees-of-freedom bending-
torsion-swing-coupled dynamic model of a pair of involute spur gears is put forward. Through
this model, the coupling relationship between the nonuniformly distributed meshing force, shaft
bending deformation, and dynamic center distance is accurately described. The influence of meshing
frequency, stiffness excitation, damping, and error excitation on the nonlinear dynamic characteristics
of the gear system was researched through bifurcation diagrams, phase diagrams, Poincaré maps,
and time-domain diagrams. Various complicated nonlinear dynamic behaviors, such as quasiperiodic
motion, bifurcation, chaotic motion, and chaotic banding, are revealed. Reasonable parameter ranges
that guarantee the gear system is in a stable motion were extracted. By evading complicated nonlinear
dynamic behavior, the transmission performance of a gear system was improved. This research will
contribute to reducing the vibration and noise of gear systems.

Keywords: gear system; meshing force; nonlinear dynamic characteristic; system stability;
vibration control

1. Introduction

Gear systems have been widely used in many industrial applications due to their
advantages of having accurate transmission ratios, compact dimensions, and high effi-
ciency. With increasing requirements for gear performance in cutting-edge fields, many
nonlinear dynamic characteristics that affect transmission performance must be consid-
ered in gear design. Therefore, it is important to establish a relatively accurate dynamic
model and investigate the complicated nonlinear behavior of the gear system subjected to
various excitations.

In recent years, numerous well-established dynamic models have been put forward.
Ren [1] analyzed the dynamic behavior of gears caused by translation-torsion coupled
vibration. Han et al. [2] deduced the dynamic equations of the spur gear from an energy
point of view. In addition to the torsional vibration, the pitch and yaw vibration were also
considered in their model. Yang [3] studied the vibration response of a multistage gear
system under deterministic and random loads. Zhang [4] established a translation-torsion
vibration model of a compound planetary gear set, focusing on the comprehensive influence
of meshing stiffness, backlash, and bearing clearance on load performance. Cooley [5]
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explored the modal characteristics and dynamic response prediction and then established
a bending-torsion-axis-coupled model. Meanwhile, by establishing a nine-degrees-of-
freedom (nine-DOF) model that considered vibration coupling between the gearbox and
the shaft, Omar [6] focused on the effects of frequency, backlash, transmission error, and
stiffness on nonlinear dynamic characteristics. Liu [7] analyzed the influence of gear corner
contact caused by the pitch deviation in gear system dynamics. Zhang [8] introduced the
influence of geometric eccentricity and shaft-bending deformation. Although many factors
have been taken into account in these works, few studies have considered the nonuniformly
distributed meshing force in the dynamic modeling of gear systems.

For the convenience of analysis, the meshing force is usually treated as uniformly
distributed. In practical applications, however, it is nonuniformly distributed along the
line of action due to machining errors, assembly errors, misalignment errors, etc. When the
nonuniformly distributed meshing force is coupled with shaft deformation, the dynamic
center distance, and the time-varying meshing stiffness, the transmission performance of the
gear system will be seriously degraded. Therefore, the nonuniformly distributed meshing
force cannot be ignored for the gear systems used in complicated working conditions,
such as wind power gear systems. He [9] analyzed the effect of misalignment error on the
time-varying meshing stiffness and the transmission error and found that only the errors
on the plane of action significantly influence the meshing characteristics. Yang [10] studied
the influence of misalignment error on the contact pattern of the gear pair and illustrated
the possible harm of the nonuniformly distributed meshing force through the analysis of
the contact area. Besides, Shi [11] calculated the bending moment and meshing parameter
of an enhanced hypoid geared rotor system under misalignment. Zhou [12] analyzed the
influence of planetary gear position variation and bearing stiffness nonlinearity on the
misalignment model of planetary gears. Furthermore, Zhang [13] calculated meshing force
variation based on a comprehensive gear model considering various dynamic factors and
analyzed system vibration under different loads and transmission errors. Nevertheless,
most of them only focused on meshing force distribution and gear wear and ignored the
coupling effect of the nonuniformly distributed meshing force, the shaft deformation, the
dynamic center distance, and the time-varying meshing stiffness. Besides, little attention
has been paid to the vibration and stability analysis of a gear system subjected to the
nonuniformly distributed meshing force.

In order to decrease gear vibration and obtain better transmission performance, many
researchers have studied the nonlinear dynamic characteristics of the gear system [14,15].
Lin [16] and Xu [17] analyzed the influence of several parameters on dynamic transmission
errors and provided error excitation data to control gear vibration and noise. Brancati [18]
studied the nonlinear frequency-response characteristics of the spur gear system and
analyzed the nonlinear vibration characteristics under multiharmonic excitation. Zhang [19]
investigated the influences of gear wear and bearing clearance on the dynamic responses
of a gear system, and obtained a trend of factors such as translation displacement, meshing
stiffness, and bearing clearance under gradual wear. In addition, Wang [20] analyzed the
nonlinear dynamic characteristics of a gear system from the perspective of system stability
through bifurcation diagrams, phase diagrams, Poincaré maps, and time-domain diagrams.
Xiang et al. [21,22] revealed the bifurcation and chaos of a multistage gear system. Gu [23]
and Geng [24] analyzed the effect of tooth surface wear on the steady-state response of
the gear system. Yang [25] studied the pressure angle and backlash changes caused by
bearing deformation in order to determine whether the gear system falls into a chaotic and
unstable state. Huang [26] studied the influence of excitation frequency, backlash, meshing
damping ratio, and other factors on the nonlinear dynamic characteristics of a system with
the aid of the stability criterion. Nonetheless, most of them ignored the nonuniformly
distributed meshing force and its coupling with shaft deformation, dynamic center distance,
and time-varying meshing stiffness. Therefore, it is difficult for them to provide effective
guidance for designing the gear systems used in complicated working environments.
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In this paper, the dynamic modeling and nonlinear analysis of a spur gear system,
considering a nonuniformly distributed meshing force, are researched. This paper consists
of four sections. Following the introduction, a nonuniformly distributed meshing force
model is developed in Section 2 via an 18-degrees-of-freedom bending-torsion-swing-
coupled dynamic model of a pair of involute spur gears. Section 3 analyzes the influence
of meshing frequency, stiffness excitation, damping, and error excitation on the nonlinear
dynamic characteristics of the gear system. Reasonable parameter ranges that guarantee
the gear system is in a stable motion are extracted. In the last section, the conclusion
is summarized.

2. Nonlinear Dynamic Modeling of Spur Gear Systems

An 18-DOF nonlinear dynamic model of a pair of involute spur gears was developed,
considering the coupling of the nonuniformly distributed meshing force, the shaft bending
deformation, the dynamic center distance, and the time-varying meshing stiffness. Due to
the strong coupling of these factors, the gear system exhibits various complicated nonlinear
dynamic characteristics.

2.1. Nonuniformly Distributed Meshing Force

The meshing force is usually treated as an ideal uniform load to facilitate an analysis
of the gear system. In practical applications, however, the external load of the gear system
is more or less unbalanced due to machining errors, assembly errors, misalignment errors,
etc., especially for the wind turbine gear system used in complicated working conditions,
which will induce the swing effect to the gears and cause complicated nonlinear dynamic
responses. In this subsection, the swing effect caused by the deflection torque around the X
and Y axes is taken into consideration, which can better reflect the actual dynamic behavior
of a gear system.

As shown in Figure 1, plane P1P2-Q1Q2 denotes the driving and driven gear’s plane
of action. According to gear meshing theory, the meshing force between the gears is in
the plane of action and acts on the straight line (P1P2) along the face width. However,
due to misalignment errors and the elastic deformation of low-rigidity components, the
actual meshing force is no longer uniformly distributed along the face width, as shown
in Figure 2.
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According to the derivation of misalignment errors, the load of the unit face width can
be approximately expressed, as it is in [9].

F(z) = Fmax

[
1−

( z
B′
)3
]

(1)

where Fmax denotes the maximum load, and B′ is the length of the actual contact line.
Then, the meshing force F can be defined as follows [9]:

F =
∫ B′

0
F(z)dz =

3
4

B′Fmax (2)

The maximum load can be expressed as [9]:

Fmax = Cγem
B′

B
(3)

where Cγ denotes the spring constant, and em is the error on the plane of action.
Then the length of the contact line can be deduced according to Equations (1)–(3), i.e.,

B′ =

√
4FB

3Cγem
(4)

As shown in Figure 3, the meshing force can be equivalent to the resultant force F
and the deflection distance d. Thus, the deflection torque T perpendicular to the plane
P1P2-Q1Q2 is obtained as:

T = Fd (5)

where the meshing force F is derived from the Hertz contact theory: d = B
2 −

∫ B′
0 zF(z)dz∫ B′
0 F(z)dz

.
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Based on the above analysis, a single-stage involute spur gear system, considering the
elastic deformation of the supporting bearings and driveshafts, was researched, as shown
in Figure 4. Due to the existence of the deflection moment, T, the bearing deformations are
different. Therefore, it is necessary to consider two translational DOF along the X-axis and
Y-axis for each supporting bearing. Meanwhile, the translational DOF along the X-axis
and Y-axis and three rotational DOF around the centroid coordinate system are considered
for each gear. Therefore, an 18-DOF bending-torsion-swing-coupled dynamic model is
proposed in this study to depict the actual dynamic behavior of the gear system subjected
to a nonuniformly distributed meshing force.

The inertial coordinate systems of the gears and the supporting bearings are OiXiYiZi
(i= 1, 2) and BiXbiYbiZbi (i= 1, 2, 3, 4), respectively. The global coordinate system OXYZ
coincides with O1X1Y1Z1. The origin of each coordinate system is at the centroid of the
gears. Besides, the axis X1 coincides with the axis X2; the axis Zbi (i= 1, 2) coincides with
the axis Z1; the axis Zbi (i= 3, 4) coincides with the axis Z2. Meanwhile, xi, yi (i = 1, 2)
denotes the displacements of the driving and driven gears with respect to the origin of their
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own coordinate system, respectively. xbi, ybi (i = 1, 2, 3, 4) represent the displacements of
the centroid of the supporting bearings.
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Figure 4. Dynamic model of a gear system, considering the nonuniformly distributed force and
elastic deformation.

2.2. Bending Deformation of Driveshafts

The bending deformation of the driveshaft plays an important role when subjected to
a large load. In view of the swing effect caused by the nonuniformly distributed meshing
force, two translational DOF are taken into account for each bearing to establish a relatively
accurate dynamic model.

The schematic diagram of the driving gear’s shaft that is projected on the plane O1YZ
is shown in Figure 5. When the gear system is in a static state, lbi(i = 1, 2, 3, 4) denotes the
distance from the centroid of the driving or driven gear to the centroid of the corresponding
supporting bearing, and Lj(j = 1, 2) denotes the length of the driving shaft or the driven
shaft. Besides, along the Y-axis, the displacement of the gear centroid is y1, and the ideal
displacement is yc1 when the drive shaft is regarded as a rigid body.
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When the shaft is regarded as a rigid body, the gear centroid is at point A. However,
the bending deformation of the driveshaft will cause the gear centroid to move to point B.
Thus, one obtains the following:

yc1 = yb1 + (yb2 − yb1)lb1/L (6)

∆1y = y1 − yc1 = y1 − yb2lb1/L− yb1(L− lb1)/L (7)

where ∆1y is the elastic deformation of the driving gear shaft along the Y-axis.
The elastic deformation of the driveshaft along the X-axis can be obtained in the same

way. Thus, the elastic deformation of the driving and driven shafts at the gear centroid can
be obtained as 

∆1x = x1 − δ1xb2 − δ2xb1
∆1y = y1 − δ1yb2 − δ2yb1
∆2x = x2 − δ3xb4 − δ4xb3
∆2y = y2 − δ3yb4 − δ4yb3

(8)

where δi = lbi/Lj (when i = 1, 2, j = 1; when i = 3, 4, j = 2).



Appl. Sci. 2022, 12, 12270 6 of 24

2.3. Dynamic Center Distance

When subjected to a large load, the elastic deformation of the driveshafts and support-
ing bearings can cause time-varying center distances and result in the difference between
the actual and theoretical line of action (LOA). As a result, the direction of the meshing
force between the gears is no longer along the theoretical LOA.

As shown in Figure 6, the dashed line indicates the initial positions of the driving
gear and the driven gear, while the solid line indicates their positions at an arbitrary time.
The straight line PQ represents the actual dynamic LOA at an arbitrary time. L and L0
denote the actual dynamic center distance and the theoretical center distance, respectively.
Meanwhile, α indicates the dynamic pressure angle in the working process, and β indicates
the angle between the dynamic LOA and the X-axis.
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
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Figure 6. Schematic diagram of dynamic LOA.

Let the position vectors of the two gears’ centroids be R1 and R2; then, the center
distance L of the gear pair at an arbitrary given time is

L = |R2 −R1| =
√
(L0 + ∆x)2 + ∆y2 (9)

where R1 = x1i + y1j, R2 = (x2 + L0)i + y2j, ∆x = x2 − x1, ∆y = y2 − y1. i and j are unit
vectors for the X and Y axes, respectively.

The pressure angle of the driving and driven gears can be obtained as

α = arccos
(

rb1 + rb2
L

)
(10)

where rb1 and rb2 are the base radii of the driving gear and the driven gear, respectively.
According to the geometric relationship of the global coordinate system, the angle

between the two gears’ center line and the X-axis at an arbitrary time is

β = arctan
(

∆y
L + ∆x

)
(11)

Therefore, taking into account the influence of elastic deformation and gear transmis-
sion errors on the gear center distance, the meshing deformation between two gears is
obtained as

λ = (x1 − x2) sin(α− β)− (y1 − y2) cos(α− β) + rb1θz1 − r2θz2 − e(t) (12)

where e(t) is the gear transmission error, which causes the actual gear meshing position to
deviate from the theoretical position and thus influences the meshing accuracy of the gear
system.

Generally, the simple harmonic function is used to represent the gear transmission
error [1], i.e.,

e(t) = e0 + e1 sin(ωt + ϕ) (13)
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where e0 and e1 denote the constant value and amplitude of the transmission error, respec-
tively; ω is the meshing frequency of the gear pair; ϕ is the initial phase angle, generally
taking the value of 0.

Actually, the swing of the gear mainly influences the position and the deformation of
the driveshaft, and its influence on the meshing force is weak. The dynamic meshing force
between the gears can be described by the Hertz contact model, as shown in Figure 7. In
Figure 7, k(t) is the time-varying stiffness introduced in Section 2.4, and c(t) is the meshing
damping, i.e.,

c(t)= 2ξ

√
I1 I2

rb2
2 I1 + rb1

2 I2
k(t) (14)

where ξ is the mesh damping ratio of the gear and generally takes a value between 0.03–0.17;
I1 and I2 are the moments of inertia, and rb1 and rb2 are the base circle radii of the driving
and driven gear, respectively.
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Besides, the backlash function f (λ) is defined as a piecewise function [6], i.e.,

f (λ) =


λ− b λ > b
0 − b ≤ λ ≤ b
λ + b λ < −b

(15)

Therefore, the dynamic meshing force is finally expressed as

F = k(t) f (λ) + c(t)
.
f (λ) (16)

2.4. Time-Varying Meshing Stiffness

In order to realize the continuous transmission of power and motion, the contact ratio
of a spur gear pair is between 1 and 2. Therefore, when the number of meshing teeth pairs
alternates during the meshing process, the meshing stiffness will periodically change.

The parabolic method is used to solve the time-varying meshing stiffness of the gear
pair. When a single pair of gear teeth are engaged in the meshing process, the meshing
stiffness of the pitch point can be expressed as

Kc = 0.8× 103b/q (17)

q = 0.04732 + 0.15551/Zv1 + 0.25791/Zv2 (18)

where b is the face width of the gear, Zv1 and Zv2 are the equivalent tooth numbers of the
driving and driven gears.

The meshing stiffness can be expressed as a parabolic function with respect to X. When
X ∈ [ε− 1, 1] (ε is the contact ratio of the gear pair), a single pair of teeth are engaged. The
gear meshing stiffness can be described as

K1(X) = AX2 + BX + C (19)

When X ∈ [0, ε− 1], a double pair of teeth are engaged. The meshing stiffness is

K2(X) = 2AX2 + 2(A + B)X + (A + B + 2C) (20)
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where A = −2K0/ε2, B = 2K0/ε, C = K0; K0 represents the stiffness of the meshing-in
point and the meshing-out point, and generally KC = 1.5K0.

Within a range of engagement, let the average meshing stiffness be K, i.e.,

K = Aε3/3 + Bε2/2 + Cε (21)

From Equations (17)–(21), one obtains

K = 8εKc/9 (22)

The gear parameters used in this study are listed in Table 1. The time-varying meshing
stiffness of the gear system can be calculated according to Equations (19) and (20), as shown
in Figure 8.

Table 1. Parameters of the gear system.

Parameter Driving Gear Driven Gear

Teeth number z 30 36
Mass (g) 600 850

Inertia torque (kg·mm2) 600 1200
Modulus (mm) 3

Pressure angle (◦) 20
Face width (mm) 12

Average meshing stiffness k0 (N/mm) 2.39 × 105

Tooth side clearance 2b (mm) 0.1
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In this study, the time-varying meshing stiffness is expanded into the Fourier series in
order to facilitate further analysis and calculation. The formula of Fourier transformation is

k(t) = k0 +
i

∑
i=1

ki sin(aωt + ϕi) (23)

where k0 is the average mesh stiffness, ki is the amplitude of the i-th harmonic term, and
ϕi is the initial phase angle of the i-th harmonic component. i is the order of the harmonic
term expanded by the Fourier series, and i = 8 in this study.

2.5. Derivation of the Dynamic Model

In order to better describe the deformation of gears, driveshafts, and bearings un-
der a nonuniformly distributed meshing force, five DOF are introduced for each gear
and two translational DOF are introduced for each bearing. Therefore, this section pro-
poses an 18-DOF bending-torsion-swing-coupled nonlinear dynamic model based on
Lagrange’s equation. Let the generalized coordinates of the driving and driven gears be
z1 =

[
x1, y1, xb1, yb1, xb2, yb2, θx1, θy1, θz1

]T and z2 =
[
x2, y2, xb3, yb3, xb4, yb4, θx2, θy2, θz2

]T .
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The kinetic energy of the gear system mainly consists of the translational and rotational
kinetic energy of the gears and the rotational kinetic energy of the supporting bearings.
Therefore, the kinetic energy function T1 of the driving gear and the kinetic energy function
T2 of the driven gear can be expressed as

T1 =
1
2

m1(
.
x1

2 +
.
y1

2) +
1
2

Ix1
.
θx1

2 +
1
2

Iy1
.
θy1

2 +
1
2

Iz1
.
θz1

2 +
1
2

mb1(
.
xb1

2 +
.
yb1

2) +
1
2

mb2(
.
xb2

2 +
.
yb2

2) (24a)

T2 =
1
2

m2(
.
x2

2 +
.
y2

2) +
1
2

Ix2
.
θx2

2 +
1
2

Iy2
.
θy2

2 +
1
2

Iz2
.
θz2

2 +
1
2

mb3(
.
xb3

2 +
.
yb3

2) +
1
2

mb4(
.
xb4

2 +
.
yb4

2) (24b)

where mi(i = 1, 2) is the mass of the driving gear and the driven gear; mbj(j = 1, 2, 3, 4)
is the equivalent mass of the rotating body of the supporting bearings; Ixi, Iyi, Izi(i = 1, 2)
denotes the rotational inertia of the gears.

In this study, the spring-damping model is used to calculate the potential energy
and dissipation energy of the elastic components. The potential energy function and
the dissipation energy function of the driving and driven gear are U1, U2, V1 and V2,
respectively, i.e.,

U1 =
1
2

kb1∆1x2 +
1
2

kb1∆1y2 +
1
2

kbxy(xb1
2 + yb1

2 + xb2
2 + yb2

2) (25a)

U2 =
1
2

kb1∆2x2 +
1
2

kb1∆2y2 +
1
2

kbxy(xb3
2 + xb4

2 + yb3
2 + xb4

2) (25b)

V1 =
1
2

cb1∆1
.
x2

+
1
2

cb1∆1
.
y2

+
1
2

cbxy(
.
xb1

2 +
.
xb2

2 +
.
yb1

2 +
.
yb2

2) (25c)

V2 =
1
2

cb1∆2
.
x2

+
1
2

cb1∆2
.
y2

+
1
2

cbxy(
.
xb3

2 +
.
xb4

2 +
.
yb3

2 +
.
yb4

2) (25d)

where kb1 and cb1 are the equivalent bending stiffness and damping of the two driveshafts.
kbxy and cbxy are the stiffness and damping of the four supporting bearings.

Let the input and output torques of the gear system be Ts and Tc, respectively, and
the base radii of the driving and driven gear be rb1 and rb2. According to Section 2.3, the
generalized forces acting on the driving and driven gears can be expressed by the column
vectors Q1 and Q2 as

Q1 =



−F sin ϕ
−F cos ϕ
0
0
0
0
−Fd cos ϕ
−Fd sin ϕ
Ts − Frb1


, Q2 =



F sin ϕ
F cos ϕ
0
0
0
0
Fd cos ϕ
Fd sin ϕ
Frb2 − Tc


(26)

Substitute Equations (24)–(26) into Lagrange’s equation, which is

d
dt

(
∂T
∂

.
zi

)
− ∂T

∂zi
+

∂U
∂zi

+
∂V
∂

.
zi

= Qi (27)

The dynamic equation of the gear system is obtained as follows:
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

m1
..
x1 + kb1(x1 − δ1xb2 − δ2xb1) + cb1(

.
x1 − δ1

.
xb2 − δ2

.
xb1) = −F sin ϕ

m1
.
y1 + kb1(y1 − δ1yb2 − δ2yb1) + cb1(

.
y1 − δ1

.
yb2 − δ2

.
yb1) = −F cos ϕ

mb1
..
xb1 − kb1δ2(x1 − δ1xb2 − δ2xb1) + kbxyxb1 + cbxy

.
xb1 − cb1δ2(

.
x1 − δ1

.
xb2 − δ2

.
xb1) = 0

mb1
..
yb1 − kb1δ2(y1 − δ1yb2 − δ2yb1) + kbxyyb1 + cbxy

.
yb1 − cb1δ2(

.
y1 − δ1

.
yb2 − δ2

.
yb1) = 0

mb2
..
xb2 − kb1δ1(x1 − δ1xb2 − δ2xb1) + kbxyxb2 + cbxy

.
xb2 − cb1δ1(

.
x1 − δ1

.
xb2 − δ2

.
xb1) = 0

mb2
..
yb2 − kb1δ1(y1 − δ1yb2 − δ2yb1) + kbxyyb2 + cbxy

.
yb2 − cb1δ1(

.
y1 − δ1

.
yb2 − δ2

.
yb1) = 0

Ix1
..
θx1 = −Fd cos ϕ

Iy1
..
θy1 = −Fd sin ϕ

Iz1
..
θz1 = Ts − Frb1

m2
..
x2 + kb1(x2 − δ3xb4 − δ4xb3) + cb1(

.
x2 − δ3

.
xb4 − δ4

.
xb3) = F sin ϕ

m2
..
y2 + kb1(y2 − δ3yb4 − δ4yb3) + cb1(

.
y2 − δ3

.
yb4 − δ4

.
yb3) = F cos ϕ

mb3
..
xb3 − kb1δ4(x2 − δ3xb4 − δ4xb3) + kbxyxb3 + cbxy

.
xb3 − cb1δ4(

.
x2 − δ3

.
xb4 − δ4

.
xb3) = 0

mb3
..
yb3 − kb1δ4(y2 − δ3yb4 − δ4yb3) + kbxyyb3 + cbxy

.
yb3 − cb1δ4(

.
y2 − δ3

.
yb4 − δ4

.
yb3) = 0

mb4
..
xb4 − kb1δ3(x2 − δ3xb4 − δ4xb3) + kbxyxb4 + cbxy

.
xb4 − cb1δ3(

.
x2 − δ3

.
xb4 − δ4

.
xb3) = 0

mb4
..
yb4 − kb1δ3(y2 − δ3yb4 − δ4yb3) + kbxyyb4 + cbxy

.
yb4 − cb1δ3(

.
y2 − δ3

.
yb4 − δ4

.
yb3) = 0

Ix2
..
θx2 = Fd cos ϕ

Iy2
..
θy2 = Fd sin ϕ

Iz2
..
θz2 = Frb2 − Tc

(28)

In order to simplify the 9th and the 18th expression in Equation (28), a new variable,
x = rb1θz1 − rb2θz2 − e(t), is introduced to represent the relative displacement of the gears
along the LOA, caused by torsional vibration and gear error. Then, let m3 = Iz1/rb1

2,
m4 = Iz2/rb2

2, F1 = Ts/rb1, F2 = Tc/rb2, and m = m3m4/(m3 + m4). The simplified
equations can be obtained as, i.e.,

λ = (x1 − x2) sin ϕ− (y1 − y2) cos ϕ + x (29)

m
..
x + k(t) f (λ) + c

.
λ =

F1m
m3

+
F2m
m4
−m

..
e(t) = F(t) (30)

where F(t) denotes the sum of the equivalent external error excitation and equivalent
internal error excitation. Let Fm = F1m

m3
+ F2m

m4
, and Fh(t) = −m

..
e(t). Fm denotes the

equivalent external excitation, and Fh(t) denotes equivalent internal error excitation.
Meanwhile, in order to facilitate nonlinear analysis, the above dynamic equations of

the gear system should be nondimensionalized. For this reason, let

ωn =
√

k0/m (31)

where ωn denotes the natural frequency of the gear system.
Then, let τ = ωnt, bc denote the nominal scale of displacement; X = x/bc,

Xi = xi/bc(i = 1, 2), Yi = yi/bc(i = 1, 2), Xbi = xbi/bc(i = 1, 2, 3, 4), Ybi = ybi/bc
(i = 1, 2, 3, 4), one obtains

.
x =

dx
dt

=
d(Xbc)

dτ

dτ

dt
= bcωn

.
X (32)

..
x =

d2x
dt2 =

d
(

bcωn
.

X
)

dτ

dτ

dt
= bcωn

2
..
X (33)

ň = (X1 − X2) sin ϕ− (Y1 −Y2) cos ϕ + X (34)

Substituting Equations (32) and (33) into Equation (30), one obtains

..
X +

c
mωn

.
ň +

k(t)
mωn2 f (ň) =

F(t)
mbcωn2 (35)
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Let ξ = c/mωn, K(t) = k(t)/mωn
2, ωh = ωm/ωn, B = b/bc, FH(t) = Fh(t)/bc, and

FM = Fm/
(
mbcωn

2). Then substitute them into Equation (35) to obtain

..
X + K(τ) f (ň) + ξ

.
ň = FM + FH(τ) (36)

Let Mi = m/mi(i = 1, 2), Kb = kb/k0, Cb = cb/c, Kbxy = kbxy/k0, Cbxy = cbxy/c,
K1 = k1/k0, Fe = e1/bc, Mbi = m/mbi(i = 1, 2, 3, 4), and Λ = dbc/r2

1. Finally, the simplified
dimensionless dynamic equations of the gear system are obtained as:

..
X + K(τ) f (ň) + ξ

.
ň = FM + FH(τ)..

X1 + M1Kb(X1 − 0.5Xb2 − 0.5Xb1) + M1Cbξ(
.

X1 − 0.5
.

Xb2 − 0.5
.

Xb1) + M1K(τ) f (ň) sin ϕ + M1ξ
.
ň sin ϕ = 0

..
Y1 + M1Kb(Y1 − 0.5Yb2 − 0.5Yb1) + M1Cbξ(

.
Y1 − 0.5

.
Yb2 − 0.5

.
Yb1) + M1K(τ) f (ň) cos ϕ + M1ξ

.
ň cos ϕ = 0

..
Xb1 − 0.5Kb Mb1(X1 − 0.5Xb2 − 0.5Xb1) + Kbxy Mb1Xb1 − 0.5Cb Mb1ξ(

.
X1 − 0.5

.
Xb2 − 0.5

.
Xb1) + Cbxy Mb1ξ

.
Xb1 = 0

..
Yb1 − 0.5Kb Mb1(Y1 − 0.5Yb2 − 0.5Yb1)− 0.5Cb Mb1ξ(

.
Y1 − 0.5

.
Yb2 − 0.5

.
Yb1) + Kbxy Mb1Yb1 + Cbxy Mb1ξ

.
Yb1 = 0

..
Xb2 − 0.5Kb Mb2(X1 − 0.5Xb2 − 0.5Xb1) + Kbxy Mb2Xb2 − 0.5Cb Mb2ξ(

.
X1 − 0.5

.
Xb2 − 0.5

.
Xb1) + Cbxy Mb2ξ

.
Xb2 = 0

..
Yb2 − 0.5Kb Mb2(Y1 − 0.5Yb2 − 0.5Yb1)− 0.5Cb Mb2ξ(

.
Y1 − 0.5

.
Yb2 − 0.5

.
Yb1) + Kbxy Mb2Yb2 + Cbxy Mb2ξ

.
Yb2 = 0

..
θx1 + 4M1K(τ)ňΛ cos ϕ + 4M1ξ

.
ňΛ cos ϕ = 0

..
θy1 + 4M1K(τ)ňΛ sin ϕ + 4M1ξ

.
ňΛ sin ϕ = 0

..
X2 + M2Kb(X2 − 0.5Xb4 − 0.5Xb3) + M2Cbξ(

.
X2 − 0.5

.
Xb4 − 0.5

.
Xb3)−M2K(τ) f (ň) sin ϕ−M2ξ

.
ň sin ϕ = 0

..
Y2 + M2Kb(Y2 − 0.5Yb4 − 0.5Yb3) + M2Cbξ(

.
Y2 − 0.5

.
Yb4 − 0.5

.
Yb3)−M2K(τ) f (ň) cos ϕ−M2ξ

.
ň cos ϕ = 0

..
Xb3 − 0.5Kb Mb3(X2 − 0.5Xb4 − 0.5Xb3) + Kbxy Mb3Xb3 − 0.5Cb Mb3ξ(

.
X2 − 0.5

.
Xb4 − 0.5

.
Xb3) + Cbxy Mb3ξ

.
Xb3 = 0

..
Yb3 − 0.5Kb Mb3(Y2 − 0.5Yb4 − 0.5Yb3)− 0.5Cb Mb3ξ(

.
Y2 − 0.5

.
Yb4 − 0.5

.
Yb3) + Kbxy Mb3Yb3 + Cbxy Mb3ξ

.
Yb3 = 0

..
Xb4 − 0.5Kb Mb4(X2 − 0.5Xb4 − 0.5Xb3) + Kbxy Mb4Xb4 − 0.5Cb Mb4ξ(

.
X2 − 0.5

.
Xb4 − 0.5

.
Xb3) + Cbxy Mb4ξ

.
Xb4 = 0

..
Yb4 − 0.5Kb Mb4(Y2 − 0.5Yb4 − 0.5Yb3)− 0.5Cb Mb4ξ(

.
Y2 − 0.5

.
Yb4 − 0.5

.
Yb3) + Kbxy Mb4Yb4 + Cbxy Mb4ξ

.
Yb4 = 0

..
θx2 − 4M2K(τ)ňΛ cos ϕ− 4M2ξ

.
ňΛ cos ϕ = 0

..
θy2 − 4M2K(τ)ňΛ sin ϕ− 4M2ξ

.
ňΛ sin ϕ = 0

(37)

The 18-DOF bending-torsion-swing coupled nonlinear dynamic model proposed in
this study can provide a relatively accurate description of the swing effect caused by the
nonuniformly distributed meshing force, as well as the influence of the dynamic center
distance caused by the deformation of the driveshafts and the supporting bearings on the
meshing force.

3. Study of the Nonlinear Dynamic Characteristics of Gear System

Based on the above dynamic model considering the nonuniformly distributed meshing
force, the influence of several essential parameters, i.e., meshing frequency, stiffness excita-
tion, damping, and error excitation, on the nonlinear dynamic characteristics of the gear
system was investigated from the perspective of system stability through global bifurcation
diagrams, phase diagrams, Poincaré maps, and time-domain diagrams. For convenience, in
the following figures, x1 indicates the dimensionless vibration displacement along the LOA,
x2 indicates the dimensionless vibration velocity, and t indicates the dimensionless time.

3.1. Influence of Meshing Frequency

As one of the key parameters in the research of gear vibration, the meshing fre-
quency is commonly used to investigate the nonlinear dynamic characteristics of a gear
system. The meshing frequency, ω, mentioned here means the ratio of the meshing fre-
quency to the natural frequency. Let the load torque Tc = 8.1 Nm, the supporting stiffness
kbxy = 4× 106 N/mm, the gear transmission error e0 = 0.03 mm, and the meshing damping
coefficient ξ = 0.12. When the meshing frequency ω takes different values, the system’s
bifurcation diagram, phase diagrams, Poincaré maps, and time-domain diagrams can
be obtained.

As shown in Figure 9, with an increase in meshing frequency, the system exhibits an
adding periodic bifurcation phenomenon accompanied by continuously increasing chaotic
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band intervals. When ω < 0.5, the system is in a chaotic state. When ω is approaching
0.5, the system abruptly enters the periodic motion from the chaotic motion. As shown
in Figure 10, the phase diagram is a single closed curve, and the Poincaré map is a point,
which proves that the system is in a stable single-period motion. When ω = 0.85, the
system enters a period-doubling motion through period-doubling bifurcation and then
rapidly develops into a chaotic motion. When ω = 1.69, it can be seen in Figure 11 that the
phase trajectory diagram is irregular, and the Poincaré map is characterized by discrete
dots, which means the system is in a chaotic state. As shown in Figure 12, when ω = 1.93,
the phase diagram shows a closed curve band with a certain thickness, and the mapping
points of the Poincaré map are gathered into three places, revealing that the system is in a
quasiperiodic motion state. As shown in Figure 13, when ω = 2.66, the Poincaré diagram
has 4 isolated points, indicating that the system is in a quadruple-periodic motion. All
these characteristics reveal the complexity of gear system motion under the nonuniformly
distributed meshing force.
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Figure 10. ω = 0.6; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 25 
 

 

Figure 10. ω = 0.6; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram. 

 

Figure 11. ω = 1.69; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram. 

 

Figure 12. ω = 1.93; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram. 

 

Figure 13. ω = 2.66; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram.  

 

Figure 14. Bifurcation diagram with respect to ω (Tc = 27 Nm). 

Dimensionless meshing frequency ω 

D
is

p
la

c
e
m

e
n

t 
a
lo

n
g
 L

O
A

 λ
 (

m
m

) 

Figure 11. ω = 1.69; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram.
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Figure 12. ω = 1.93; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram.
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Figure 13. ω = 2.66; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram.

Furthermore, when the meshing displacement jumps, the meshing frequency is usu-
ally n/2 times the system’s natural frequency, indicating the occurrence of a resonance
phenomenon. In order to verify this inference, when the load torque Fm = 27 Nm, the
system’s bifurcation diagram is obtained. As shown in Figure 14, when the system’s
meshing frequency is almost n/2 times the system’s natural frequency, the resonance
phenomenon arises.
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Figure 14. Bifurcation diagram with respect to ω (Tc = 27 Nm).

In conclusion, when the system is subjected to a light load, the system motion exhibits
adding periodic bifurcation accompanied by chaotic band intervals. By way of choosing
the appropriate rotational speed, the system can fall into a stable periodic motion, thereby
improving system stability. When the system is subjected to a large load, the resonance
phenomenon is especially pronounced. The maximum vibration displacement may reach
dozens of millimeters and thus damage the gear system. Therefore, for the gear systems
subjected to a large load, the resonance phenomenon must be evaded.

3.2. Influence of Stiffness Excitation
3.2.1. Analysis of Time-Varying Meshing Stiffness

As an important internal excitation of the gear system, the time-varying meshing
stiffness has a vital influence on the dynamic characteristics. The time-varying stiffness
mentioned here means the dimensionless meshing stiffness, K1, which indicates the ratio of
the amplitude of the gear meshing stiffness to the mean value of the gear meshing stiffness.
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Let the load torque Tc = 5.4 Nm, the rotational speed be 1500 rpm, the gear transmission
error e0 = 0.03 mm, the damping coefficient ξ = 0.12, and the supporting stiffness kbxy be
1.5 times the average meshing stiffness. As shown in Figures 15–20, the system’s bifurcation
diagram, phase diagrams, Poincaré maps, and time-domain diagrams are obtained when
the meshing stiffness takes different values.
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As shown in Figure 15, the bifurcation diagram of the displacement along the LOA
is obtained with an increase in K1. When K1 is in (0, 0.131), the system is in a stable
periodic motion state. When K1 falls into (0.16, 0.3), the quasiperiod-doubling motion
gradually turns into a stable period-doubling motion. Subsequently, the stable period-
doubling motion maintains until K1 approaches 0.3. When K1 falls into (0.3, 0.337), the
period-doubling motion becomes a period-quadrupling motion through period-doubling
bifurcation. Afterward, the period-quadrupling motion becomes a period-octupling motion
through period-doubling bifurcation and finally evolves into a chaotic motion. When K1
is in (0.34, 0.45), the system motion is chaotic. On the whole, with an increase in meshing
stiffness, the system gradually enters a chaotic state from a single stable period through
multiple period-doubling bifurcations, and the system gradually changes from a stable
state to an unstable state.

The representative meshing stiffness was selected for the analysis of the dynamic
characteristics. When K1 = 0, as shown in Figure 16, the phase trajectory is in a single closed
curve, and the Poincaré map has only one isolated dot, which means the system is in a
periodic motion. When K1 = 0.16, as shown in Figure 17, the Poincaré map exhibits several
dots gathering into two places, which means the system falls into a quasiperiod-doubling
motion. Similarly, as shown in Figures 18 and 19, when K1 = 0.25 and K1 = 0.33, the system
is in a period-doubling motion state and a period-quadrupling motion state, respectively.
When K1 = 0.45, it can be seen in Figure 20 that the Poincaré map is characterized by discrete
dots, which means the system is in a chaotic state.

In conclusion, with an increase in meshing stiffness, the system’s dynamic response
gradually evolves from a stable periodic motion to a chaotic motion, thereby deteriorating
transmission performance. Decreasing the amplitude of the meshing stiffness tends to
obtain a stable periodic motion and good stability. As a result, with the help of a reason-
able contact ratio of the gears, both the bifurcation points and the chaotic motion can be
effectively evaded, thereby improving system stability.

3.2.2. Analysis of Supporting Stiffness

The elastic deformation of the supporting bearing affects the meshing force, which, in
turn, affects system stability. In this subsection, the influence of the supporting stiffness on
the dynamic response is analyzed. Let the load torque Tc = 5.4 Nm, the rotational speed be
1500 rpm, the gear transmission error e0 = 0.1 mm, and the damping coefficient ξ = 0.1. The
bifurcation diagrams of the system, with respect to the supporting stiffness Kbxy, are shown
in Figure 21.
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As shown in Figure 21, with an increase in Kbxy, the system motion gradually evolves
from an unstable motion to a stable motion, and the maximum value of displacement
along the LOA exhibits a downward trend. Compared with Figure 15, the influence
of the dimensionless supporting stiffness on the displacement along the LOA is more
complicated, characterized by the adding periodic bifurcation and the chaotic band. For
example, when the dimensionless supporting stiffness increases from 10.07 to 13.44, the
system motion turns from a quasiperiod-tripling motion into a three-band chaotic motion
and then becomes a stable period-tripling motion. As shown in Figures 22b and 23b, it can
be seen from the mapping aggregation state of the points that when Kbxy is 3.3 and 10.3,
respectively, the motion state of the system is in the quasiperiod-doubling motion and the
quasi period-tripling motion. Similarly, as shown in Figures 24 and 25, when Kbxy = 11, the
mapping points in the Poincaré map are irregular, indicating that the system is in a chaotic
motion state, while the system falls into a stable period-tripling motion because of the three
isolated points shown in the Poincaré map when Kbxy = 14. Although system stability is
complicated, the amplitude of the system along the LOA decreases significantly with an
increase in supporting stiffness, as shown in Figures 22c, 23c, 24c and 25c.
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In order to further explore the effect of bearing supporting stiffness, the bifurcation
diagrams of the displacement of the supporting bearings in the X-axis and Y-axis were
obtained, as shown in Figure 26. It can be seen that the displacement of the supporting
bearings, whether in the X-axis or the Y-axis, decreases with increasing supporting stiffness.
When the supporting stiffness is large enough, the displacement of the supporting bearings
is close to zero. If ignoring friction, the X-axis force subjected to the gear mainly comes
from the dynamic center distance. Therefore, the displacement of the supporting bearings
in the X-axis is very small, as shown in Figure 26a.
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Figure 26. Bifurcation diagram of supporting bearing’s displacement; (a) along the X-axis; (b) along
the Y-axis.

In conclusion, a dimensionless supporting stiffness plays an important role in the
dynamic responses of the gear system. Generally, a large supporting stiffness will improve
system stability and decrease vibration response.

3.3. Influence of Damping

Selecting an appropriate damping ratio helps to improve system stability and reduce
vibration amplitude. Therefore, this section analyses the influence of meshing damping
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and supporting damping on the stability of the gear system considering a nonuniformly
distributed meshing force.

3.3.1. Analysis of Meshing Damping

Let the load torque Tc = 40 Nm, and the supporting stiffness be 4 × 106 N/mm.
Figure 27 shows the bifurcation diagram of the system with respect to the meshing damping
ratio, ξ, in the range of ξ ∈ [0, 0.2].
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Figure 27. Bifurcation diagram with respect to ξ.

As shown in Figure 27, with an increase in meshing damping, the vibration displace-
ment of the system significantly decreases, and the motion state of the system gradually
evolves from an unstable motion to a stable periodic motion. When ξ < 0.015, the system
is in a chaotic motion state, and its maximum vibration displacement reaches 1.5 mm.
As shown in Figure 28c, the dimensionless vibration displacement is (−5, 9). Since the
backlash is (−1, 1), it can be inferred that the slipping, back-to-back meshing, and impact
phenomena have occurred. With an increase in meshing damping, e.g., meshing damp-
ing falls into (0.016, 0.02), the system is still in a chaotic state, but a jump phenomenon
in vibration displacement arises. When ξ > 0.03, the system changes from the chaotic
motion state to the quasi-multiperiodic motion state. When ξ = 0.053, along with the
abrupt change in the vibration displacement, the system falls into the quasiperiod-doubling
motion and then remains like this within a wide range. Afterward, the system’s dynamic
response gradually becomes stable with the increase in meshing damping and finally
converges into a stable periodic motion, as shown in Figures 29 and 30. As shown in
Figures 28c, 29c and 30c, the displacement amplitude along the LOA shows a decreasing
trend as meshing damping increases.
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Therefore, an increase in the meshing damping ratio, ξ, will make the system grad-
ually tend toward a stable response and reduce the maximum vibration displacement of
the system.

3.3.2. Analysis of Supporting Damping

Supporting damping means the ratio of supporting damping to meshing damping.
Let the load torque Tc = 10.8 Nm, the rotational speed be 960 rpm, the supporting stiffness
be 4× 106 N/mm, and the damping coefficient ξ = 0.12. When supporting damping, Cbxy,
takes different values, the system’s bifurcation diagram, phase diagrams, Poincaré maps,
and time-domain diagrams can be obtained.

As shown in Figure 31, the influence of supporting damping on the displacement
along the LOA is complicated. When supporting damping falls into (1, 1.92), the system
is in the four-band chaotic motion. When supporting damping is in (1.92, 10.82), the
complexity of the chaos is significantly less than before, and multiple periodic motion and
quasiperiodic motion occasionally arise, as shown in Figure 32. With increasing supporting
damping, the system’s dynamic response gradually becomes stable, changing from the
four-band chaotic motion to the 4n periodic motion. As shown in Figure 33a,b, the system
is in the stable period octuple-motion state when Cbxy = 12, indicated by eight closed curves
in the phase diagram and eight isolated dots in the Poincaré map. With an increase in
supporting damping, the system motion changes from the periodic octuple motion to
the period-quadrupling motion through inverse period-doubling bifurcations, as shown
in Figure 34.

In conclusion, increasing the meshing damping and the supporting damping can
improve system stability and decrease vibration response. Therefore, it is better to take
measures to increase the gear system’s damping, for example, adopting high-damping
materials.
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3.4. Influence of Error Excitation

The transmission error is also an important factor affecting system stability. Let the
load torque Fm = 5.4 Nm, the supporting stiffness be 4× 106 N/mm, and the damping
coefficient ξ = 0.12. Figure 35 shows the bifurcation diagram of the system with respect to
the transmission error e0 in the range of e0 ∈ [−0.2, 0.2] mm.
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As shown in Figure 35, when the transmission error is very small, i.e., (−0.115, 0.117)
mm, the system is in a stable periodic motion state. Nevertheless, it can be observed in
Figures 36 and 37 that the vibration displacement amplitude slightly increases. With an
increase in transmission error, the system motion suddenly switches to a quasiperiod-
doubling motion, and then quickly changes to the stable periodic motion. Afterward,
the system falls into a chaotic motion through period-doubling bifurcation, as shown in
Figure 38. As shown in Figure 39, if the transmission error is large, the system is in a stable
periodic motion state, where some impacts will occur. Besides, the displacement along the
LOA is in (−1, 2.5) mm, as shown in Figure 39c. Since the tooth backlash is 0.1 mm, this
means that slipping and back-to-back meshing have occurred.
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Figure 38. e0 = 0. 119 mm; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram.
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Figure 39. e0 = 0.16 mm; (a) phase diagram; (b) Poincaré map; (c) time-domain diagram.

As shown in Figure 40, although the bifurcation diagram of a large load is similar to
that of a light load, its stable range is larger than the latter’s stable range.
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In conclusion, when the load torque is large, the dynamic response of the gear system
is not sensitive to the transmission error. Therefore, the requirements for manufacturing
costs and assembly accuracy can be reduced. However, for a gear system subjected to a
light load, its dynamic response is sensitive to the transmission error. Therefore, in order
to evade the bifurcation points and the chaotic motion, the transmission error should be
decreased by increasing manufacturing accuracy and assembly accuracy.

4. Conclusions

This paper puts forward an 18-DOF bending-torsion-swing coupled dynamic model
of a pair of involute spur gears, considering a nonuniformly distributed meshing force,
shaft bending deformation, dynamic center distance, and time-varying stiffness excitation.
The influence of several important parameters, i.e., meshing frequency, stiffness excitation,
damping, and error excitation, on the nonlinear dynamic characteristics of the gear system
was researched from the perspective of system stability through global bifurcation diagrams,
phase diagrams, Poincaré maps, and time-domain diagrams.

Compared to the related works in the literature review of this study, we have made
considerable progress, as shown in Table 2. Several important conclusions were obtained:

(1) The proposed dynamic modeling method of the spur gear system considers a nonuni-
formly distributed meshing force, dynamic center distance, shaft bending deforma-
tion, and time-varying stiffness excitation. This can better reflect the actual dynamic
characteristics of a gear system in complicated working situations;

(2) When the meshing frequency is close to n/2 times the system’s natural frequency,
resonance will appear. An excessive meshing stiffness amplitude will cause the system
to fall into a chaotic motion state, while a large supporting stiffness will improve the
system’s stability. Increasing meshing damping and supporting damping can improve
system stability and decrease the vibration response. Moreover, the gear system’s
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dynamic response is sensitive to transmission error when subjected to a light load. In
order to evade the bifurcation points and the chaotic motion, the transmission error
should be decreased by increasing manufacturing accuracy and assembly accuracy;

(3) Traditionally, a gear system is designed in terms of strength theory, characterized by
material selection, force analysis, stiffness verification, and fatigue-strength design.
For gear systems that are used in complicated working conditions, design should be
considered not in terms of only structural strength but also in terms of motion stability.
By evading complicated nonlinear dynamic behaviors, such as bifurcation and chaos,
the transmission performance of a gear system can effectively be improved.

Table 2. Comparison with other research work.

Related Works in the Literature Review Our Work

Bending-torsion dynamic model Bending-torsion-swing dynamic model

Uniformly distributed meshing force Nonuniformly distributed meshing force

6-DOF 18-DOF

Weak coupling of uniformly distributed
meshing force, shaft deformation, and dynamic
center distance

Strong coupling of nonuniformly distributed
meshing force, shaft deformation, and dynamic
center distance
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