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Featured Application: Methods and techniques demonstrated in this work can be used to increase
the effectiveness of chat-based social engineering attack detection systems.

Abstract: Chat-based social engineering (CSE) attacks are attracting increasing attention in the
Small-Medium Enterprise (SME) environment, given the ease and potential impact of such an attack.
During a CSE attack, malicious users will repeatedly use linguistic tricks to eventually deceive their
victims. Thus, to protect SME users, it would be beneficial to have a cyber-defense mechanism able
to detect persistent interlocutors who repeatedly bring up critical topics that could lead to sensitive
data exposure. We build a natural language processing model, called CSE-PersistenceBERT, for
paraphrase detection to recognize persistency as a social engineering attacker’s behavior during a
chat-based dialogue. The CSE-PersistenceBERT model consists of a pre-trained BERT model fine-
tuned using our handcrafted CSE-Persistence corpus; a corpus appropriately annotated for the specific
downstream task of paraphrase recognition. The model identifies the linguistic relationship between
the sentences uttered during the dialogue and exposes the malicious intent of the attacker. The results
are satisfactory and prove the efficiency of CSE-PersistenceBERT as a recognition mechanism of a
social engineer’s persistent behavior during a CSE attack.

Keywords: cybersecurity; sensitive data; chat-based social engineering attack; persistence; deep
learning; natural language processing; transfer learning; BERT

1. Introduction

In a chat-based dialogue e.g., between an SME employee and a potential customer,
the interlocutors exchange written sentences during their communication. The ability to
identify one or more characteristics [1] that can discriminate a normal interlocutor from a
malicious one can lead to sufficiently protecting the SME employee from a potential social
engineering attack. To achieve her goal, a malicious interlocutor repeats her arguments
many times in a conversation to convince and manipulate her partner. This was also
confirmed, after processing our CSE corpus [2], where we observed that 83% of social
engineering attackers tend to insist on their arguments to exfiltrate the targeted type of
critical information. The persistence of an interlocutor to regurgitate the same topic that
could lead to sensitive data exfiltration can be considered an enabler of a successful CSE
attack. Thus, there is a need to develop a mechanism for recognizing when an interlocutor
is continuously trying to lead the conversation to a specific and previously mentioned topic.

To cope with such a problem, we can adopt different approaches depending on the
pros and cons of each one. Traditional machine learning models require substantial amounts
of labeled data to be trained for a recognition task, but labeling data is a time-consuming
and expensive activity. In pursuing persistence recognition, we choose to leverage the
latest trends in deep learning, especially the Transformers [3] technology. Transformers use
substantial amounts of unlabeled raw text for training and take advantage of the linguistic
information contained to overcome the difficulty of creating a large amount of labeled data.
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The Transformer models are very efficient in learning the context and relationships between
sequential data, such as words in a sentence. Even if supervised learning using labeled
data is an option, learning robust word vector representations in an unsupervised manner
of learning can lead to a significant performance boost.

In this paper, we describe a hybrid approach for the paraphrase detection task, in the
context of CSE attacks, based on a combination of unsupervised pre-training and super-
vised fine-tuning based on the Transformer-based BERT model [4]. This approach results in
our proposed model, called CSE-PersistenceBERT, which learns a universal representation
that transfers knowledge with only minimal adaptation to the paraphrase recognition task.
Initially, the CSE-PersistenceBERT model has access to a large corpus of unlabeled text
on which BERT has been pre-trained, and later it uses the CSE-Persistence corpus, which
emerged from the CSE corpus of our previous work [2]. CSE-Persistence corpus generated
after manually annotating the CSE corpus and utilizing the CSE ontology [2]. This corpus
which is relevant to the downstream task was used to fine-tune CSE-PersistenceBERT.
The complete training procedure was performed in two stages: firstly, the BERT model
parameters were learned by training the model using unlabeled data on a language mod-
eling objective, and secondly, a part of the pre-trained parameters was fine-tuned on the
paraphrase recognition task using labeled data from the CSE-Persistence corpus. The
evaluation results confirmed that CSE-PersistenceBERT can recognize the persistence of an
interlocutor in an early stage of a chat-based conversation. This can result in an indicator of
a potential social engineering attack, given that the topic of the conversation is an entity in
our CSE ontology.

This work contributes to improving knowledge about utilizing existing state-of-the-
art deep learning models as cyber defense mechanisms. Our study provides a better
understanding of how we can tailor a BERT-based language model to expose the malicious
intent of an interlocutor. Furthermore, detailed implementation details are given about
fine-tuning such a model using an in-context and appropriately annotated corpus for the
paraphrase recognition task.

The remainder of this paper is organized as follows: Section 2 provides an overview of
the relevant background information. In Section 3, related work regarding the application
of machine learning and deep learning approaches to the detection of social engineering
attacks is presented. The proposed approach is presented in Section 4 and the implemen-
tation details are given in Section 5. The evaluation results are discussed in Section 6,
respectively. In Section 7, we discuss our findings and the paper concludes with Section 8.

2. Background
2.1. Natural Language Processing

In Natural Language Processing (NLP) terms, persistence recognition can be cast as a
Natural Language Understanding (NLU) task. Furthermore, there are a plethora of relative
NLU tasks that can be utilized to describe persistence recognition, such as Semantic Textual
Similarity, Natural Language Inference, and Paraphrase Recognition. All these NLU tasks
are closely related, but they also differ in several aspects:

• Semantic Textual Similarity (STS) [5,6] is the semantic task of inferring the relation
between different text data units. It is usually measured as a numerical score in
the range of [0, 1] and quantifies the semantic similarity between different text data
units. In earlier days, techniques such as Bag of Words (BoW) and Term Frequency-
Inverse Document Frequency (TF-IDF) were used to represent text as vectors to aid
the calculation of semantic similarity. These techniques were designed to identify if
two text units contained the same words or a similar group of characters. However,
sentences can have different meanings while containing the exact, same words or can
contain different words while representing semantically similar concepts.

• Natural Language Inference, sometimes also called Textual Entailment [7–9], is the
classification task of determining, given a text premise and a text hypothesis, whether
the hypothesis is entailed by, contradictory to, or independent of the premise. The
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most popular categories used for textual entailment relationships are entailment,
contradiction, and neutral.

• Paraphrase Recognition [10] can be described as another text classification task that
determines whether two text data units have a similar meaning (or not) in a spe-
cific context.

Semantic textual similarity identifies the semantic equivalence between text data
units as a continuous value, while textual entailment and paraphrase detection produce a
categorical output. However, it is possible to quickly transfer, e.g., from the STS measure
area to the Paraphrase Detection task, by introducing a paraphrase detection threshold. For
example, one can set a certain value of the STS measurement above which two different text
data units can be considered as related. The aforementioned NLU tasks can also broadly be
classified based on the approach used to achieve the objective, as follows:

• knowledge-based, where ontologies, databases, or dictionaries are used (e.g., WordNet [11])
• corpus-based, where information retrieved from large corpora is used (e.g., word2vec [12])
• deep neural network-based, where recent developments of neural networks are uti-

lized (e.g., CNNs [13], Transformers [3], etc.), and
• hybrid-based, where characteristics from all the above-mentioned methods are com-

bined [14].

For each of these NLU tasks, there are several popular datasets used for the per-
formance evaluation of the corresponding algorithms. These datasets are composed of
sentences or pairs of sentences with associated classification labels.

2.2. Neural Networks

A neural network model that transforms one sequence of tokens into another performs
a sequence-to-sequence (Seq2Seq) task, as it accepts a sequence of tokens as input and pro-
duces another sequence of tokens as output. Known applications of such tasks are machine
translation [15], spell-checker [16], etc. This paradigm, until recently, was implemented
by neural networks based on an encoder-decoder architecture such as recurrent neural
networks (RNNs) [17]. The encoder e.g., a Long Short-Term Memory (LSTM) [18] neural
network, takes a sequence of tokens and outputs a fixed-size vector representation of the
input. Then, the decoder, which is also an RNN, uses this vector to produce the output
sequence of tokens. The limitation of this workflow lies in the information compression
that occurs during the transformation of the input sequence into a fixed-length vector. No
matter how lengthy the input sequence, its representation will always have to fit into a
fixed vector size, and consequently a significant part of the information is lost.

This bottleneck was overcome using a mechanism called Attention [19,20]. Attention
can produce a summary for each input token, which is context-dependent. This summary is
a list of vectors that act as a memory that the decoder can look up during output production.
These vectors represent the hidden states of the encoder and, in NLP, we can think of them
as key-value pairs representing input tokens. An attention function f is applied on every
key producing a weight, and then the input values are weighted by the corresponding
weight and summed up to create the summary vector. This weighted sum is then appended
to the decoder’s hidden states to produce the final output sequence.

A Transformer [19] is a relatively new type of encoder-decoder neural network ar-
chitecture that utilizes a specific type of attention mechanism based on the concept of
self-attention. Due to their outstanding performance over RNNs, Transformers are now
the de facto standard architecture to use in related NLP tasks (machine translation, etc.).
The self-attention mechanism produces, for each input token, a summary of the entire
input, using as a context the specific token. Furthermore, a Transformer uses multi-head
self-attention by using multiple sets of key-value pairs and queries per token, thus producing
multiple sets of weights focused on different input sequence characteristics. By repeatedly
applying several layers, the input sequence is transformed from a raw word embedding to
a more abstract form representing the input’s semantics. While a Transformer is a powerful
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model by itself, it also acts as the underlying architecture of well-known pre-trained models
such as GPT-2 ([21], p. 2) and BERT [4].

Pre-trained models are used in transfer learning [22], which is a collection of techniques
that improve the performance of a neural network model in a task using data and/or a
model trained for a different task. Transfer learning consists of at least two steps [23];

• pre-training, where the model learns a general-purpose representation of inputs, and
• adaptation, where the input representation is transferred to a downstream task. The

adaptation has two main paradigms:

a. Feature extraction, where the model’s weights remain unchanged and are used
as features in a downstream task.

b. Fine-tuning, where (some of) the model’s weights are unfrozen and fine-tuned
for the new downstream task.

In the first step, the model is trained for one task (pre-training), and in the second
step, it is adjusted for another task (fine-tuning). Transfer learning uses word embeddings,
which are learned vector representations. Thus, semantically similar words share similar
representations. Although these word embeddings can be used for downstream NLP tasks,
they are limited in the sense that they are trained per token and thus ignore context.

BERT is a transformer-based pre-trained language model that employs the transformer
encoder part to transform the input into contextualized embeddings through a series
of layers that gradually summarize the input sequence. Due to its transformer-based
architecture, BERT can capture long-term dependencies between input tokens, considering
the context of the token in both directions. BERT is trained using self-supervised learning,
which means there is no need for human intervention, e.g., data annotation. BERT’s training
comes from the data itself, as the humungous datasets used for training contain deep
linguistic knowledge such as collocation, syntactic, grammatical, and semantic information.

In the literature, the big pre-trained language models are sometimes referred to as
base or foundation models [24], and their availability gave rise to the terms of fine-tuning,
transfer learning, and classification heads. Fine-tuning implies updates to some of the
model’s layers, while classification heads treat the last layer of the model as input features:
they take input X and predict the outcome Y performing classification if the labels are
categorical or regression if the labels are continuous [25].

3. Related Work

To the best of our knowledge, our work is the first attempt to utilize deep learning
techniques to identify an interlocutor’s persistence in a CSE attack. Nevertheless, many
works are related to the paraphrase recognition task and similar tasks of semantic textual
similarity and textual entailment.

Gupta et al. [26] introduce an interesting approach to generating paraphrases from a
sentence, using an LSTM and a Variational Autoencoder as generative components. They
propose a simple, modular, deep neural network architecture for question paraphrase gener-
ation from a question and a sentence based on a novel combination of generative adversarial
networks and sequence-to-sequence models. Their method automatically generates para-
phrases of an input sentence in multiple languages. This work, although interesting, has no
specific target, and it is difficult to be utilized in the cyber security domain.

Victor U. Thompson and Chris Bowerman [27] approach the problem of recognizing
texts that look different but are similar in meaning by identifying several phenomena
related to paraphrasing. These phenomena include word and phrase reordering, the
substitution of lexical parts, the addition and deletion of words, etc. They argue that
the most effective method is to combine the results of identifying the above-mentioned
techniques that commonly appear in plagiarism. Their proposed model shows promising
performance by combining the aforementioned techniques. However, the complexity of
the syntactical and grammatical checks is a deterrent factor for adopting such an approach
for a real-time cyber security defense mechanism.
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Mohamed I. El Desouki et al. [14] used deep learning techniques related to semantic
textual similarity to detect paraphrase phenomena. They propose a hybrid model, which
they evaluate using the Microsoft Research Paraphrase Corpus. Their model presents an F1
performance of 83.5%. The hybrid model follows a three-stage workflow where initially, the
sentence is converted to a semantic vector via a skip-through approach. Then, a plethora
of different string-based, knowledge-based, and corpus-based algorithms are executed.
Finally, classical machine learning algorithms related to semantic textual similarity are
applied. The authors’ proposed solution is composed of several layers of processing em-
ploying traditional machine learning algorithms, too. Updating such a complex recognizer
would be difficult after a deployment in production.

Mahtab Ahmed [28] uses a Tree-LSTM, a variant of LSTM, to represent the sentence
structure in a tree topology. His model performed better using attention than other Tree-
LSTMs without the use of an attention framework. The two different techniques presented
can be applied for both dependency and constituency tree structures and proved superior
for semantic relatedness tasks, such as textual entailment and paraphrase detection. This
approach is promising but dependency and constituency can be difficult to maintain in a
lengthy dialogue.

El Mostafa Hambi et al. [29] perform a comparative study of the different methods and
datasets used regarding semantic textual similarity and other natural language inference
tasks. They conclude that most of the research attempts are around word granularity using
the word2vec method for word vector representation. This may be a disadvantage in the
pursuit of understanding the meaning of a sentence. As mentioned by the authors the
meaning of a sentence is of major importance and it is context related.

Kai Shuanga [30] focuses on word representation, presenting a method called Convolution-
Deconvolution Word Embedding that embeds context-specific information and task-specific
information. The results are presented by applying his model and method to two NLP tasks
such as text classification and machine translation. Kai Shuanga’s end-to-end embedding
method is the first that extends deconvolution to word vector embedding generation. Al-
though an interesting approach, there are no results for tasks such as paraphrase detection.

In another survey regarding the natural language inference tasks Divesh R. Kubal
et al. [31] present several traditional and more modern methods, such as statistical methods,
machine learning, and deep learning methods. A well-established comparative analysis is
conducted for the word vector representation techniques. The overall survey is a thorough
journey from statistical tools to machine learning, and deep learning tools and techniques.
This work confirms the importance of a robust word vector representation and it is aligned
with our approach to fine-tuning using a task-focused training dataset.

Tedo Vrbanec [10] examines corpus-based models for various NLP tasks such as para-
phrase detection, textual entailment, etc. Using combinations of eight different algorithms
and three different datasets, he presents his findings regarding model hyper-parameters,
model selection techniques, similarity measures, and semantic textual similarity thresh-
olds. The author after conducting several experiments confirms our approach for a simple
model design.

Hien T. Nguyen [32] presents a novel approach, where each sentence is modeled
using two vectors. In the first vector, the sentence is represented using pre-trained word
vectors, while in the second vector, the sentence is represented on the basis of other
sources of knowledge. He evaluated his model on different datasets, such as Microsoft
Research Paraphrase Corpus, STS2015 ([33], p. 2015), and P4PIN [34]. The complexity of
the aforementioned approach makes it difficult to scale in targeted tasks.

Although several different approaches exist, as presented above, they all use complex
model architectures which have an impact on the computational resources and the training
data required. Most authors aim to develop generic solutions with no focus on specific
tasks. The lack of a focused training dataset decreases the efficiency of the models on a
specific task something that we overcome by utilizing an appropriately tailored dataset
such as the CSE-Persistence corpus.
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4. The Proposed Approach
4.1. The CSE-Persistence Corpus

The Stanford Natural Language Inference (SNLI) corpus [35] is a well-known extensive
collection of English-written sentence pairs manually annotated with entailment, contradic-
tion, and neutral labels. It is usually used to determine the semantic relationship between
two different text data units, a premise, and a hypothesis. Following the SNLI paradigm, we
produced the CSE-Persistence corpus by modifying and annotating our CSE corpus [2] to
be suitable for the task of paraphrase recognition. For this purpose, we also utilized the
CSE ontology [2], which is asset-oriented and connects social engineering concepts with
cybersecurity ones. The CSE ontology focuses on sensitive data that could leak from an
SME employee during a chat-based conversation. It groups similar in-context concepts
to facilitate the hierarchical categorization of an SME’s assets and does not exceed three
levels of depth to be efficient for text classification algorithms. The CSE ontology was
created using a custom information extraction system and several text documents as input
(corporate IT Policies, IT professionals’ CVs, ICT Manuals, and others). An excerpt of
the CSE ontology is depicted in Figure 1 where the ‘+’ symbol means that the entity can
be expanded.
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Each instance of the CSE-Persistence corpus is composed of two sentences and is
manually labeled as being a member of one of the following three categories:

• Identical (I): The two sentences are semantically close and share a common term target-
ing the same leaf entity in the CSE Ontology (e.g., USB_Stick in Figure 1).

• Similar (S): The two sentences are semantically related and share a common intent,
which translates into a higher-level entity in the CSE ontology, targeting a different leaf
entity (e.g., hardware as the higher-level entity and CD as the leaf entity in Figure 1).

• Different (D): The two sentences are not semantically related, and they do not share a
common higher-level or leaf entity.

We propose likening each CSE-Persistence corpus instance to a tiny drama play
composed of only two sentences. Thus, by borrowing some drama structure terms, we
named the two sentences as follows:

• The first sentence is referred to as the Prologue in the sense that the social engineering
attacker uses it to introduce her intention to the play.

• The second sentence is referred to as the Epilogue in the sense that it concludes the play
and informs us how the story ends.

Thus, the CSE-Persistence corpus contains instances of training examples where each
instance is composed of a string for the Prologue, a string for the Epilogue, and a Paraphrase
Recognition label (Identical, Similar, Different).
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4.2. The Training Process

During the training process, three columns were considered from the CSE-Persistence
corpus: ‘Prologue’, ‘Epilogue’, and ‘Paraphrase Recognition label’. The Paraphrase Recog-
nition label is the ‘gold_label’ given to the instance after the manual annotation of the
dataset. An excerpt of our CSE-Persistence corpus that is used for persistence recognition
follows in Table 1:

Table 1. Excerpt from the CSE-Persistence corpus.

# Prologue Epilogue Paraphrase Recognition Label

1 I have my resume on this USB key Are you using a USB extension cord identical

2 See, without your password, nobody can
access your mail

As smart as they are, they didn’t the
password identical

3 When did you last change your password
I can cut some corners and save

some time but I’ll need your
username and password

identical

4 My network connection just went down like
you said I am just working on an audit different

5 Hello how may I help you Is there anything else I can help you
with today similar

6 It’s called Doctors Database and I believe
that they are located in Denver Colorado

Hello John. This is Bill Jenkins from
Doctor’s Database in Denver identical

7 We’re trying to troubleshoot a computer
networking problem

In the back of the computer can you
recognize the network cable identical

8 I am sorry for interrupting you, but I am
experiencing a problem with my Charge 2

When I tried to turn on the Charge
2 I saw that the battery was leaking similar

9 I need that info to report back to my boss My boss will probably fire me if I
don’t have it for the morning similar

10
The chief executive character is in a meeting

with important clients and would like the
password reset as his current email account

But we need the details or we can’t
give you any information different

The CSE-Persistence corpus was divided into train, validation, and test set, where all
the source data were elicited from successful or unsuccessful social engineering attacks
gathered from websites, books, and logs as described in our previous work [2].

4.3. The CSE-PersistenceBERT Model

Our approach incorporates the technology of Transformers, self-supervised learning,
pre-trained language models, and transfer learning to boost the performance of the para-
phrase recognition task in the context of a CSE attack. For this purpose, we developed
CSE-PersitenceBERT, a fine-tuned version of the BERT model. CSE-PersistenceBERT defines
a sentence vector-based model that performs text classification on pairs of fixed-size sentence
representations that are computed independently of one another. CSE-PersitenceBERT takes
as input an instance composed of two sentences and outputs a classification result for them.

BERT comes in two flavors: BERT-base and BERT-large; we chose to work with BERT-
base, a model that consists of twelve layers of transformer encoder blocks and 110 million
parameters. The transfer learning technique is used to improve the performance of the
downstream NLP task, which in this study is the paraphrase detection task, using a model
that is already trained (pre-trained) on a different task (e.g., language modeling). Transfer
learning, as adopted in our work, is depicted in Figure 2.
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The end-to-end learning process of the complete neural network is divided into a
pre-training phase where the BERT-base model is trained by masking word tokens in each
sentence of a large text corpus and a fine-tuning phase where the pre-trained BERT model
is learning the persistence recognition labels, once again, from the CSE-Persistence corpus.
This last training is performed only on the last BERT layer to extract features that will allow
the model to use the representations of the pre-trained model.

BERT uses the [CLS] token that is placed at the beginning of a token indicating the
start of the input sequence. In addition, the [SEP] token separates the two sentences, and
the [PAD] token is used for padding. Thus, an example instance would be the following:

[CLS] <sentence 1> [SEP] <sentence 2> [SEP] [PAD]

The [CLS] vector acts as an input to the dense layer, and the similarity is calculated
using a cosine similarity measure. The cosine similarity of two vectors a and b is computed
according to Formula (1):

cosine_similarity(a, b) =
∑n

i=1 aibi√
∑n

i=1 a2
i

√
∑n

i=1 b2
i

, (1)

where a, and b are vectors of dimension n.
During the fine-tuning phase, we do not modify the neural network architecture. More

specifically, the classification pipeline (see Figure 3) is as follows: The pre-trained BERT
tokenizer sends to the transformer encoder a sequence of tokens, which is composed of
the two input sentences concatenated and separated by a special [SEP] token. A [CLS]
token is prepended to the sequence denoting the start of the sequence. This token is used
to extract the final embedding of the input instance. [PAD] token is a way to keep the input
size constant. The loss function is minimized by continuously training the entire neural
network on the CSE-Persistence corpus data. The loss function used is cross-entropy, which
is computed according to Formula (2):

lcross−entropy(ŷ, y) = −∑C
i=1 ti log(ŷi), (2)

where C is the number of different classes in the data, ŷ is the predicted probabilities vector
over the classes for the instance, y is the correct label for the instance, ti indicates binary
if i is the correct label for the specific instance, and ŷi is the predicted probability that the
instance belongs to class i.
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The training objective is to find the parameters that minimize the function, as men-
tioned above, which equally translates to:

argθmin
1
|D|∑(x,y)∈D l(ŷ, y), (3)

where D is the dataset consisting of n data points (xi, yi) usually referred to as input vectors,
xi is the vector inputted into the neural network, and yi is the accompanying label.

Instead of being initialized randomly, the CSE-PersistenceBERT model weights are
inherited by the pre-trained BERT model, and the neural network is trained from scratch.
The final sentence representations, which are a set of values called logits, are then passed
to the SoftMax [36] function to derive a probability distribution regarding the sentences’
paraphrase recognition task. Some of the BERT’s weights, which were initialized with
the pre-trained values, are also fine-tuned through backpropagation. The combination of
the linear layer with SoftMax is called a head. Therefore, it is said that we are attaching a
classification head to BERT to solve the prediction task. The SoftMax function that outputs
the probabilities of the instance belonging to each class is the following:

so f tmax(zi) =
exp(zi)

∑j exp
(
zj
) , (4)

where zi is each element in the last layer of the neural network.
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5. Implementation
5.1. CSE-Persistence Corpus

Table 2 presents the identity of the CSE-Persistence corpus, providing several key
statistics:

Table 2. Key statistics of the CSE-Persistence corpus.

Data set size 16,900 sentences
Type of text units Pairs of sentences

Source of judgment Three judges
Training pairs 13,520

Development pairs 1690
Test pairs 1690

Identical sentences 6484
Similar sentences 5023

Different sentences 5393

Several text pre-processing steps occurred on the CSE-Persistence corpus, such as
identification and removal of one-word sentences, ensuring appropriate text file encod-
ing, and noise removal, e.g., stopwords, emoji, etc. to prepare it as input to the CSE-
PersistenceBERT model.

In a separate validation phase, apart from our own annotation, we collected two more
judgments for each label of the 16,900 examples, where a 96% annotator consensus emerged.
In Table 1, three random sentence pairs with the selected gold label (Identical, Similar,
Different) in bold, and each annotator’s complete set of labels are depicted. E.g., the first
sentence pair was classified as Identical (I) by us and the two annotators. Thus, the three
labels are III, and the final Paraphrase Recognition Label (gold label) is Identical.

The underlined word is the entity found in the CSE Ontology. The first pair of
sentences in Table 3 uses the leaf-entity “password” of the CSE ontology. The second pair
of sentences does not share a leaf entity but a higher-level entity “IT” (Figure 1). The
higher-level entity “IT” contains the leaf entities “icon” and “file”. Finally, the third pair of
sentences has neither a leaf entity nor a higher-level entity in common.

Table 3. Examples of sentence pairs from the annotated CSE-Persistence corpus.

Prologue Epilogue Annotators Labels Paraphrase Recognition Label

Without your password,
nobody can access your mail,
even we at the data center

I can cut some corners to save
some time, but I’ll need your
username and password 1

III Identical 2

Just double-click on the icon
when it downloads

You must open the file when
it’s done SSS Similar

Are you using a USB
extension cord Thanks for the quick replies DDD Different

1 Underlined words represent CSE ontology entities. 2 Bold words represent gold labels.

To produce a well-balanced dataset, each Prologue appears five times in the CSE-
Persistence corpus with a different Epilogue and the corresponding label. An example of a
corpus instance in JSON format is presented in Figure 4:
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5.2. CSE-PersistenceBERT

For the implementation, the Hugging Face [37] library of transformers was used
along with AllenNLP [38] and Pytorch [39]. The Hugging Face library has become the
standard library for NLP researchers, and several state-of-the-art model implementations
exist, such as GPT-2, BERT, RoBERTa, etc., with or without pre-trained model parameters.
Using AllenNLP and BERT-as-service [40], we implemented a text classification model
that embeds the input sequence, encodes it with a seq2vec ([41], p. 2) encoder, and
finally classifies it with the help of a SoftMax layer coupled with a classification head.
The embedding is done by BERT, BertPooler [38] did the encoding, and Adam [38] was
employed as the optimizer.

For the fine-tuning of the CSE-PersistenceBERT model, we set the hyperparameter
values as recommended in [4]: a maximum length of the input sentence to the model of
128 (max_length = 128), a batch size of 32 (batch_size = 32), a learning rate of 3e5, four
training epochs (epochs = 4), and a dropout probability of 0.1.

During the persistence recognition task, we also keep a top-five ranking of the most
similar sentences. E.g., for the sentence “The chief executive character wants to change her
password”, the top-5 ranking returns the following (Table 4):

Table 4. Top 5 of similar sentences.

Index Sentence Similarity

1
The chief executive character is in a meeting with important clients

and would like the password reset as his current email account
password no longer works

0.7804

2 And listen we just installed an update that allows people to change
their passwords 0.6937

3 Now go ahead and type your password but don’t tell me what it is 0.5255

4 You should never tell anybody your password
not even tech support 0.3490

5 In this case, would you like to reset your password 0.3488

6. Evaluation

We evaluated the CSE-PersistenceBERT model using the following standard measures
that are used to assess the performance of classification tasks:

• True Positives (TP): Sentence pairs where the true tag is positive and whose category
is correctly predicted to be positive.

• False Positives (FP): Sentence pairs where the true tag is negative and whose category
is incorrectly predicted to be positive.

• True Negatives (TN): Sentence pairs where the true tag is negative and whose category
is correctly predicted to be negative.

• False Negatives (FN): Sentence pairs where the true tag is positive and whose class is
incorrectly predicted to be negative.

Using the above measures, we calculate Accuracy, defined as the number of sentence
pairs correctly identified as either true positive or truly negative out of the total number
of entities

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

For our baseline model, we used word2vec [12] to produce word vector representations
in R300. Then, the sentence vector embeddings were generated by averaging the vector
embeddings of all tokens in the sentence. Furthermore, we employ BERT-base without
fine-tuning as a comparison model to support our proposed model’s superiority.

During CSE-PersistenceBERT’s fine-tuning, the only required architecture changes
that are appropriate for the paraphrase recognition task concern the extra fully-connected
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layers. During the supervised learning of the downstream task, the parameters of these
extra layers were learned from scratch, while some of the parameters of the pre-trained
BERT model were fine-tuned. After fine-tuning, we compared CSE-PersitenceBERT to
the baseline model and achieved the accuracy values presented in Table 5, which are also
aligned with the work in [42].

Table 5. Model benchmarks on the CSE-Persistence corpus.

Model Training
Accuracy (%)

Training
Loss

Validation
Accuracy (%)

Validation
Loss

Baseline 82.57 0.36 73.83 0.39
BERT-base 84.01 0.24 76.79 0.37

CSE-PersistenceBERT 84.96 0.21 78.03 0.36

Figure 5a, depicts the accuracy of the training and validation data sets of CSE-
PersistenceBERT (indicated as CSE), and Figure 5b depicts the loss of training and validation
datasets.
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A comparison of the accuracy of the baseline model vs. CSE-PersistenceBERT is
depicted in Figure 6 as the validation set of the CSE-Persistence corpus varied from 0% to
100%. In every percentage of data used, the CSE-PersistenceBERT model outperforms the
baseline model. One key observation of the experimental results was that the difference
between CSE-PersistenceBERT and baseline model’s accuracy was bigger when the corpus
was smaller (between 20% and 40%). This shows that even a complex BERT-based model
can be efficient with a smaller corpus.

Furthermore, we investigated the impact of the number of layers transferred during
fine-tuning from the unsupervised pre-training to the persistence recognition task. Fig-
ure 7, depicts the performance of the CSE-PersistenceBERT model as a function of the
transferred layers. As an observation, we confirmed that each layer of the pre-trained
BERT model contains valuable information for the persistence recognition task. Thus,
CSE-PersistenceBERT improved its performance in the persistence recognition task by
transferring its “knowledge”.
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7. Discussion

The high accuracy of the CSE-PersistenceBERT model indicates that it is capable
of being used as an additional module in our proposed chat-based social engineering
attack recognition system [1]. CSE-PersistenceBERT recognizes the persistent behavior of a
malicious user by measuring the semantic similarity of the sentences uttered. Therefore,
if an interlocutor tries to extract critical information by trying different approaches, her
intention will be revealed by the model. Such a component is a useful add-on for a holistic
system that combines several different models to recognize individual enablers of successful
CSE attacks, e.g., personality characteristics, persuasion, and deception attempts, dialogue
acts, etc.
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Our research concludes that pre-trained models can be used for cyber-security-oriented
tasks such as the recognition of chat-based social engineering attacks. The benefits are
considerable:

• Less development and training time compared to an RNN model approach that is
trained from scratch. The model weights are pre-trained, encoding valuable informa-
tion trained on extensive corpora.

• Less training data as we only need to fine-tune the pre-trained model for a specific
downstream task.

• Increased accuracy on the downstream task after fine-tuning for a few epochs (e.g.,
2–4).

Initially, we encountered many errors of overestimating semantic similarity, and after
further research, we concluded that punctuation played a crucial role in many missed
cases. Additionally, the lexical overlap was another reason that led the model to mistak-
enly classify pairs of sentences as similar when they were not. The reasons were almost
analogous for the cases where the CSE-Persistence model underpredicted similarity. Thus,
the similarity was difficult to detect when there was a significant lack of lexical overlap or
if completely different punctuation was used.

We experimented by using Euclidean distance instead of cosine similarity, and we
observed slightly worse performance metrics. This can be explained because Euclidean
distance is highly effective at clustering tasks, but a smaller distance is measured if the two
different vectors have no common attribute values.

We explored word embeddings dimensionality reduction with Principal Components
Analysis (PCA) and found a slight improvement in accuracy as in [43]. This approach may
be helpful in the case of a smaller dataset; however, research is ongoing regarding making
pre-trained models better few-shot learners [44,45] focusing on natural language inference
tasks such as text entailment [46]. Few-shot learners, along with prompt engineering and
GPT-3 [47], are the next step in our journey.

8. Conclusions

In this paper, CSE-PersistenceBERT was introduced, a pre-trained BERT-based model
that was fine-tuned using the custom CSE-Persistence corpus to recognize persistent behav-
ior as an enabler of successful chat-based social engineering attacks. Through pre-training
on a corpus with long sections of contiguous in-context sentences, CSE-PersistenceBERT
acquired the necessary language knowledge related to CSE attacks. This way the model
acquires the capability to process long-range linguistic and semantic dependencies which
are then successfully transferred to solve NLU tasks such as persistence recognition. The
presented work confirms that the generic word vector representations produced by the
pre-trained models can be employed in a range of natural language processing tasks related
to the cyber security domain. Moreover, our fine-tuning using the appropriately annotated
CSE-Persistence corpus generated in-context representations suitable for the paraphrase
recognition task during a chat-based social engineering attack. The approach taken achieved
satisfactory performance results while keeping the same model size. In the future, we plan
to investigate the effects of data augmentation to improve the model’s performance.

CSE-PersistenceBERT is intended to be part of a holistic system that aims to recognize
CSE attacks in real time. The simple model design was one of our primary design principles
in order to keep computational resources low. We are planning to integrate this model into
an ensemble model which combines the output of several individual CSE attack recognizers
on the basis of different characteristics e.g., personality characteristics, deception, and
persuasion attempts detection, dialogue-act recognition, etc. The final prediction of the
ensemble model will be performed using a heuristic, e.g., weighted majority vote.
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Abbreviations

Abbreviation Meaning
BERT Bidirectional Encoder Representations from Transformers
BoW Bag-of-Words
CD Compact Disk
CLS Classification
CNN Convolutional Neural Network
CSE Chat-based Social Engineering
DVD Digital Video Disk
GPT Generative Pre-trained Transformer
HD Hard Disk
ICT Information and Communication Technology
IT Information Technology
JSON JavaScript Object Notation
LSTM Long Short-Term Memory
NLP Natural Language Processing
NLU Natural Language Understanding
P4PIN Paraphrase for Plagiarism Include Non-Plagiarism
PAD Padding
PCA Principal Components Analysis
RNN Recurrent Neural Networks
SEP Separator
SEQ2SEQ Sequence to sequence
SME Small-Medium Enterprise
SNLI Stanford Natural Language Inference
STS Semantic Textual Similarity
TF-IDF Term Frequency-Inverse Document Frequency
USB Universal Serial Bus
WORD2VEC Word to vector
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