
Citation: Tsinganos, N.; Fouliras, P.;

Mavridis, I. Applying BERT for

Early-Stage Recognition of

Persistence in Chat-Based Social

Engineering Attacks. Appl. Sci. 2022,

12, 12353. https://doi.org/10.3390/

app122312353

Academic Editors: Konstantinos

Rantos, Konstantinos Demertzis

and George Drosatos

Received: 13 November 2022

Accepted: 29 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Applying BERT for Early-Stage Recognition of Persistence in
Chat-Based Social Engineering Attacks
Nikolaos Tsinganos , Panagiotis Fouliras and Ioannis Mavridis *

Department of Applied Informatics, University of Macedonia, 156 Egnatia Str., 54636 Thessaloniki, Greece
* Correspondence: mavridis@uom.edu.gr

Featured Application: Methods and techniques demonstrated in this work can be used to increase
the effectiveness of chat-based social engineering attack detection systems.

Abstract: Chat-based social engineering (CSE) attacks are attracting increasing attention in the
Small-Medium Enterprise (SME) environment, given the ease and potential impact of such an attack.
During a CSE attack, malicious users will repeatedly use linguistic tricks to eventually deceive their
victims. Thus, to protect SME users, it would be beneficial to have a cyber-defense mechanism able
to detect persistent interlocutors who repeatedly bring up critical topics that could lead to sensitive
data exposure. We build a natural language processing model, called CSE-PersistenceBERT, for
paraphrase detection to recognize persistency as a social engineering attacker’s behavior during a
chat-based dialogue. The CSE-PersistenceBERT model consists of a pre-trained BERT model fine-
tuned using our handcrafted CSE-Persistence corpus; a corpus appropriately annotated for the specific
downstream task of paraphrase recognition. The model identifies the linguistic relationship between
the sentences uttered during the dialogue and exposes the malicious intent of the attacker. The results
are satisfactory and prove the efficiency of CSE-PersistenceBERT as a recognition mechanism of a
social engineer’s persistent behavior during a CSE attack.

Keywords: cybersecurity; sensitive data; chat-based social engineering attack; persistence; deep
learning; natural language processing; transfer learning; BERT

1. Introduction

In a chat-based dialogue e.g., between an SME employee and a potential customer,
the interlocutors exchange written sentences during their communication. The ability to
identify one or more characteristics [1] that can discriminate a normal interlocutor from a
malicious one can lead to sufficiently protecting the SME employee from a potential social
engineering attack. To achieve her goal, a malicious interlocutor repeats her arguments
many times in a conversation to convince and manipulate her partner. This was also
confirmed, after processing our CSE corpus [2], where we observed that 83% of social
engineering attackers tend to insist on their arguments to exfiltrate the targeted type of
critical information. The persistence of an interlocutor to regurgitate the same topic that
could lead to sensitive data exfiltration can be considered an enabler of a successful CSE
attack. Thus, there is a need to develop a mechanism for recognizing when an interlocutor
is continuously trying to lead the conversation to a specific and previously mentioned topic.

To cope with such a problem, we can adopt different approaches depending on the
pros and cons of each one. Traditional machine learning models require substantial amounts
of labeled data to be trained for a recognition task, but labeling data is a time-consuming
and expensive activity. In pursuing persistence recognition, we choose to leverage the
latest trends in deep learning, especially the Transformers [3] technology. Transformers use
substantial amounts of unlabeled raw text for training and take advantage of the linguistic
information contained to overcome the difficulty of creating a large amount of labeled data.

Appl. Sci. 2022, 12, 12353. https://doi.org/10.3390/app122312353 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312353
https://doi.org/10.3390/app122312353
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9379-1822
https://orcid.org/0000-0002-0879-7005
https://orcid.org/0000-0001-8724-6801
https://doi.org/10.3390/app122312353
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312353?type=check_update&version=1

Appl. Sci. 2022, 12, 12353 2 of 17

The Transformer models are very efficient in learning the context and relationships between
sequential data, such as words in a sentence. Even if supervised learning using labeled
data is an option, learning robust word vector representations in an unsupervised manner
of learning can lead to a significant performance boost.

In this paper, we describe a hybrid approach for the paraphrase detection task, in the
context of CSE attacks, based on a combination of unsupervised pre-training and super-
vised fine-tuning based on the Transformer-based BERT model [4]. This approach results in
our proposed model, called CSE-PersistenceBERT, which learns a universal representation
that transfers knowledge with only minimal adaptation to the paraphrase recognition task.
Initially, the CSE-PersistenceBERT model has access to a large corpus of unlabeled text
on which BERT has been pre-trained, and later it uses the CSE-Persistence corpus, which
emerged from the CSE corpus of our previous work [2]. CSE-Persistence corpus generated
after manually annotating the CSE corpus and utilizing the CSE ontology [2]. This corpus
which is relevant to the downstream task was used to fine-tune CSE-PersistenceBERT.
The complete training procedure was performed in two stages: firstly, the BERT model
parameters were learned by training the model using unlabeled data on a language mod-
eling objective, and secondly, a part of the pre-trained parameters was fine-tuned on the
paraphrase recognition task using labeled data from the CSE-Persistence corpus. The
evaluation results confirmed that CSE-PersistenceBERT can recognize the persistence of an
interlocutor in an early stage of a chat-based conversation. This can result in an indicator of
a potential social engineering attack, given that the topic of the conversation is an entity in
our CSE ontology.

This work contributes to improving knowledge about utilizing existing state-of-the-
art deep learning models as cyber defense mechanisms. Our study provides a better
understanding of how we can tailor a BERT-based language model to expose the malicious
intent of an interlocutor. Furthermore, detailed implementation details are given about
fine-tuning such a model using an in-context and appropriately annotated corpus for the
paraphrase recognition task.

The remainder of this paper is organized as follows: Section 2 provides an overview of
the relevant background information. In Section 3, related work regarding the application
of machine learning and deep learning approaches to the detection of social engineering
attacks is presented. The proposed approach is presented in Section 4 and the implemen-
tation details are given in Section 5. The evaluation results are discussed in Section 6,
respectively. In Section 7, we discuss our findings and the paper concludes with Section 8.

2. Background
2.1. Natural Language Processing

In Natural Language Processing (NLP) terms, persistence recognition can be cast as a
Natural Language Understanding (NLU) task. Furthermore, there are a plethora of relative
NLU tasks that can be utilized to describe persistence recognition, such as Semantic Textual
Similarity, Natural Language Inference, and Paraphrase Recognition. All these NLU tasks
are closely related, but they also differ in several aspects:

• Semantic Textual Similarity (STS) [5,6] is the semantic task of inferring the relation
between different text data units. It is usually measured as a numerical score in
the range of [0, 1] and quantifies the semantic similarity between different text data
units. In earlier days, techniques such as Bag of Words (BoW) and Term Frequency-
Inverse Document Frequency (TF-IDF) were used to represent text as vectors to aid
the calculation of semantic similarity. These techniques were designed to identify if
two text units contained the same words or a similar group of characters. However,
sentences can have different meanings while containing the exact, same words or can
contain different words while representing semantically similar concepts.

• Natural Language Inference, sometimes also called Textual Entailment [7–9], is the
classification task of determining, given a text premise and a text hypothesis, whether
the hypothesis is entailed by, contradictory to, or independent of the premise. The

Appl. Sci. 2022, 12, 12353 3 of 17

most popular categories used for textual entailment relationships are entailment,
contradiction, and neutral.

• Paraphrase Recognition [10] can be described as another text classification task that
determines whether two text data units have a similar meaning (or not) in a spe-
cific context.

Semantic textual similarity identifies the semantic equivalence between text data
units as a continuous value, while textual entailment and paraphrase detection produce a
categorical output. However, it is possible to quickly transfer, e.g., from the STS measure
area to the Paraphrase Detection task, by introducing a paraphrase detection threshold. For
example, one can set a certain value of the STS measurement above which two different text
data units can be considered as related. The aforementioned NLU tasks can also broadly be
classified based on the approach used to achieve the objective, as follows:

• knowledge-based, where ontologies, databases, or dictionaries are used (e.g., WordNet [11])
• corpus-based, where information retrieved from large corpora is used (e.g., word2vec [12])
• deep neural network-based, where recent developments of neural networks are uti-

lized (e.g., CNNs [13], Transformers [3], etc.), and
• hybrid-based, where characteristics from all the above-mentioned methods are com-

bined [14].

For each of these NLU tasks, there are several popular datasets used for the per-
formance evaluation of the corresponding algorithms. These datasets are composed of
sentences or pairs of sentences with associated classification labels.

2.2. Neural Networks

A neural network model that transforms one sequence of tokens into another performs
a sequence-to-sequence (Seq2Seq) task, as it accepts a sequence of tokens as input and pro-
duces another sequence of tokens as output. Known applications of such tasks are machine
translation [15], spell-checker [16], etc. This paradigm, until recently, was implemented
by neural networks based on an encoder-decoder architecture such as recurrent neural
networks (RNNs) [17]. The encoder e.g., a Long Short-Term Memory (LSTM) [18] neural
network, takes a sequence of tokens and outputs a fixed-size vector representation of the
input. Then, the decoder, which is also an RNN, uses this vector to produce the output
sequence of tokens. The limitation of this workflow lies in the information compression
that occurs during the transformation of the input sequence into a fixed-length vector. No
matter how lengthy the input sequence, its representation will always have to fit into a
fixed vector size, and consequently a significant part of the information is lost.

This bottleneck was overcome using a mechanism called Attention [19,20]. Attention
can produce a summary for each input token, which is context-dependent. This summary is
a list of vectors that act as a memory that the decoder can look up during output production.
These vectors represent the hidden states of the encoder and, in NLP, we can think of them
as key-value pairs representing input tokens. An attention function f is applied on every
key producing a weight, and then the input values are weighted by the corresponding
weight and summed up to create the summary vector. This weighted sum is then appended
to the decoder’s hidden states to produce the final output sequence.

A Transformer [19] is a relatively new type of encoder-decoder neural network ar-
chitecture that utilizes a specific type of attention mechanism based on the concept of
self-attention. Due to their outstanding performance over RNNs, Transformers are now
the de facto standard architecture to use in related NLP tasks (machine translation, etc.).
The self-attention mechanism produces, for each input token, a summary of the entire
input, using as a context the specific token. Furthermore, a Transformer uses multi-head
self-attention by using multiple sets of key-value pairs and queries per token, thus producing
multiple sets of weights focused on different input sequence characteristics. By repeatedly
applying several layers, the input sequence is transformed from a raw word embedding to
a more abstract form representing the input’s semantics. While a Transformer is a powerful

Appl. Sci. 2022, 12, 12353 4 of 17

model by itself, it also acts as the underlying architecture of well-known pre-trained models
such as GPT-2 ([21], p. 2) and BERT [4].

Pre-trained models are used in transfer learning [22], which is a collection of techniques
that improve the performance of a neural network model in a task using data and/or a
model trained for a different task. Transfer learning consists of at least two steps [23];

• pre-training, where the model learns a general-purpose representation of inputs, and
• adaptation, where the input representation is transferred to a downstream task. The

adaptation has two main paradigms:

a. Feature extraction, where the model’s weights remain unchanged and are used
as features in a downstream task.

b. Fine-tuning, where (some of) the model’s weights are unfrozen and fine-tuned
for the new downstream task.

In the first step, the model is trained for one task (pre-training), and in the second
step, it is adjusted for another task (fine-tuning). Transfer learning uses word embeddings,
which are learned vector representations. Thus, semantically similar words share similar
representations. Although these word embeddings can be used for downstream NLP tasks,
they are limited in the sense that they are trained per token and thus ignore context.

BERT is a transformer-based pre-trained language model that employs the transformer
encoder part to transform the input into contextualized embeddings through a series
of layers that gradually summarize the input sequence. Due to its transformer-based
architecture, BERT can capture long-term dependencies between input tokens, considering
the context of the token in both directions. BERT is trained using self-supervised learning,
which means there is no need for human intervention, e.g., data annotation. BERT’s training
comes from the data itself, as the humungous datasets used for training contain deep
linguistic knowledge such as collocation, syntactic, grammatical, and semantic information.

In the literature, the big pre-trained language models are sometimes referred to as
base or foundation models [24], and their availability gave rise to the terms of fine-tuning,
transfer learning, and classification heads. Fine-tuning implies updates to some of the
model’s layers, while classification heads treat the last layer of the model as input features:
they take input X and predict the outcome Y performing classification if the labels are
categorical or regression if the labels are continuous [25].

3. Related Work

To the best of our knowledge, our work is the first attempt to utilize deep learning
techniques to identify an interlocutor’s persistence in a CSE attack. Nevertheless, many
works are related to the paraphrase recognition task and similar tasks of semantic textual
similarity and textual entailment.

Gupta et al. [26] introduce an interesting approach to generating paraphrases from a
sentence, using an LSTM and a Variational Autoencoder as generative components. They
propose a simple, modular, deep neural network architecture for question paraphrase gener-
ation from a question and a sentence based on a novel combination of generative adversarial
networks and sequence-to-sequence models. Their method automatically generates para-
phrases of an input sentence in multiple languages. This work, although interesting, has no
specific target, and it is difficult to be utilized in the cyber security domain.

Victor U. Thompson and Chris Bowerman [27] approach the problem of recognizing
texts that look different but are similar in meaning by identifying several phenomena
related to paraphrasing. These phenomena include word and phrase reordering, the
substitution of lexical parts, the addition and deletion of words, etc. They argue that
the most effective method is to combine the results of identifying the above-mentioned
techniques that commonly appear in plagiarism. Their proposed model shows promising
performance by combining the aforementioned techniques. However, the complexity of
the syntactical and grammatical checks is a deterrent factor for adopting such an approach
for a real-time cyber security defense mechanism.

Appl. Sci. 2022, 12, 12353 5 of 17

Mohamed I. El Desouki et al. [14] used deep learning techniques related to semantic
textual similarity to detect paraphrase phenomena. They propose a hybrid model, which
they evaluate using the Microsoft Research Paraphrase Corpus. Their model presents an F1
performance of 83.5%. The hybrid model follows a three-stage workflow where initially, the
sentence is converted to a semantic vector via a skip-through approach. Then, a plethora
of different string-based, knowledge-based, and corpus-based algorithms are executed.
Finally, classical machine learning algorithms related to semantic textual similarity are
applied. The authors’ proposed solution is composed of several layers of processing em-
ploying traditional machine learning algorithms, too. Updating such a complex recognizer
would be difficult after a deployment in production.

Mahtab Ahmed [28] uses a Tree-LSTM, a variant of LSTM, to represent the sentence
structure in a tree topology. His model performed better using attention than other Tree-
LSTMs without the use of an attention framework. The two different techniques presented
can be applied for both dependency and constituency tree structures and proved superior
for semantic relatedness tasks, such as textual entailment and paraphrase detection. This
approach is promising but dependency and constituency can be difficult to maintain in a
lengthy dialogue.

El Mostafa Hambi et al. [29] perform a comparative study of the different methods and
datasets used regarding semantic textual similarity and other natural language inference
tasks. They conclude that most of the research attempts are around word granularity using
the word2vec method for word vector representation. This may be a disadvantage in the
pursuit of understanding the meaning of a sentence. As mentioned by the authors the
meaning of a sentence is of major importance and it is context related.

Kai Shuanga [30] focuses on word representation, presenting a method called Convolution-
Deconvolution Word Embedding that embeds context-specific information and task-specific
information. The results are presented by applying his model and method to two NLP tasks
such as text classification and machine translation. Kai Shuanga’s end-to-end embedding
method is the first that extends deconvolution to word vector embedding generation. Al-
though an interesting approach, there are no results for tasks such as paraphrase detection.

In another survey regarding the natural language inference tasks Divesh R. Kubal
et al. [31] present several traditional and more modern methods, such as statistical methods,
machine learning, and deep learning methods. A well-established comparative analysis is
conducted for the word vector representation techniques. The overall survey is a thorough
journey from statistical tools to machine learning, and deep learning tools and techniques.
This work confirms the importance of a robust word vector representation and it is aligned
with our approach to fine-tuning using a task-focused training dataset.

Tedo Vrbanec [10] examines corpus-based models for various NLP tasks such as para-
phrase detection, textual entailment, etc. Using combinations of eight different algorithms
and three different datasets, he presents his findings regarding model hyper-parameters,
model selection techniques, similarity measures, and semantic textual similarity thresh-
olds. The author after conducting several experiments confirms our approach for a simple
model design.

Hien T. Nguyen [32] presents a novel approach, where each sentence is modeled
using two vectors. In the first vector, the sentence is represented using pre-trained word
vectors, while in the second vector, the sentence is represented on the basis of other
sources of knowledge. He evaluated his model on different datasets, such as Microsoft
Research Paraphrase Corpus, STS2015 ([33], p. 2015), and P4PIN [34]. The complexity of
the aforementioned approach makes it difficult to scale in targeted tasks.

Although several different approaches exist, as presented above, they all use complex
model architectures which have an impact on the computational resources and the training
data required. Most authors aim to develop generic solutions with no focus on specific
tasks. The lack of a focused training dataset decreases the efficiency of the models on a
specific task something that we overcome by utilizing an appropriately tailored dataset
such as the CSE-Persistence corpus.

Appl. Sci. 2022, 12, 12353 6 of 17

4. The Proposed Approach
4.1. The CSE-Persistence Corpus

The Stanford Natural Language Inference (SNLI) corpus [35] is a well-known extensive
collection of English-written sentence pairs manually annotated with entailment, contradic-
tion, and neutral labels. It is usually used to determine the semantic relationship between
two different text data units, a premise, and a hypothesis. Following the SNLI paradigm, we
produced the CSE-Persistence corpus by modifying and annotating our CSE corpus [2] to
be suitable for the task of paraphrase recognition. For this purpose, we also utilized the
CSE ontology [2], which is asset-oriented and connects social engineering concepts with
cybersecurity ones. The CSE ontology focuses on sensitive data that could leak from an
SME employee during a chat-based conversation. It groups similar in-context concepts
to facilitate the hierarchical categorization of an SME’s assets and does not exceed three
levels of depth to be efficient for text classification algorithms. The CSE ontology was
created using a custom information extraction system and several text documents as input
(corporate IT Policies, IT professionals’ CVs, ICT Manuals, and others). An excerpt of
the CSE ontology is depicted in Figure 1 where the ‘+’ symbol means that the entity can
be expanded.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 18

vectors, while in the second vector, the sentence is represented on the basis of other
sources of knowledge. He evaluated his model on different datasets, such as Microsoft
Research Paraphrase Corpus, STS2015 ([33], p. 2015), and P4PIN [34]. The complexity of
the aforementioned approach makes it difficult to scale in targeted tasks.

Although several different approaches exist, as presented above, they all use complex
model architectures which have an impact on the computational resources and the train-
ing data required. Most authors aim to develop generic solutions with no focus on specific
tasks. The lack of a focused training dataset decreases the efficiency of the models on a
specific task something that we overcome by utilizing an appropriately tailored dataset
such as the CSE-Persistence corpus.

4. The Proposed Approach
4.1. The CSE-Persistence Corpus

The Stanford Natural Language Inference (SNLI) corpus [35] is a well-known exten-
sive collection of English-written sentence pairs manually annotated with entailment, con-
tradiction, and neutral labels. It is usually used to determine the semantic relationship
between two different text data units, a premise, and a hypothesis. Following the SNLI par-
adigm, we produced the CSE-Persistence corpus by modifying and annotating our CSE
corpus [2] to be suitable for the task of paraphrase recognition. For this purpose, we also
utilized the CSE ontology [2], which is asset-oriented and connects social engineering con-
cepts with cybersecurity ones. The CSE ontology focuses on sensitive data that could leak
from an SME employee during a chat-based conversation. It groups similar in-context
concepts to facilitate the hierarchical categorization of an SME’s assets and does not ex-
ceed three levels of depth to be efficient for text classification algorithms. The CSE ontol-
ogy was created using a custom information extraction system and several text documents
as input (corporate IT Policies, IT professionals’ CVs, ICT Manuals, and others). An ex-
cerpt of the CSE ontology is depicted in Figure 1 where the ‘+’ symbol means that the
entity can be expanded.

Figure 1. Excerpt of the CSE ontology.

Each instance of the CSE-Persistence corpus is composed of two sentences and is
manually labeled as being a member of one of the following three categories:
• Identical (I): The two sentences are semantically close and share a common term tar-

geting the same leaf entity in the CSE Ontology (e.g., USB_Stick in Figure 1).
• Similar (S): The two sentences are semantically related and share a common intent,

which translates into a higher-level entity in the CSE ontology, targeting a different
leaf entity (e.g., hardware as the higher-level entity and CD as the leaf entity in Figure
1).

Figure 1. Excerpt of the CSE ontology.

Each instance of the CSE-Persistence corpus is composed of two sentences and is
manually labeled as being a member of one of the following three categories:

• Identical (I): The two sentences are semantically close and share a common term target-
ing the same leaf entity in the CSE Ontology (e.g., USB_Stick in Figure 1).

• Similar (S): The two sentences are semantically related and share a common intent,
which translates into a higher-level entity in the CSE ontology, targeting a different leaf
entity (e.g., hardware as the higher-level entity and CD as the leaf entity in Figure 1).

• Different (D): The two sentences are not semantically related, and they do not share a
common higher-level or leaf entity.

We propose likening each CSE-Persistence corpus instance to a tiny drama play
composed of only two sentences. Thus, by borrowing some drama structure terms, we
named the two sentences as follows:

• The first sentence is referred to as the Prologue in the sense that the social engineering
attacker uses it to introduce her intention to the play.

• The second sentence is referred to as the Epilogue in the sense that it concludes the play
and informs us how the story ends.

Thus, the CSE-Persistence corpus contains instances of training examples where each
instance is composed of a string for the Prologue, a string for the Epilogue, and a Paraphrase
Recognition label (Identical, Similar, Different).

Appl. Sci. 2022, 12, 12353 7 of 17

4.2. The Training Process

During the training process, three columns were considered from the CSE-Persistence
corpus: ‘Prologue’, ‘Epilogue’, and ‘Paraphrase Recognition label’. The Paraphrase Recog-
nition label is the ‘gold_label’ given to the instance after the manual annotation of the
dataset. An excerpt of our CSE-Persistence corpus that is used for persistence recognition
follows in Table 1:

Table 1. Excerpt from the CSE-Persistence corpus.

Prologue Epilogue Paraphrase Recognition Label

1 I have my resume on this USB key Are you using a USB extension cord identical

2 See, without your password, nobody can
access your mail

As smart as they are, they didn’t the
password identical

3 When did you last change your password
I can cut some corners and save

some time but I’ll need your
username and password

identical

4 My network connection just went down like
you said I am just working on an audit different

5 Hello how may I help you Is there anything else I can help you
with today similar

6 It’s called Doctors Database and I believe
that they are located in Denver Colorado

Hello John. This is Bill Jenkins from
Doctor’s Database in Denver identical

7 We’re trying to troubleshoot a computer
networking problem

In the back of the computer can you
recognize the network cable identical

8 I am sorry for interrupting you, but I am
experiencing a problem with my Charge 2

When I tried to turn on the Charge
2 I saw that the battery was leaking similar

9 I need that info to report back to my boss My boss will probably fire me if I
don’t have it for the morning similar

10
The chief executive character is in a meeting

with important clients and would like the
password reset as his current email account

But we need the details or we can’t
give you any information different

The CSE-Persistence corpus was divided into train, validation, and test set, where all
the source data were elicited from successful or unsuccessful social engineering attacks
gathered from websites, books, and logs as described in our previous work [2].

4.3. The CSE-PersistenceBERT Model

Our approach incorporates the technology of Transformers, self-supervised learning,
pre-trained language models, and transfer learning to boost the performance of the para-
phrase recognition task in the context of a CSE attack. For this purpose, we developed
CSE-PersitenceBERT, a fine-tuned version of the BERT model. CSE-PersistenceBERT defines
a sentence vector-based model that performs text classification on pairs of fixed-size sentence
representations that are computed independently of one another. CSE-PersitenceBERT takes
as input an instance composed of two sentences and outputs a classification result for them.

BERT comes in two flavors: BERT-base and BERT-large; we chose to work with BERT-
base, a model that consists of twelve layers of transformer encoder blocks and 110 million
parameters. The transfer learning technique is used to improve the performance of the
downstream NLP task, which in this study is the paraphrase detection task, using a model
that is already trained (pre-trained) on a different task (e.g., language modeling). Transfer
learning, as adopted in our work, is depicted in Figure 2.

Appl. Sci. 2022, 12, 12353 8 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 18

4.3. The CSE-PersistenceBERT Model
Our approach incorporates the technology of Transformers, self-supervised learning,

pre-trained language models, and transfer learning to boost the performance of the para-
phrase recognition task in the context of a CSE attack. For this purpose, we developed
CSE-PersitenceBERT, a fine-tuned version of the BERT model. CSE-PersistenceBERT de-
fines a sentence vector-based model that performs text classification on pairs of fixed-size
sentence representations that are computed independently of one another. CSE-Persi-
tenceBERT takes as input an instance composed of two sentences and outputs a classifi-
cation result for them.

BERT comes in two flavors: BERT-base and BERT-large; we chose to work with
BERT-base, a model that consists of twelve layers of transformer encoder blocks and 110
million parameters. The transfer learning technique is used to improve the performance
of the downstream NLP task, which in this study is the paraphrase detection task, using
a model that is already trained (pre-trained) on a different task (e.g., language modeling).
Transfer learning, as adopted in our work, is depicted in Figure 2.

Figure 2. The proposed Transfer Learning approach.

The end-to-end learning process of the complete neural network is divided into a
pre-training phase where the BERT-base model is trained by masking word tokens in each
sentence of a large text corpus and a fine-tuning phase where the pre-trained BERT model
is learning the persistence recognition labels, once again, from the CSE-Persistence corpus.
This last training is performed only on the last BERT layer to extract features that will
allow the model to use the representations of the pre-trained model.

BERT uses the [CLS] token that is placed at the beginning of a token indicating the
start of the input sequence. In addition, the [SEP] token separates the two sentences, and
the [PAD] token is used for padding. Thus, an example instance would be the following:

[CLS] <sentence 1> [SEP] <sentence 2> [SEP] [PAD]

The [CLS] vector acts as an input to the dense layer, and the similarity is calculated
using a cosine similarity measure. The cosine similarity of two vectors a and b is computed
according to Formula (1): 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎, 𝑏) = ∑ సభට∑ మసభ ට∑ మసభ , (1)

where a, and b are vectors of dimension n.

Figure 2. The proposed Transfer Learning approach.

The end-to-end learning process of the complete neural network is divided into a
pre-training phase where the BERT-base model is trained by masking word tokens in each
sentence of a large text corpus and a fine-tuning phase where the pre-trained BERT model
is learning the persistence recognition labels, once again, from the CSE-Persistence corpus.
This last training is performed only on the last BERT layer to extract features that will allow
the model to use the representations of the pre-trained model.

BERT uses the [CLS] token that is placed at the beginning of a token indicating the
start of the input sequence. In addition, the [SEP] token separates the two sentences, and
the [PAD] token is used for padding. Thus, an example instance would be the following:

[CLS] <sentence 1> [SEP] <sentence 2> [SEP] [PAD]

The [CLS] vector acts as an input to the dense layer, and the similarity is calculated
using a cosine similarity measure. The cosine similarity of two vectors a and b is computed
according to Formula (1):

cosine_similarity(a, b) =
∑n

i=1 aibi√
∑n

i=1 a2
i

√
∑n

i=1 b2
i

, (1)

where a, and b are vectors of dimension n.
During the fine-tuning phase, we do not modify the neural network architecture. More

specifically, the classification pipeline (see Figure 3) is as follows: The pre-trained BERT
tokenizer sends to the transformer encoder a sequence of tokens, which is composed of
the two input sentences concatenated and separated by a special [SEP] token. A [CLS]
token is prepended to the sequence denoting the start of the sequence. This token is used
to extract the final embedding of the input instance. [PAD] token is a way to keep the input
size constant. The loss function is minimized by continuously training the entire neural
network on the CSE-Persistence corpus data. The loss function used is cross-entropy, which
is computed according to Formula (2):

lcross−entropy(ŷ, y) = −∑C
i=1 ti log(ŷi), (2)

where C is the number of different classes in the data, ŷ is the predicted probabilities vector
over the classes for the instance, y is the correct label for the instance, ti indicates binary
if i is the correct label for the specific instance, and ŷi is the predicted probability that the
instance belongs to class i.

Appl. Sci. 2022, 12, 12353 9 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 18

During the fine-tuning phase, we do not modify the neural network architecture.
More specifically, the classification pipeline (see Figure 3) is as follows: The pre-trained
BERT tokenizer sends to the transformer encoder a sequence of tokens, which is composed
of the two input sentences concatenated and separated by a special [SEP] token. A [CLS]
token is prepended to the sequence denoting the start of the sequence. This token is used
to extract the final embedding of the input instance. [PAD] token is a way to keep the
input size constant. The loss function is minimized by continuously training the entire
neural network on the CSE-Persistence corpus data. The loss function used is cross-en-
tropy, which is computed according to Formula (2): 𝑙௦௦ି௧௬(yො,𝑦) = −∑ 𝑡 log(yො)ୀଵ , (2)

where C is the number of different classes in the data, yො is the predicted probabilities
vector over the classes for the instance, y is the correct label for the instance, ti indicates
binary if i is the correct label for the specific instance, and yො is the predicted probability
that the instance belongs to class i.

Figure 3. The proposed classification pipeline.

The training objective is to find the parameters that minimize the function, as men-
tioned above, which equally translates to: 𝑎𝑟𝑔ఏ𝑚𝑖𝑛 ଵ||∑ 𝑙(𝑦ො,𝑦)(௫,௬)∈ , (3)

where D is the dataset consisting of n data points (xi, yi) usually referred to as input vec-
tors, xi is the vector inputted into the neural network, and yi is the accompanying label.

Figure 3. The proposed classification pipeline.

The training objective is to find the parameters that minimize the function, as men-
tioned above, which equally translates to:

argθmin
1
|D|∑(x,y)∈D l(ŷ, y), (3)

where D is the dataset consisting of n data points (xi, yi) usually referred to as input vectors,
xi is the vector inputted into the neural network, and yi is the accompanying label.

Instead of being initialized randomly, the CSE-PersistenceBERT model weights are
inherited by the pre-trained BERT model, and the neural network is trained from scratch.
The final sentence representations, which are a set of values called logits, are then passed
to the SoftMax [36] function to derive a probability distribution regarding the sentences’
paraphrase recognition task. Some of the BERT’s weights, which were initialized with
the pre-trained values, are also fine-tuned through backpropagation. The combination of
the linear layer with SoftMax is called a head. Therefore, it is said that we are attaching a
classification head to BERT to solve the prediction task. The SoftMax function that outputs
the probabilities of the instance belonging to each class is the following:

so f tmax(zi) =
exp(zi)

∑j exp
(
zj
) , (4)

where zi is each element in the last layer of the neural network.

Appl. Sci. 2022, 12, 12353 10 of 17

5. Implementation
5.1. CSE-Persistence Corpus

Table 2 presents the identity of the CSE-Persistence corpus, providing several key
statistics:

Table 2. Key statistics of the CSE-Persistence corpus.

Data set size 16,900 sentences
Type of text units Pairs of sentences

Source of judgment Three judges
Training pairs 13,520

Development pairs 1690
Test pairs 1690

Identical sentences 6484
Similar sentences 5023

Different sentences 5393

Several text pre-processing steps occurred on the CSE-Persistence corpus, such as
identification and removal of one-word sentences, ensuring appropriate text file encod-
ing, and noise removal, e.g., stopwords, emoji, etc. to prepare it as input to the CSE-
PersistenceBERT model.

In a separate validation phase, apart from our own annotation, we collected two more
judgments for each label of the 16,900 examples, where a 96% annotator consensus emerged.
In Table 1, three random sentence pairs with the selected gold label (Identical, Similar,
Different) in bold, and each annotator’s complete set of labels are depicted. E.g., the first
sentence pair was classified as Identical (I) by us and the two annotators. Thus, the three
labels are III, and the final Paraphrase Recognition Label (gold label) is Identical.

The underlined word is the entity found in the CSE Ontology. The first pair of
sentences in Table 3 uses the leaf-entity “password” of the CSE ontology. The second pair
of sentences does not share a leaf entity but a higher-level entity “IT” (Figure 1). The
higher-level entity “IT” contains the leaf entities “icon” and “file”. Finally, the third pair of
sentences has neither a leaf entity nor a higher-level entity in common.

Table 3. Examples of sentence pairs from the annotated CSE-Persistence corpus.

Prologue Epilogue Annotators Labels Paraphrase Recognition Label

Without your password,
nobody can access your mail,
even we at the data center

I can cut some corners to save
some time, but I’ll need your
username and password 1

III Identical 2

Just double-click on the icon
when it downloads

You must open the file when
it’s done SSS Similar

Are you using a USB
extension cord Thanks for the quick replies DDD Different

1 Underlined words represent CSE ontology entities. 2 Bold words represent gold labels.

To produce a well-balanced dataset, each Prologue appears five times in the CSE-
Persistence corpus with a different Epilogue and the corresponding label. An example of a
corpus instance in JSON format is presented in Figure 4:

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18

Table 3. Examples of sentence pairs from the annotated CSE-Persistence corpus.

Prologue Epilogue Annotators Labels Paraphrase Recognition
Label

Without your password, no-
body can access your mail,
even we at the data center

I can cut some corners to
save some time, but I’ll need
your username and pass-
word 1

III Identical 2

Just double-click on the icon
when it downloads

You must open the file when
it’s done

SSS Similar

Are you using a USB exten-
sion cord

Thanks for the quick replies DDD Different

1 Underlined words represent CSE ontology entities. 2 Bold words represent gold labels.

To produce a well-balanced dataset, each Prologue appears five times in the CSE-Per-
sistence corpus with a different Epilogue and the corresponding label. An example of a
corpus instance in JSON format is presented in Figure 4:

Figure 4. Example of a CSE-Persistence instance in JSON format.

5.2. CSE-PersistenceBERT
For the implementation, the Hugging Face [37] library of transformers was used

along with AllenNLP [38] and Pytorch [39]. The Hugging Face library has become the
standard library for NLP researchers, and several state-of-the-art model implementations
exist, such as GPT-2, BERT, RoBERTa, etc., with or without pre-trained model parameters.
Using AllenNLP and BERT-as-service [40], we implemented a text classification model
that embeds the input sequence, encodes it with a seq2vec ([41], p. 2) encoder, and finally
classifies it with the help of a SoftMax layer coupled with a classification head. The em-
bedding is done by BERT, BertPooler [38] did the encoding, and Adam [38] was employed
as the optimizer.

For the fine-tuning of the CSE-PersistenceBERT model, we set the hyperparameter
values as recommended in [4]: a maximum length of the input sentence to the model of
128 (max_length = 128), a batch size of 32 (batch_size = 32), a learning rate of 3e5, four
training epochs (epochs = 4), and a dropout probability of 0.1.

During the persistence recognition task, we also keep a top-five ranking of the most
similar sentences. E.g., for the sentence “The chief executive character wants to change her
password”, the top-5 ranking returns the following (Table 4):

Table 4. Top 5 of similar sentences.

Index Sentence Similarity

1
The chief executive character is in a meeting with important clients

and would like the password reset as his current email account pass-
word no longer works

0.7804

2
And listen we just installed an update that allows people to change

their passwords 0.6937

3 Now go ahead and type your password but don’t tell me what it is 0.5255

Figure 4. Example of a CSE-Persistence instance in JSON format.

Appl. Sci. 2022, 12, 12353 11 of 17

5.2. CSE-PersistenceBERT

For the implementation, the Hugging Face [37] library of transformers was used
along with AllenNLP [38] and Pytorch [39]. The Hugging Face library has become the
standard library for NLP researchers, and several state-of-the-art model implementations
exist, such as GPT-2, BERT, RoBERTa, etc., with or without pre-trained model parameters.
Using AllenNLP and BERT-as-service [40], we implemented a text classification model
that embeds the input sequence, encodes it with a seq2vec ([41], p. 2) encoder, and
finally classifies it with the help of a SoftMax layer coupled with a classification head.
The embedding is done by BERT, BertPooler [38] did the encoding, and Adam [38] was
employed as the optimizer.

For the fine-tuning of the CSE-PersistenceBERT model, we set the hyperparameter
values as recommended in [4]: a maximum length of the input sentence to the model of
128 (max_length = 128), a batch size of 32 (batch_size = 32), a learning rate of 3e5, four
training epochs (epochs = 4), and a dropout probability of 0.1.

During the persistence recognition task, we also keep a top-five ranking of the most
similar sentences. E.g., for the sentence “The chief executive character wants to change her
password”, the top-5 ranking returns the following (Table 4):

Table 4. Top 5 of similar sentences.

Index Sentence Similarity

1
The chief executive character is in a meeting with important clients

and would like the password reset as his current email account
password no longer works

0.7804

2 And listen we just installed an update that allows people to change
their passwords 0.6937

3 Now go ahead and type your password but don’t tell me what it is 0.5255

4 You should never tell anybody your password
not even tech support 0.3490

5 In this case, would you like to reset your password 0.3488

6. Evaluation

We evaluated the CSE-PersistenceBERT model using the following standard measures
that are used to assess the performance of classification tasks:

• True Positives (TP): Sentence pairs where the true tag is positive and whose category
is correctly predicted to be positive.

• False Positives (FP): Sentence pairs where the true tag is negative and whose category
is incorrectly predicted to be positive.

• True Negatives (TN): Sentence pairs where the true tag is negative and whose category
is correctly predicted to be negative.

• False Negatives (FN): Sentence pairs where the true tag is positive and whose class is
incorrectly predicted to be negative.

Using the above measures, we calculate Accuracy, defined as the number of sentence
pairs correctly identified as either true positive or truly negative out of the total number
of entities

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

For our baseline model, we used word2vec [12] to produce word vector representations
in R300. Then, the sentence vector embeddings were generated by averaging the vector
embeddings of all tokens in the sentence. Furthermore, we employ BERT-base without
fine-tuning as a comparison model to support our proposed model’s superiority.

During CSE-PersistenceBERT’s fine-tuning, the only required architecture changes
that are appropriate for the paraphrase recognition task concern the extra fully-connected

Appl. Sci. 2022, 12, 12353 12 of 17

layers. During the supervised learning of the downstream task, the parameters of these
extra layers were learned from scratch, while some of the parameters of the pre-trained
BERT model were fine-tuned. After fine-tuning, we compared CSE-PersitenceBERT to
the baseline model and achieved the accuracy values presented in Table 5, which are also
aligned with the work in [42].

Table 5. Model benchmarks on the CSE-Persistence corpus.

Model Training
Accuracy (%)

Training
Loss

Validation
Accuracy (%)

Validation
Loss

Baseline 82.57 0.36 73.83 0.39
BERT-base 84.01 0.24 76.79 0.37

CSE-PersistenceBERT 84.96 0.21 78.03 0.36

Figure 5a, depicts the accuracy of the training and validation data sets of CSE-
PersistenceBERT (indicated as CSE), and Figure 5b depicts the loss of training and validation
datasets.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18

(a) (b)

Figure 5. (a) Training and Validation Accuracy (b) Training and Validation Loss.

A comparison of the accuracy of the baseline model vs. CSE-PersistenceBERT is de-
picted in Figure 6 as the validation set of the CSE-Persistence corpus varied from 0% to
100%. In every percentage of data used, the CSE-PersistenceBERT model outperforms the
baseline model. One key observation of the experimental results was that the difference
between CSE-PersistenceBERT and baseline model’s accuracy was bigger when the cor-
pus was smaller (between 20% and 40%). This shows that even a complex BERT-based
model can be efficient with a smaller corpus.

Figure 6. Comparison of accuracy on the validation set as a function of corpus percentage.

Furthermore, we investigated the impact of the number of layers transferred during
fine-tuning from the unsupervised pre-training to the persistence recognition task. Figure
7, depicts the performance of the CSE-PersistenceBERT model as a function of the trans-
ferred layers. As an observation, we confirmed that each layer of the pre-trained BERT
model contains valuable information for the persistence recognition task. Thus, CSE-Per-
sistenceBERT improved its performance in the persistence recognition task by transferring
its “knowledge”.

Figure 5. (a) Training and Validation Accuracy (b) Training and Validation Loss.

A comparison of the accuracy of the baseline model vs. CSE-PersistenceBERT is
depicted in Figure 6 as the validation set of the CSE-Persistence corpus varied from 0% to
100%. In every percentage of data used, the CSE-PersistenceBERT model outperforms the
baseline model. One key observation of the experimental results was that the difference
between CSE-PersistenceBERT and baseline model’s accuracy was bigger when the corpus
was smaller (between 20% and 40%). This shows that even a complex BERT-based model
can be efficient with a smaller corpus.

Furthermore, we investigated the impact of the number of layers transferred during
fine-tuning from the unsupervised pre-training to the persistence recognition task. Fig-
ure 7, depicts the performance of the CSE-PersistenceBERT model as a function of the
transferred layers. As an observation, we confirmed that each layer of the pre-trained
BERT model contains valuable information for the persistence recognition task. Thus,
CSE-PersistenceBERT improved its performance in the persistence recognition task by
transferring its “knowledge”.

Appl. Sci. 2022, 12, 12353 13 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 18

(a) (b)

Figure 5. (a) Training and Validation Accuracy (b) Training and Validation Loss.

A comparison of the accuracy of the baseline model vs. CSE-PersistenceBERT is de-
picted in Figure 6 as the validation set of the CSE-Persistence corpus varied from 0% to
100%. In every percentage of data used, the CSE-PersistenceBERT model outperforms the
baseline model. One key observation of the experimental results was that the difference
between CSE-PersistenceBERT and baseline model’s accuracy was bigger when the cor-
pus was smaller (between 20% and 40%). This shows that even a complex BERT-based
model can be efficient with a smaller corpus.

Figure 6. Comparison of accuracy on the validation set as a function of corpus percentage.

Furthermore, we investigated the impact of the number of layers transferred during
fine-tuning from the unsupervised pre-training to the persistence recognition task. Figure
7, depicts the performance of the CSE-PersistenceBERT model as a function of the trans-
ferred layers. As an observation, we confirmed that each layer of the pre-trained BERT
model contains valuable information for the persistence recognition task. Thus, CSE-Per-
sistenceBERT improved its performance in the persistence recognition task by transferring
its “knowledge”.

Figure 6. Comparison of accuracy on the validation set as a function of corpus percentage.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 18

Figure 7. Performance improvement during transfer-learning.

7. Discussion
The high accuracy of the CSE-PersistenceBERT model indicates that it is capable of

being used as an additional module in our proposed chat-based social engineering attack
recognition system [1]. CSE-PersistenceBERT recognizes the persistent behavior of a ma-
licious user by measuring the semantic similarity of the sentences uttered. Therefore, if an
interlocutor tries to extract critical information by trying different approaches, her inten-
tion will be revealed by the model. Such a component is a useful add-on for a holistic
system that combines several different models to recognize individual enablers of suc-
cessful CSE attacks e.g., personality characteristics, persuasion, and deception attempts,
dialogue acts, etc.

Our research concludes that pre-trained models can be used for cyber-security-ori-
ented tasks such as the recognition of chat-based social engineering attacks. The benefits
are considerable:
• Less development and training time compared to an RNN model approach that is

trained from scratch. The model weights are pre-trained, encoding valuable infor-
mation trained on extensive corpora.

• Less training data as we only need to fine-tune the pre-trained model for a specific
downstream task.

• Increased accuracy on the downstream task after fine-tuning for a few epochs (e.g.,
2–4).
Initially, we encountered many errors of overestimating semantic similarity, and af-

ter further research, we concluded that punctuation played a crucial role in many missed
cases. Additionally, the lexical overlap was another reason that led the model to mistak-
enly classify pairs of sentences as similar when they were not. The reasons were almost
analogous for the cases where the CSE-Persistence model underpredicted similarity.
Thus, the similarity was difficult to detect when there was a significant lack of lexical
overlap or if completely different punctuation was used.

We experimented by using Euclidean distance instead of cosine similarity, and we
observed slightly worse performance metrics. This can be explained because Euclidean
distance is highly effective at clustering tasks, but a smaller distance is measured if the
two different vectors have no common attribute values.

Figure 7. Performance improvement during transfer-learning.

7. Discussion

The high accuracy of the CSE-PersistenceBERT model indicates that it is capable
of being used as an additional module in our proposed chat-based social engineering
attack recognition system [1]. CSE-PersistenceBERT recognizes the persistent behavior of a
malicious user by measuring the semantic similarity of the sentences uttered. Therefore,
if an interlocutor tries to extract critical information by trying different approaches, her
intention will be revealed by the model. Such a component is a useful add-on for a holistic
system that combines several different models to recognize individual enablers of successful
CSE attacks, e.g., personality characteristics, persuasion, and deception attempts, dialogue
acts, etc.

Appl. Sci. 2022, 12, 12353 14 of 17

Our research concludes that pre-trained models can be used for cyber-security-oriented
tasks such as the recognition of chat-based social engineering attacks. The benefits are
considerable:

• Less development and training time compared to an RNN model approach that is
trained from scratch. The model weights are pre-trained, encoding valuable informa-
tion trained on extensive corpora.

• Less training data as we only need to fine-tune the pre-trained model for a specific
downstream task.

• Increased accuracy on the downstream task after fine-tuning for a few epochs (e.g.,
2–4).

Initially, we encountered many errors of overestimating semantic similarity, and after
further research, we concluded that punctuation played a crucial role in many missed
cases. Additionally, the lexical overlap was another reason that led the model to mistak-
enly classify pairs of sentences as similar when they were not. The reasons were almost
analogous for the cases where the CSE-Persistence model underpredicted similarity. Thus,
the similarity was difficult to detect when there was a significant lack of lexical overlap or
if completely different punctuation was used.

We experimented by using Euclidean distance instead of cosine similarity, and we
observed slightly worse performance metrics. This can be explained because Euclidean
distance is highly effective at clustering tasks, but a smaller distance is measured if the two
different vectors have no common attribute values.

We explored word embeddings dimensionality reduction with Principal Components
Analysis (PCA) and found a slight improvement in accuracy as in [43]. This approach may
be helpful in the case of a smaller dataset; however, research is ongoing regarding making
pre-trained models better few-shot learners [44,45] focusing on natural language inference
tasks such as text entailment [46]. Few-shot learners, along with prompt engineering and
GPT-3 [47], are the next step in our journey.

8. Conclusions

In this paper, CSE-PersistenceBERT was introduced, a pre-trained BERT-based model
that was fine-tuned using the custom CSE-Persistence corpus to recognize persistent behav-
ior as an enabler of successful chat-based social engineering attacks. Through pre-training
on a corpus with long sections of contiguous in-context sentences, CSE-PersistenceBERT
acquired the necessary language knowledge related to CSE attacks. This way the model
acquires the capability to process long-range linguistic and semantic dependencies which
are then successfully transferred to solve NLU tasks such as persistence recognition. The
presented work confirms that the generic word vector representations produced by the
pre-trained models can be employed in a range of natural language processing tasks related
to the cyber security domain. Moreover, our fine-tuning using the appropriately annotated
CSE-Persistence corpus generated in-context representations suitable for the paraphrase
recognition task during a chat-based social engineering attack. The approach taken achieved
satisfactory performance results while keeping the same model size. In the future, we plan
to investigate the effects of data augmentation to improve the model’s performance.

CSE-PersistenceBERT is intended to be part of a holistic system that aims to recognize
CSE attacks in real time. The simple model design was one of our primary design principles
in order to keep computational resources low. We are planning to integrate this model into
an ensemble model which combines the output of several individual CSE attack recognizers
on the basis of different characteristics e.g., personality characteristics, deception, and
persuasion attempts detection, dialogue-act recognition, etc. The final prediction of the
ensemble model will be performed using a heuristic, e.g., weighted majority vote.

Appl. Sci. 2022, 12, 12353 15 of 17

Author Contributions: Conceptualization, N.T., P.F. and I.M.; methodology, N.T. and I.M.; soft-
ware, N.T.; evaluation, N.T. and P.F.; writing—original draft preparation, N.T. and P.F.; writing—
review and editing, N.T., P.F. and I.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation Meaning
BERT Bidirectional Encoder Representations from Transformers
BoW Bag-of-Words
CD Compact Disk
CLS Classification
CNN Convolutional Neural Network
CSE Chat-based Social Engineering
DVD Digital Video Disk
GPT Generative Pre-trained Transformer
HD Hard Disk
ICT Information and Communication Technology
IT Information Technology
JSON JavaScript Object Notation
LSTM Long Short-Term Memory
NLP Natural Language Processing
NLU Natural Language Understanding
P4PIN Paraphrase for Plagiarism Include Non-Plagiarism
PAD Padding
PCA Principal Components Analysis
RNN Recurrent Neural Networks
SEP Separator
SEQ2SEQ Sequence to sequence
SME Small-Medium Enterprise
SNLI Stanford Natural Language Inference
STS Semantic Textual Similarity
TF-IDF Term Frequency-Inverse Document Frequency
USB Universal Serial Bus
WORD2VEC Word to vector

References
1. Tsinganos, N.; Sakellariou, G.; Fouliras, P.; Mavridis, I. Towards an Automated Recognition System for Chat-based Social

Engineering Attacks in Enterprise Environments. In Proceedings of the 13th International Conference on Availability, Reliability
and Security, Hamburg, Germany, 27–30 August 2018. [CrossRef]

2. Tsinganos, N.; Mavridis, I. Building and Evaluating an Annotated Corpus for Automated Recognition of Chat-Based Social
Engineering Attacks. Appl. Sci. 2021, 11, 10871. [CrossRef]

3. Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A survey of transformers. AI Open 2022, 3, 111–132. [CrossRef]
4. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1 (Long and Short Papers), pp. 4171–4186.
[CrossRef]

5. Chandrasekaran, D.; Mago, V. Evolution of Semantic Similarity—A Survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37. [CrossRef]
6. Agirre, E.; Diab, M.; Cer, D.; Gonzalez-Agirre, A. SemEval-2012 Task 6: A Pilot on Semantic Textual Similarity. In Proceedings of

the First Joint Conference on Lexical and Computational Semantics—Volume 1: Proceedings of the Main Conference and the
Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, Montreal, QC, Canada, 7–8
June 2012; pp. 385–393.

http://doi.org/10.1145/3230833.3233277
http://doi.org/10.3390/app112210871
http://doi.org/10.1016/j.aiopen.2022.10.001
http://doi.org/10.18653/v1/N19-1423
http://doi.org/10.1145/3440755

Appl. Sci. 2022, 12, 12353 16 of 17

7. Manning, C.D. Local Textual Inference: It’s Hard to Circumscribe, But You Know It When You See It—And NLP Needs It. 2006.
Available online: http://nlp.stanford.edu/~{}manning/papers/LocalTextualInference.pdf (accessed on 18 April 2022).

8. Marelli, M.; Bentivogli, L.; Baroni, M.; Bernardi, R.; Menini, S.; Zamparelli, R. SemEval-2014 Task 1: Evaluation of Compositional
Distributional Semantic Models on Full Sentences through Semantic Relatedness and Textual Entailment. In Proceedings of the
8th International Workshop on Semantic Evaluation (SemEval 2014), Dublin, Ireland, 23–24 August 2014; pp. 1–8. [CrossRef]

9. Dagan, I.; Glickman, O.; Magnini, B. The PASCAL Recognising Textual Entailment Challenge. In Machine Learning Challenges.
Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Textual Entailment; Quiñonero-Candela, J., Dagan, I.,
Magnini, B., d’Alché-Buc, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3944, pp. 177–190. [CrossRef]

10. Vrbanec, T.; Meštrović, A. Corpus-Based Paraphrase Detection Experiments and Review. Information 2020, 11, 241. [CrossRef]
11. WordNet|A Lexical Database for English. Available online: https://wordnet.princeton.edu/ (accessed on 14 October 2021).
12. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,

arXiv:1301.3781. Available online: http://arxiv.org/abs/1301.3781 (accessed on 3 March 2019).
13. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP), Doha, Qatar, 26–28 October 2014; pp. 1746–1751. [CrossRef]
14. Mohamed, I.; Gomaa, W.; Abdalhakim, H. A Hybrid Model for Paraphrase Detection Combines pros of Text Similarity with Deep

Learning. Int. J. Comput. Appl. 2019, 178, 18–23. [CrossRef]
15. McCann, B.; Bradbury, J.; Xiong, C.; Socher, R. Learned in translation: Contextualized word vectors. In Proceedings of the 31st

International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017; pp. 6297–6308.
16. Singh, S.; Singh, S. Systematic review of spell-checkers for highly inflectional languages. Artif. Intell. Rev. 2020, 53, 4051–4092.

[CrossRef]
17. Lipton, Z.C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for sequence learning. arXiv 2015,

arXiv:1506.00019.
18. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef]
19. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Proceedings of the 31st International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December
2017; pp. 6000–6010.

20. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
21. Budzianowski, P.; Vulić, I. Hello, It’s GPT-2—How Can I Help You? Towards the Use of Pretrained Language Models for

Task-Oriented Dialogue Systems. In Proceedings of the 3rd Workshop on Neural Generation and Translation, Hong Kong, China,
4 November 2019; pp. 15–22. [CrossRef]

22. Ruder, S. Neural Transfer Learning for Natural Language Processing. Ph.D. Thesis, NUI Galway, Galway, Ireland, 2019. Available
online: https://aran.library.nuigalway.ie/handle/10379/15463 (accessed on 23 November 2022).

23. Peters, M.E.; Ruder, S.; Smith, N.A. To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks. In Proceedings
of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), Florence, Italy, 2 August 2019; pp. 7–14. [CrossRef]

24. Wiggins, W.F.; Tejani, A.S. On the Opportunities and Risks of Foundation Models for Natural Language Processing in Radiology.
Radiol. Artif. Intell. 2022, 4, e220119. [CrossRef]

25. Church, K.W.; Chen, Z.; Ma, Y. Emerging trends: A gentle introduction to fine-tuning. Nat. Lang. Eng. 2021, 27, 763–778.
[CrossRef]

26. Gupta, A.; Agarwal, A.; Singh, P.; Rai, P. A deep generative framework for paraphrase generation. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference
and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp.
5149–5156.

27. Thompson, V. Methods for Detecting Paraphrase Plagiarism. arXiv 2017, arXiv:1712.10309. Available online: http://arxiv.org/
abs/1712.10309 (accessed on 27 April 2022).

28. Ahmed, M.; Samee, M.R.; Mercer, R.E. Improving Tree-LSTM with Tree Attention. In Proceedings of the 2019 IEEE 13th
International Conference on Semantic Computing (ICSC), Newport Beach, CA, USA, 30 January–1 February 2019; pp. 247–254.
[CrossRef]

29. Benabbou, F.; El Mostafa, H. A System for Ideas Plagiarism Detection: State of art and proposed approach. Inf. Fusion 2020, 9.
[CrossRef]

30. Shuang, K.; Zhang, Z.; Loo, J.; Su, S. Convolution-deconvolution word embedding: An end-to-end multi-prototype fusion
embedding method for natural language processing. Inf. Fusion 2020, 53, 112–122. [CrossRef]

31. Kubal, D.R.; Nimkar, A.V. A survey on word embedding techniques and semantic similarity for paraphrase identification. Int. J.
Comput. Syst. Eng. 2019, 5, 36–52. [CrossRef]

32. Nguyen, H.T.; Duong, P.H.; Cambria, E. Learning short-text semantic similarity with word embeddings and external knowledge
sources. Knowl.-Based Syst. 2019, 182, 104842. [CrossRef]

http://nlp.stanford.edu/~{}manning/papers/LocalTextualInference.pdf
http://doi.org/10.3115/v1/S14-2001
http://doi.org/10.1007/11736790_9
http://doi.org/10.3390/info11050241
https://wordnet.princeton.edu/
http://arxiv.org/abs/1301.3781
http://doi.org/10.3115/v1/D14-1181
http://doi.org/10.5120/ijca2019919011
http://doi.org/10.1007/s10462-019-09787-4
http://doi.org/10.1162/neco_a_01199
http://doi.org/10.18653/v1/D19-5602
https://aran.library.nuigalway.ie/handle/10379/15463
http://doi.org/10.18653/v1/W19-4302
http://doi.org/10.1148/ryai.220119
http://doi.org/10.1017/S1351324921000322
http://arxiv.org/abs/1712.10309
http://arxiv.org/abs/1712.10309
http://doi.org/10.1109/ICOSC.2019.8665673
http://doi.org/10.11591/ijai.v9.i1
http://doi.org/10.1016/j.inffus.2019.06.009
http://doi.org/10.1504/IJCSYSE.2019.098417
http://doi.org/10.1016/j.knosys.2019.07.013

Appl. Sci. 2022, 12, 12353 17 of 17

33. Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.; Gonzalez-Agirre, A.; Guo, W.; Lopez-Gazpio, I.; Maritxalar, M.; Mihalcea, R.;
et al. SemEval-2015 task 2: Semantic textual similarity, english, spanish and pilot on interpretability. In Proceedings of the 9th
International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2015, Denver, CO, USA, 4–5 June 2015; pp. 252–263.
[CrossRef]

34. Sánchez-Vega, J.F. Identificación de Plagio Parafraseado Incorporando Estructura, Sentido y Estilo de los Textos. Ph.D. Thesis,
Instituto Nacional de Astrofísica, Optica y Electrónica, San Andrés Cholula, Mexico, 2016.

35. Bowman, S.R.; Angeli, G.; Potts, C.; Manning, C.D. A large annotated corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September
2015; pp. 632–642. [CrossRef]

36. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
37. Transformers. Available online: https://huggingface.co/docs/transformers/index (accessed on 8 April 2022).
38. Gardner, M.; Grus, J.; Neumann, M.; Tafjord, O.; Dasigi, P.; Liu, N.; Peters, M.; Schmitz, M.; Zettlemoyer, L. AllenNLP: A deep

semantic natural language processing platform. arXiv 2018, arXiv:1803.07640.
39. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, Red Hook, NY, USA, 8–14 December 2019; Curran Associates Inc.: Vancouver, BC, Canada, 2019;
pp. 8026–8037.

40. Raval, S. Bert-as-Service. 2022. Available online: https://github.com/llSourcell/bert-as-service (accessed on 13 July 2022).
41. Kim, H.J.; Hong, S.E.; Cha, K.J. seq2vec: Analyzing sequential data using multi-rank embedding vectors. Electron. Commer. Res.

Appl. 2020, 43, 101003. [CrossRef]
42. Phang, J.; Févry, T.; Bowman, S.R. Sentence Encoders on STILTs: Supplementary Training on Intermediate Labeled-data Tasks.

arXiv 2019, arXiv:1811.01088.
43. Huang, L.; Dou, Z.; Hu, Y.; Huang, R. Textual Analysis for Online Reviews: A Polymerization Topic Sentiment Model. IEEE

Access 2019, 7, 91940–91945. [CrossRef]
44. Gao, T.; Fisch, A.; Chen, D. Making Pre-trained Language Models Better Few-shot Learners. In Proceedings of the 59th Annual

Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing, Online, 1–6 August 2021; Long Papers. Volume 1, pp. 3816–3830. [CrossRef]

45. Hu, Y.; Ding, J.; Dou, Z.; Chang, H. Short-Text Classification Detector: A Bert-Based Mental Approach. Comput. Intell. Neurosci.
2022, 2022, 8660828. [CrossRef] [PubMed]

46. Wang, S.; Fang, H.; Khabsa, M.; Mao, H.; Ma, H. Entailment as Few-Shot Learner. arXiv 2021, arXiv:2104.14690.
47. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. Language

Models are Few-Shot Learners. arXiv 2020, arXiv:2005.14165.

http://doi.org/10.18653/v1/s15-2045
http://doi.org/10.18653/v1/D15-1075
https://huggingface.co/docs/transformers/index
https://github.com/llSourcell/bert-as-service
http://doi.org/10.1016/j.elerap.2020.101003
http://doi.org/10.1109/ACCESS.2019.2920091
http://doi.org/10.18653/v1/2021.acl-long.295
http://doi.org/10.1155/2022/8660828
http://www.ncbi.nlm.nih.gov/pubmed/35310586

	Introduction
	Background
	Natural Language Processing
	Neural Networks

	Related Work
	The Proposed Approach
	The CSE-Persistence Corpus
	The Training Process
	The CSE-PersistenceBERT Model

	Implementation
	CSE-Persistence Corpus
	CSE-PersistenceBERT

	Evaluation
	Discussion
	Conclusions
	References

