The Role of Poultry Litter and Its Biochar on Soil Fertility and Jatropha curcas L. Growth on Sandy-Loam Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Experimental Design
2.3. Soil Analysis
2.4. Jatropha curcas L. Growth Parameters
2.5. Biochar Production
2.6. Poultry Litter and Biochar Analysis
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Soil, Poultry Litter, and Its Biochar
3.2. Poultry Litter and Its Biochar Effects on Soil Fertility Indicators
Soil pH, Organic Matter Content and Cation Exchange Capacity
3.3. Poultry Litter and Its Biochar on Soil Moisture Content, Bulk Density, and Water Holding Capacity
3.4. Poultry Litter and Its Biochar on Available Plant Nutrients Concentration in the Soil
3.5. Correlation between Soil Properties and Available Plant Nutrients in the Soil
3.6. Poultry Litter and Its Biochar on Jatropha curcas L. Morphological Properties
3.6.1. Plant Height
3.6.2. Stem Diameter
3.6.3. Number of Leaves
4. Discussion
4.1. Characteristics of Soil, Poultry Litter, and Its Biochar
4.2. Soil pH, Organic Matter Content, and Cation Exchange Capacity
4.3. Soil Moisture Content, Bulk Density, and Water Holding Capacity
4.4. Available Plant Nutrients Concentration in the Soil
4.5. Jatropha curcas L. Plant Height, Stem Diameter, and Number of Leaves
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bationo, A.; Waswa, B.; Kihara, J.; Kimetu, J. Advances in Integrated Soil Fertility Management in Sub Saharan Africa: Challenges and Opportunities. Nutr. Cycl. Agroecosyst. 2007, 1–2. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing Nitrogen Use Efficiency in Crop Plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Gwebu, T.D. Population, Development, and Waste Management in Botswana: Conceptual and Policy Implications for Climate Change. Environ. Manag. 2003, 31, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Karlen, D.; Rice, C. Soil Degradation: Will Humankind Ever Learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef] [Green Version]
- Pule-Meulenberg, F. Solutions for Food Security in Africa through Sustainable Soil Fertility Management of Ecosystems under Climate Change. Symbiosis 2018, 75, 165–166. [Google Scholar] [CrossRef] [Green Version]
- Botswana, S. Annual Agricultural Survey Report 2019; Traditional Sector; Statistics Botswana: Gaborone, Botswana, 2019. [Google Scholar]
- Kgathi, D.L.; Mfundisi, K.B.; Mmopelwa, G.; Mosepele, K. Potential Impacts of Biofuel Development on Food Security in Botswana: A Contribution to Energy Policy. Energy Policy 2012, 43, 70–79. [Google Scholar] [CrossRef]
- Moyin-Jesu, E.I. Simple and Blended Organic Fertilizers Improve Fertility of Degraded Nursery Soils for Production of Kolanut (Cola acuminate) Seedlings in Nigeria. In Soil Fertility Improvement and Integrated Nutrient Management—A Global Perspective; IntechOpen: London, UK, 2011; p. 293. [Google Scholar]
- Dikinya, O.; Mufwanzala, N. Chicken Manure-Enhanced Soil Fertility and Productivity: Effects of Application Rates. J. Soil Sci. Environ. Manag. 2010, 1, 46–54. [Google Scholar]
- Madisa, M.E.; Mathowa, T.; Mpofu, C.; Stephen, N.; Machacha, S. Effect of Chicken Manure and Commercial Fertilizer on Performance of Jute Mallow (Corchorus olitorius). Agric. Biol. J. N. Am. 2013, 4, 617–622. [Google Scholar]
- Mojeremane, W.; Motladi, M.; Mathowa, T.; Legwaila, G.M. Effect of Different Application Rates of Organic Fertilizer on Growth, Development and Yield of Rape (Brassica napus L.). Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 11680–11688. [Google Scholar] [CrossRef]
- Bernhart, M.; Fasina, O.O. Moisture Effect on the Storage, Handling and Flow Properties of Poultry Litter. Waste Manag. 2009, 29, 1392–1398. [Google Scholar] [CrossRef]
- Akanni, K.A.; Benson, O.B. Poultry Wastes Management Strategies and Environmental Implications on Human Health in Ogun State of Nigeria. Adv. Econ. Bus. 2014, 2, 164–171. [Google Scholar] [CrossRef]
- Bolan, N.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock JR, M.J.; Panneerselvam, P. Uses and Management of Poultry Litter. World’s Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Manafi, M. Poultry Science; BoD—Books on Demand: Norderstedt, Germany, 2017; ISBN 978-953-51-2945-5. [Google Scholar]
- Musa, W.I.; Saidu, L.; Kaltungo, B.Y.; Abubakar, U.B.; Wakawa, A.M. Poultry Litter Selection, Management and Utilization in Nigeria. Asian J. Poult. Sci. 2012, 6, 44–55. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and Biochar-Compost as Soil Amendments: Effects on Peanut Yield, Soil Properties and Greenhouse Gas Emissions in Tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Agu, R.S.; Ezema, R.A.; Udegbunam, O.N.; Okoro, A.C. Effect of Different Rates of Poultry Manure on Growth and Yield of Cucumber (Cucumis sativum) in Iwollo, Southeastern Nigeria. Agro-Science 2015, 14, 41–44. [Google Scholar]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic Values of Greenwaste Biochar as a Soil Amendment. Soil Res. 2008, 45, 629–634. [Google Scholar] [CrossRef]
- Yabe, J.; Ishizuka, M.; Umemura, T. Current Levels of Heavy Metal Pollution in Africa. J. Vet. Med. Sci. 2010, 72, 1257–1263. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, M.K.; Anwar, A.A. Ameliorating Effects of Biochar Derived from Poultry Manure and White Clover Residues on Soil Nutrient Status and Plant Growth Promotion-Greenhouse Experiments. PLoS ONE 2015, 10, e0131592. [Google Scholar] [CrossRef] [PubMed]
- Srinivasarao, C.; Venkateswarlu, B.; Lal, R.; Singh, A.K.; Kundu, S. Sustainable Management of Soils of Dryland Ecosystems of India for Enhancing Agronomic Productivity and Sequestering Carbon. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2013; Volume 121, pp. 253–329. [Google Scholar]
- Suppadit, T.; Kitikoon, V.; Phubphol, A.; Neumnoi, P. Effect of Quail Litter Biochar on Productivity of Four New Physic Nut Varieties Planted in Cadmium-Contaminated Soil. Chil. J. Agric. Res. 2012, 72, 125. [Google Scholar] [CrossRef] [Green Version]
- IBI 2012; Standardized Product Definition and Testing Guidelines for Biochar That Is Used in Soil. International Biochar Initiative: Canandaigua, NY, USA, 2012.
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-Char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. A Recalibration of the Hydrometer Method for Making Mechanical Analysis of Soils 1. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Brischke, C.; Wegener, F.L. Impact of Water Holding Capacity and Moisture Content of Soil Substrates on the Moisture Content of Wood in Terrestrial Microcosms. Forests 2019, 10, 485. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Ziadi, N.; Tran, T.S. Mehlich 3-Extractable Elements. In Soil Sampling and Methods of Analysis; Taylor & Francis Group: Abingdon, UK, 2008; pp. 81–88. [Google Scholar]
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis; University of Wisconsin Cooperative Extension Publishing: Madison, WI, USA, 2003. [Google Scholar]
- Matthiessen, M.K.; Larney, F.J.; Selinger, L.B.; Olson, A.F. Influence of Loss-on-Ignition Temperature and Heating Time on Ash Content of Compost and Manure. Commun. Soil Sci. Plant Anal. 2005, 36, 2561–2573. [Google Scholar] [CrossRef]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner, C.; Das, K.C.; Ahmedna, M.; Rehrah, D.; Watts, D.W.; Busscher, W.J. Characterization of Designer Biochar Produced at Different Temperatures and Their Effects on a Loamy Sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Sikder, S.; Joardar, J.C. Biochar Production from Poultry Litter as Management Approach and Effects on Plant Growth. Int. J. Recycl. Org. Waste Agric. 2019, 8, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.M.; Ippolito, J.A.; Watts, D.W.; Sigua, G.C.; Ducey, T.F.; Johnson, M.G. Biochar Compost Blends Facilitate Switchgrass Growth in Mine Soils by Reducing Cd and Zn Bioavailability. Biochar 2019, 1, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Eckert, D.; Sims, J.T. Recommended Soil PH and Lime Requirement Tests. Recomm. Soil Test. Proced. Northeast. United States Northeast. Reg. Bull. 1995, 493, 11–16. [Google Scholar]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil PH and Organic Matter. Nutr. Manag. Modul. 2009, 8, 1–12. [Google Scholar]
- Duruigbo, C.I.; Obiefuna, J.C.; Onweremadu, E.U. Effect of Poultry Manure Rates on Soil Acidity in an Ultisol. Int. J. Soil Sci. 2007, 2, 154–158. [Google Scholar]
- Yu, C.-H.; Wang, S.-L.; Tongsiri, P.; Cheng, M.-P.; Lai, H.-Y. Effects of Poultry-Litter Biochar on Soil Properties and Growth of Water Spinach (Ipomoea aquatica Forsk.). Sustainability 2018, 10, 2536. [Google Scholar] [CrossRef] [Green Version]
- Shetty, R.; Prakash, N.B. Effect of Different Biochars on Acid Soil and Growth Parameters of Rice Plants under Aluminium Toxicity. Sci. Rep. 2020, 10, 12249. [Google Scholar] [CrossRef] [PubMed]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Biochar and Poultry Manure Effects on Soil Properties and Radish (Raphanus sativus L.) Yield. Biol. Agric. Hortic. 2019, 35, 33–45. [Google Scholar] [CrossRef]
- Gondek, K.; Mierzwa-Hersztek, M. Effect of Thermal Conversion of Pig Manure and Poultry Litter on the Content and Mobility of Mn and Fe in Biochars and in Soil after Their Application. Chil. J. Agric. Res. 2016, 76, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Gondek, K.; Mierzwa-Hersztek, M. Effect of Low-Temperature Biochar Derived from Pig Manure and Poultry Litter on Mobile and Organic Matter-Bound Forms of Cu, Cd, Pb and Zn in Sandy Soil. Soil Use Manag. 2016, 32, 357–367. [Google Scholar] [CrossRef]
- Revell, K.T.; Maguire, R.O.; Agblevor, F.A. Influence of Poultry Litter Biochar on Soil Properties and Plant Growth. Soil Sci. 2012, 177, 402. [Google Scholar] [CrossRef]
- Akça, M.O.; Namlı, A. Effects of Poultry Litter Biochar on Soil Enzyme Activities and Tomato, Pepper and Lettuce Plants Growth. Eurasian J. Soil Sci. EJSS 2015, 4, 161. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil PH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef] [Green Version]
- Ross, D.S.; Ketterings, Q. Recommended Methods for Determining Soil Cation Exchange Capacity. Recomm. Soil Test. Proced. Northeast. U. S. 1995, 493, 62. [Google Scholar]
- Toluwase Oreoluwa, A.; Tolulope Yetunde, A.; Joseph, U.E.; Chengsen, Z.; Hongyan, W. Effect of Biochar and Poultry Litter Application on Chemical Properties and Nutrient Availability of an Acidic Soil. Commun. Soil Sci. Plant Anal. 2020, 51, 1670–1679. [Google Scholar] [CrossRef]
- Gamage, D.N.V.; Mapa, R.B.; Dharmakeerthi, R.S.; Biswas, A.; Gamage, D.N.V.; Mapa, R.B.; Dharmakeerthi, R.S.; Biswas, A. Effect of Rice-Husk Biochar on Selected Soil Properties in Tropical Alfisols. Soil Res. 2016, 54, 302–310. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of Soil Organic Carbon on Soil Water Retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef] [Green Version]
- Sop, T.K.; Kagambega, F.W.; Bellefontaine, R.; Schmiedel, U.; Thiombiano, A. Effects of Organic Amendment on Early Growth Performance of Jatropha curcas L. on a Severely Degraded Site in the Sub-Sahel of Burkina Faso. Agrofor. Syst. 2012, 86, 387–399. [Google Scholar] [CrossRef]
- Ogura, T.; Date, Y.; Masukujane, M.; Coetzee, T.; Akashi, K.; Kikuchi, J. Improvement of Physical, Chemical and Biological Properties of Aridisol from Botswana by the Incorporation of Torrefied Biomass. Sci. Rep. 2016, 6, 28011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agegnehu, G.; Bird, M.I.; Nelson, P.N.; Bass, A.M.; Agegnehu, G.; Bird, M.I.; Nelson, P.N.; Bass, A.M. The Ameliorating Effects of Biochar and Compost on Soil Quality and Plant Growth on a Ferralsol. Soil Res. 2015, 53, 1–12. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Available plant nutrients (mg/kg) | |
Phosphorus (P) | 0.80 |
Potassium (K) | 3.58 |
Calcium (Ca) | 10.07 |
Magnesium (Mg) | 3.69 |
Iron (Fe) | 9.31 |
Manganese (Mn) | 2.77 |
Copper | 0.04 |
Zinc (Zn) | 0.24 |
Exchangeable cations (cmol/kg) | |
K | 4.13 |
Ca | 22.0 |
Mg | 4.13 |
Na | 6.85 |
Plant Available Nutrients (mg/kg) | Poultry Litter | Biochar 350 °C | Biochar 600 °C |
---|---|---|---|
Phosphorus (P) | 33.01 | 33.37 | 33.98 |
Potassium (K) | 826.79 | 1714.08 | 855.20 |
Calcium (Ca) | 813.48 | 724.32 | 748.65 |
Magnesium (Mg) | 349.14 | 526.35 | 314.46 |
Sodium (Na) | 137.34 | 354.75 | 162.26 |
Iron (Fe) | 12.75 | 8.53 | 28.83 |
Zinc (Zn) | 41.37 | 31.53 | 25.56 |
Manganese (Mn) | 28.39 | 51.35 | 36.67 |
Copper (Cu) | 0.73 | 1.22 | 25.56 |
EC (μS/cm) | 13.90 | 365.33 | 278.67 |
Organic Amendments | Application Rates (g/kg) | P | K | Mg | Ca | Zn | Cu | Fe | Mn |
---|---|---|---|---|---|---|---|---|---|
(mg/kg) | |||||||||
PL | 0 | 1.14 ± 0.08 d | 3.56 ± 0.05 c | 4.28 ± 0.05 c | 10.99 ± 0.58 c | 0.03 ± 0.01 d | 0.05 ± 0.01 b | 8.46 ± 0.27 b | 2.61 ± 0.06 a |
15 | 3.58 ± 0.33 cd | 4.91 ± 0.50 c | 4.79 ± 0.34 c | 11.49 ± 0.33 c | 0.12 ± 0.01 cd | 0.04 ± 0.01 b | 8.89 ± 0.80 b | 2.84 ± 0.26 a | |
30 | 6.02 ± 1.27 c | 7.88 ± 1.83 bc | 5.96 ± 0.36 bc | 13.88 ± 0.94 bc | 0.21 ± 0.04 c | 0.06 ± 0.01 ab | 9.34 ± 0.69 ab | 3.13 ± 0.18 a | |
60 | 9.33 ± 0.10 b | 11.29 ± 0.39 b | 7.53 ± 0.41 b | 18.01 ± 1.07 ab | 0.32 ± 0.01 b | 0.07 ± 0.01 ab | 10.19 ± 0.41 ab | 3.37 ± 0.10 a | |
120 | 16.15 ± 0.73 a | 21.30 ± 0.99 a | 11.13 ± 0.60 a | 21.21 ± 2.40 a | 1.02 ± 0.02 a | 0.09 ± 0.01 a | 11.86 ± 0.68 a | 3.53 ± 0.53 a | |
BC350 | 0 | 1.33 ± 0.05 e | 4.34 ± 0.26 c | 4.30 ± 0.06 d | 11.44 ± 0.22 d | 0.04 ± 0.01 d | 0.05 ± 0.01 a | 8.91 ± 0.38 c | 2.59 ± 0.04 b |
15 | 2.97 ± 0.37 d | 4.88 ± 0.26 c | 5.37 ± 0.18 c | 12.68 ± 0.30 cd | 0.10 ± 0.01 d | 0.05 ± 0.01 a | 10.51 ± 0.39 bc | 2.96 ± 0.16 b | |
30 | 4.32 ± 0.33 c | 7.15 ± 0.25 c | 5.16 ± 0.16 c | 14.11 ± 0.36 c | 0.17 ± 0.01 c | 0.05 ± 0.01 a | 11.28 ± 0.38 ab | 3.19 ± 0.12 ab | |
60 | 7.24 ± 0.02 b | 12.98 ± 1.29 b | 7.87 ± 0.08 b | 19.46 ± 0.31 b | 0.25 ± 0.02 b | 0.09 ± 0.02 a | 12.28 ± 0.74 ab | 4.23 ± 0.53 a | |
120 | 12.51 ± 0.17 a | 20.67 ± 0.76 a | 10.20 ± 0.26 a | 24.93 ± 0.58 a | 0.26 ± 0.02 a | 0.08 ± 0.01 a | 13.41 ± 0.52 a | 4.21 ± 0.18 a | |
BC600 | 0 | 1.00 ± 0.09 d | 3.51 ± 0.12 d | 4.33 ± 0.04 c | 11.43± 0.56 c | 0.02 ± 0.01 d | 0.05 ± 0.01 a | 9.08 ± 0.44 b | 2.62 ± 0.07 b |
15 | 2.87 ± 0.07 c | 5.17 ± 0.08 cd | 4.96 ± 0.14 bc | 13.54 ± 0.42 bc | 0.17 ± 0.01 c | 0.05 ± 0.01 a | 10.76 ± 0.14 ab | 2.74 ± 0.04 b | |
30 | 3.75 ± 0.04 c | 6.43 ± 0.53 c | 5.06 ± 0.51 bc | 17.87 ± 1.54 bc | 0.18 ± 0.01 c | 0.05 ± 0.01 a | 10.97 ± 1.15 ab | 2.86 ± 0.07 b | |
60 | 6.86 ± 0.23 b | 10.10 ± 1.09 b | 6.76 ± 0.29 b | 19.44 ± 0.55 b | 0.53 ± 0.01 b | 0.06 ± 0.01 a | 15.15 ± 1.77 a | 3.98 ± 0.08 a | |
120 | 10.23 ± 0.57 a | 15.51 ± 0.30 a | 10.33 ± 0.78 a | 27.90 ± 3.15 a | 0.63 ± 0.01 a | 0.07 ± 0.01 a | 14.72 ± 0.05 a | 3.71 ± 0.12 a | |
PLBC350 | 0 | 0.88 ± 0.04 d | 3.36 ± 0.21 c | 4.36 ± 0.06 d | 11.12 ± 0.24 d | 0.23 ± 0.02 d | 0.05 ± 0.01 b | 7.56 ± 0.36 b | 2.53 ± 0.13 b |
15 | 2.17 ± 0.04 cd | 4.47 ± 0.24 bc | 5.44 ± 0.28 cd | 13.64 ± 0.78 cd | 0.18 ± 0.04 d | 0.11 ± 0.01 ab | 7.36 ± 0.16 b | 2.34 ± 0.12 b | |
30 | 4.10 ± 0.13 c | 6.38 ± 0.47 bc | 6.56 ± 0.14 c | 16.17 ± 0.27 bc | 0.37 ± 0.04 c | 0.17 ± 0.02 ab | 7.72 ± 0.13 b | 2.58 ± 0.02 b | |
60 | 7.33 ± 0.72 b | 7.83 ± 0.12 b | 8.20 ± 0.53 b | 18.92 ± 1.00 b | 0.67 ± 0.02 b | 0.14 ± 0.06 ab | 8.08 ± 0.43 b | 2.91 ± 0.06 b | |
120 | 17.56 ± 0.77 a | 25.41 ± 1.68 a | 14.44 ± 0.48 a | 35.02 ± 1.50 a | 1.26 ± 0.02 a | 0.19 ± 0.01 a | 10.59 ± 0.34 a | 4.00 ± 0.29 a | |
PLBC600 | 0 | 1.07 ± 0.21 d | 3.02 ± 0.11 c | 4.17 ± 0.23 c | 10.81 ± 0.69 c | 0.26 ± 0.01 e | 0.05 ± 0.01 b | 8.44 ± 0.20 c | 2.54 ± 0.11 b |
15 | 2.34 ± 0.04 cd | 4.47 ± 0.27 c | 5.03 ± 0.24 c | 12.56 ± 0.51 bc | 0.67 ± 0.03 d | 0.04 ± 0.02 ab | 9.26 ± 0.62 bc | 2.76 ± 0.17 ab | |
30 | 3.60 ± 0.20 c | 6.25 ± 0.30 c | 6.69 ± 0.29 bc | 15.74 ± 0.07 bc | 0.80 ± 0.02 c | 0.09 ± 0.02 ab | 10.13 ± 0.14 abc | 3.15 ± 0.15 ab | |
60 | 6.65 ± 1.00 b | 9.56 ± 0.19 b | 7.92 ± 0.87 b | 17.74 ± 0.39 b | 0.94 ± 0.02 b | 0.12 ± 0.02 ab | 10.64 ± 0.23 ab | 3.18 ± 0.08 ab | |
120 | 11.88 ± 0.59 a | 20.36 ± 1.51 a | 11.10 ± 0.83 a | 26.12 ± 2.94 a | 1.17 ± 0.02 a | 0.11 ± 0.01 a | 11.93 ± 0.55 a | 3.54 ± 0.28 a |
Variables | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | pH | 7.8 | 0.2 | ||||||||||||
2 | CEC | 3.7 | 1.1 | 0.487 ** | |||||||||||
3 | BD | 1.4 | 0.2 | 0.020 | −0.060 | ||||||||||
4 | MC | 2.3 | 1.6 | 0.337 ** | 0.763 ** | −0.200 | |||||||||
5 | P | 5.9 | 4.7 | 0.612 ** | 0.864 ** | −0.050 | 0.803 ** | ||||||||
6 | K | 9.2 | 6.5 | 0.611 ** | 0.831 ** | −0.010 | 0.766 ** | 0.960 ** | |||||||
7 | Mg | 6.9 | 2.7 | 0.620 ** | 0.861 ** | −0.050 | 0.810 ** | 0.948 ** | 0.935 ** | ||||||
8 | Ca | 17.0 | 6.3 | 0.455 ** | 0.827 ** | −0.060 | 0.817 ** | 0.866 ** | 0.892 ** | 0.922 ** | |||||
9 | Zn | 0.4 | 0.4 | 0.553 ** | 0.726 ** | 0.010 | 0.682 ** | 0.783 ** | 0.780 ** | 0.838 ** | 0.753 ** | ||||
10 | Fe | 10.3 | 2.2 | 0.080 | 0.490 ** | 0.090 | 0.388 ** | 0.522 ** | 0.584 ** | 0.472 ** | 0.538 ** | 0.361 ** | |||
11 | Mn | 3.1 | 0.6 | 0.353 ** | 0.567 ** | 0.090 | 0.513 ** | 0.712 ** | 0.777 ** | 0.683 ** | 0.686 ** | 0.508 ** | 0.770 ** | ||
12 | Cu | 0.1 | 0.1 | 0.000 | 0.180 | −0.120 | 0.265 * | 0.180 | 0.190 | 0.190 | 0.220 | 0.220 | 0.336 ** | 0.268 * |
Application Rate (g/kg) | PL | BC350 | BC600 | PLBC350 | PLBC600 |
---|---|---|---|---|---|
8 Weeks | |||||
0 | 8.20 ± 0.81 b | 9.17 ± 0.64 a | 9.4 ± 0.36 a | 8.87 ± 0.50 ab | 9.13 ± 0.74 a |
15 | 11.30 ± 0.62 ab | 9.77 ± 0.37 a | 9.00 ± 0.66 a | 10.63 ± 0.92 a | 10.43 ± 0.97 a |
30 | 11.80 ± 0.12 a | 9.90 ± 0.45 a | 9.17 ± 0.99 a | 10.60 ± 0.76 a | 9.50 ± 0.72 a |
60 | 10.37 ± 0.90 ab | 10.77 ± 0.13 a | 7.93 ± 0.43 a | 9.80 ± 0.72 a | 11.40 ± 0.65 a |
120 | 6.47 ± 0.61 b | 10.80 ± 0.15 a | 8.40 ± 0.59 a | 6.23 ± 0.41 ab | 8.17 ± 1.24 a |
p-value | 0.01 | 0.07 | 0.51 | 0.01 | 0.18 |
48 Weeks | |||||
0 | 14.13 ± 0.70 a | 15.17 ± 0.42 b | 9.47 ± 0.42 a | 13.00 ± 0.90 b | 14.67 ± 1.16 a |
15 | 18.03 ± 0.77 a | 15.80 ± 0.51 b | 9.07 ± 1.68 a | 16.33 ± 0.38 b | 17.17 ± 0.32 a |
30 | 19.57 ± 0.26 a | 17.67 ± 0.38 a | 9.67 ± 1.45 a | 16.90 ± 0.55 a | 15.93 ± 0.71 a |
60 | 19.57 ± 1.02 a | 18.60 ± 0.42 a | 8.10 ± 0.87 a | 16.97 ± 0.97 a | 18.57 ± 0.34 a |
120 | 19.57 ± 3.07 a | 19.13 ± 0.22 a | 10.50 ± 0.72 a | 10.97 ± 2.34 a | 14.03 ± 1.76 a |
p-value | 0.04 | 0.01 | 0.67 | 0.02 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masocha, B.L.; Dikinya, O. The Role of Poultry Litter and Its Biochar on Soil Fertility and Jatropha curcas L. Growth on Sandy-Loam Soil. Appl. Sci. 2022, 12, 12294. https://doi.org/10.3390/app122312294
Masocha BL, Dikinya O. The Role of Poultry Litter and Its Biochar on Soil Fertility and Jatropha curcas L. Growth on Sandy-Loam Soil. Applied Sciences. 2022; 12(23):12294. https://doi.org/10.3390/app122312294
Chicago/Turabian StyleMasocha, Boitshwarelo Lorato, and Oagile Dikinya. 2022. "The Role of Poultry Litter and Its Biochar on Soil Fertility and Jatropha curcas L. Growth on Sandy-Loam Soil" Applied Sciences 12, no. 23: 12294. https://doi.org/10.3390/app122312294
APA StyleMasocha, B. L., & Dikinya, O. (2022). The Role of Poultry Litter and Its Biochar on Soil Fertility and Jatropha curcas L. Growth on Sandy-Loam Soil. Applied Sciences, 12(23), 12294. https://doi.org/10.3390/app122312294