
����������
�������
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Abstract: Simulation is a powerful process for perfectly planning and dimensioning web systems.
However, a successful analysis using a simulation model usually requires variable load intensities.
Furthermore, as the client’s behavior is subject to frequent changes in modern web systems, such
models need to be adapted as well. Based on web systems observation, we come across the need
for tools that allow flexible definitions of web systems load profiles. We propose Timed Colored
Petri Nets (TCPN) event generators for web environments that could be used to drive simulations
for performance evaluation. The article proposes the systematization of the generators for future
development. The theoretical part focuses on a classification with a division into deterministic/s-
tochastic and untimed/timed generators. Next, in this study, we investigate representative models of
generators from different classes based on the formalism of TCPN. We perform model design and
simulation processes using CPN Tools software. Finally, we present a case study involving workload
analysis of a web system that processes requests from the designed generator.

Keywords: simulation analysis; performance analysis; workload characterization; Timed Colored
Petri Nets; event generator

1. Introduction

Modeling next-generation networks requires designers to prepare a traffic generator
tailored to the needs of the generated request parameters. To deliver the required load
it is necessary to prepare the load generation system. Our approach to implementing
such a system is based on the Timed Colored Petri Nets (TCPN) formalism. We propose
a configurable TCPN-based generator that could be used for various real system mod-
els. Using simulation, we show the proposed request generator models have expected
functionality. It is an adaptation to alternative design demands achievable by minimal
configuration changes.

Workload modeling problems have been addressed over the past years, resulting in
models for generation workloads similar to those observed in the real world. Workload
characterization plays a key role in many performance engineering studies. The produced
workloads could also be used to drive simulations for system prototyping, testing, and
benchmarking of computer systems and networks. Today there are many different areas of
workload generator application, such as: cloud computing infrastructures, web systems,
networking structures, and video services. In the remaining work we will use a term
event generator as a generalization of the mentioned concepts of the request generator and
workload generator. The event generator will be considered to be a configurable source of a
stream of discrete events, similarly as in [1–4]. Approaches presented in [4–6] parameterize
the system model using measurements gathered from real networks. They use workload
models that allow the simulation of the network traffic created by real services in various
possible scenarios. On the other hand, we can also find works based on an analytical
approach [2,3,7,8].

Appl. Sci. 2022, 12, 12385. https://doi.org/10.3390/app122312385 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312385
https://doi.org/10.3390/app122312385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3015-7474
https://orcid.org/0000-0002-9299-2216
https://orcid.org/0000-0001-5724-0978
https://doi.org/10.3390/app122312385
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312385?type=check_update&version=2


Appl. Sci. 2022, 12, 12385 2 of 18

Input stream models generated from navigational patterns cause many problems in
software engineering. Workload modeling is also challenging when applied in a highly
dynamic environment. The derivation of such a model is non-trivial, which is confirmed
by [1–3]. This paper seeks to improve those previous attempts, which are outlined below
in Sections 2.1 and 2.2.

Many works are focused on simulating models of different systems using the generated
load. We need an input stream, but it could be obtained only from an actual system [5] or
produced artificially [9,10] also based on the system log [11,12].

Workload scenarios may have three basic sources: benchmarks, real traces, and work-
load models. The objective is to get a workload model as close to the real workload as
possible. The best option is to start with measured workload data. Downloading such a
stream is not an easy task. Therefore, in most cases, an analytical model is used. When
preparing the system model, designers do not study the nature of the input stream. It is
mostly general and it is not the representation of reality that we expected. Some existing
works have proposed workload prediction [13,14] or prediction of user behavior [15], but
without adapting it to real needs.

In this context, the main contribution of this paper is a design of a collection of
generator models capable of representing the resource demand of the application supported
by different user profiles. Different workload classes are known for stressing each resource
differently [16]. In addition, the proposed workload generators enable performance analysis
and simulation. In the models, we refrain from modeling the physical network and servers.
We assume that data transmission delays are negligible and the server model is related
with the modeled system, not the requests stream generator.

The remainder of this article is organized as follows. We discuss related work and
introduce our previous models of workload generators in Section 2. Section 3 presents
our solution based on Petri nets and shows the numerical simulations. In Section 4, we
evaluate the usefulness of our event generator model for performance analysis in the web
system domain. Finally, Section 5 presents the conclusions and future work.

2. Related Work

Engineers need to have varied realistic workloads for studying the system environ-
ments. A workload model is an important way to specify and produce workloads for:
cloud systems [7], web systems [11], Big Data systems [17], network systems [18], streaming
systems [19], etc. Therefore, a deeper understanding of user behavior, workload properties,
and patterns is required. Cloud computing providers expect an understanding of the
typical workload patterns of their services. We can find a large number of successful com-
mercial streaming services, such as Netflix, Amazon Prime, or Youtube. Providers stream
live videos to a highly variable audience. Network traffic generators play an important
role in the design and development of networks and in the security field. Some authors
prepared scalable workload generators for testing and benchmarking of high-volume data
processing systems [5].

Every month, billions of users access web systems. A large number of users and
the huge amount of data processed by these applications make modeling web systems
a challenging task. Various models are proposed to capture the behavioral patterns of
different user profiles.

Workload generators become crucial tools, as they help system constructors to plan the
system design. A survey on workload generators for web systems [20] presents reviewed
work on this domain for different types of applications.

For instance, the authors of [21] presented a behavior of a Google Maps client. Based
on this characterization, they propose a model of client actions as a simple workload
generator. In this context, the authors of [11] proposed reconstructing users’ web behaviors
from web server logs. It is also possible that the use of simulation models enables the
production of system logs based on realistic scenarios [5].
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The trend of the computer world is no longer envisaging the operation of one single
computer without interacting or cooperating with other computers. These distributed
systems have to be designed to meet the new requirements. Creation of them may be
facilitated by modeling. Some of the models use variants of Petri nets, and they are applied
in a generic context for stream processing of distributed web systems. There are several
generators in Petri networks of different classes. One can find publications on web system
models in which the query generator [22,23] is described in detail but one can also find
publications in which there is a generator in general form, which has not been described in
detail due to its simplicity [24,25] (TCPN), [26] (QPN).

CPN (Colored Petri Nets) is a graphical language for modeling, simulating and vali-
dating concurrent and distributed systems [27]. It combines the strength of Petri nets (to
model synchronization of concurrent processes) with programming languages (to define
various data types and manipulate values). Usually, further extensions like TCPN (Timed
CPN) or HTCPN (Hierarchical TCPN) are considered. Models developed in CPN (also
TCPN or HTCPN) formalism are often implemented in CPN Tools [27]. It is a software
tool that facilitates modeling, formal analysis and simulation of the CPN/TCPN/HTCPN
models. Furthermore, it can generate a reachability graph, thus some CPN behavioral
properties may be verified, for example in [28,29]. The TCPN models presented in this
paper have also been developed using CPN Tools.

QPN (Queueing Petri Net) is another formalism based on Queueing Nets and Petri
Nets. Queueing Nets are suitable for modeling competition of equipment. To analyze any
queue system it is necessary to determine: the arrival process, service distribution, service
discipline, and waiting room (scheduling strategies). QPN is a tuple [30]: CPN (a finite
and non-empty set of places, a finite and non-empty set of transitions, a color function,
the backward and forward incidence functions, an initial marking) and a set of timed and
immediate queueing places and a set of timed and immediate transitions. The primary
type of QPN place is a queueing place composed of a queue and a depository for tokens
that completed their service at a queue. QPN models are typically implemented in QPME
(Queueing Petri net Modeling Environment) [31]. It is an open-source tool for stochastic
modeling and analysis, consisting of two components: QPE (QPN Editor) and SimQPN
(Simulator for QPNs). Furthermore, the QPN models presented in this paper have been
developed using QPME.

TCPN formalism is often used for modeling a web system or its part. In [22], several
web services interaction models have been proposed. The TCPN models have been pre-
pared, evaluated and simulated in CPN Tools – it is the same formalism and software tool
as used in this paper. One of the models presented in [22] is the model of the generator for
web service applications. In fact, it generates a stream of discrete events, similar to the gen-
erators considered here. The model proposed in [22] uses the formula ()@+expTime(100)
to determine the distribution of application receipts under the exponential law with an
intensity of 100 applications per unit of time. Thus, such a generator is an example of
a timed stochastic generator, according to the classification introduced in Section 3 of
this paper. In [23], the server side of web applications is considered and some models of
web and database servers are presented. A separate model of a generator has not been
applied there, instead, the server models contain a very simple generator consisting of a
single place–transition pair. Such a trivial generator could be considered as an untimed
deterministic one, according to Section 3. Petri nets with different extensions have been
successfully used to analyze different types of systems, with web applications being one
of them [24]. Rak et al. [25] presented a programming tool based on CPN that supports
modeling and performance evaluation of system architectures for distributed web system
environments. The studies [24,25] have generally used CPN Tools as a Petri net modeling
tool with good results. On the superior level of timed stochastic model description [24]
they defined the arrival process of the queueing network (two places). The timer place
and transition constitute a clock-like structure that produces requests according to random,
exponentially distributed frequency. These tokens are accumulated in a form of a timed
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multiset in a place and then forwarded into the queueing-based model of the web system.
Tokens generated by the arrival process are transferred in sequence by models of web
system layers. Each token is equipped with an attached data value, the token color. A
similar simple model was prepared using QPN. Client think time is modeled in [26] by the
Infinite Server scheduling strategy (queueing place). The number of clients is configured
by initial marking in this place. The token represents a client’s requests in queueing place
and generates a certain number of requests per second.

While there are a lot of articles regarding workload [18,32], little is known about
generators with the expected by designers’ workload. We address this issue by designing a
new requests generator that identifies resources and users so it satisfies most of the system
constructors. There are benefits of building specialized web system models with particular
groups of users with similar behavior patterns as a workload, as opposed to using a single
class for all users. The proposed workload models can be used in the construction of
performance models used by many research domains.

2.1. Early CPN Models of Generators

Different formalisms may be used to model a generator of discrete events. Initially,
Coloured Petri Nets (CPN) [27] were our first choice, to facilitate integration with existing
CPN models of the web systems. Such early models of CPN request generators have been
thoroughly analyzed in [3]. The previous results are briefly summarized here to make this
paper self-contained.

The basic CPN model of the generator is shown in Figure 1. The places Res and Users
model available resources and users accordingly. When the transition Generator fires, one
of the users and one of the resources are randomly chosen and the resulting token with
appropriate marking is created in the place Stream.

Users

USER

1`"User1"++1`"User2"

Res

RESOURCE

1`1++1`2

Stream

STREAM

Generator

u r

(u,r)

2
1`"User1"++
1`"User2" 2

1`1++
1`2

Figure 1. Simple CPN model of the workload generator.

Unfortunately, such a model is so simple that it cannot be realistic. It has been assumed
that each user can freely choose each resource, which is a rare case. Let us consider the
simple restriction—User1 may use both resources, whereas User2 is allowed to only use
resource 2. Such a limitation may be imposed in different ways in the model, e.g., in the
transition Generator guard or in the inscription of the arc connecting Generator transition
with Stream place. The first case is shown in Figure 2a whereas the second one is given in
Figure 2b.

Both models restrain User2 from using resource 1. However, simulation results for
them are completely different and may appear to be a bit counter-intuitive at a first glance.
Let us assume that the transition Generator has been fired 100,000 times in each model.
The exemplary results are shown in Figure 3.
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Users

USER

1`"User1"++1`"User2"

Res

RESOURCE

1`1++1`2

Stream

STREAM

Generator

[(u="User1" 
andalso r=1)
 orelse r=2]

u r

(u,r)

2
1`"User1"++
1`"User2" 2

1`1++
1`2

(a) Restriction in the transition guard.

Users

USER

1`"User1"++1`"User2"

Res

RESOURCE

1`1++1`2

Stream

STREAM

Generator

u r

if (u="User1" andalso r=1) 
orelse r=2 then 1`(u,r) 
else empty

2
1`"User1"++
1`"User2" 2

1`1++
1`2

(b) Restriction in the inscription of the arc.

Figure 2. Restrictions in CPN models.

Users

USER

1`"User1"++1`"User2"

Res

RESOURCE

1`1++1`2

Stream

STREAM

Generator

[(u="User1" 
andalso r=1)
 orelse r=2]

u r

(u,r)

2
1`"User1"++
1`"User2" 2

1`1++
1`2

100000
49826`("User1",1)++
25138`("User1",2)++
25036`("User2",2)

(a) Restriction in the transition guard.

Users

USER

1`"User1"++1`"User2"

Res

RESOURCE

1`1++1`2

Stream

STREAM

Generator

u r

if (u="User1" andalso r=1) 
orelse r=2 then 1`(u,r) 
else empty

2
1`"User1"++
1`"User2" 2

1`1++
1`2

75334
24994`("User1",1)++
25182`("User1",2)++
25158`("User2",2)

(b) Restriction in the inscription of the arc.

Figure 3. Simulation result for both models.

It could be seen that the distribution of the tokens in the Stream place, representing
the mapping between users and resources in the generated stream, is different. In the first
model, approximately half of the resulting tokens are related to the User1 and resource
1 case, twenty-five percent of the tokens represent User1 and resource 2 mapping, and
finally, twenty-five percent connect User2 with resource 2. The total number of tokens in
the Stream is 100,000 because each firing of the Generator transition produces one token.

In the second model each mapping (User1 and resource 1, User1– resource 2, User2–
resource 2) have approximately equal representation in the resulting stream. However the
total number of tokens in the Stream place does not sum to 100,000. Transition Generator
has been fired 100,000 times, but if the restricted binding (User2 and resource 1) is randomly
chosen, the inscription on the arc does not produce any token.

Detailed analysis of the causes of this phenomenon could be found in [3], so only brief
conclusions are presented here. Such behavior is related to the exact execution semantics
defined by CPN. In the first model, the restriction in the transition guard is applied during
the binding of the tokens to the variables, before the transition fires. Thus, in approximately
half of the cases, User1 and resource 1 are chosen, whereas resource 2 (for any user)
is chosen in the other half. In the second model, the binding for firing the transition
is randomly chosen without any restriction and after the transition fires, the resulting
token with restricted results (User2, resource 1) is dropped if necessary. Unfortunately, it
means that the modeling of the generators in the CPN formalism is not so trivial as it may
seem, even for the basic case with two users and two resources, if precise control on the
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distribution of the mappings between users and resources is expected. It is necessary to
ensure that the generated stream meets designer requirements. It would be troublesome
for a more sophisticated case with numerous users, resources, and complex restrictions.
Therefore, we feel that more flexible models should be created to simplify future works.
Considering the possible ways of applying the restrictions to CPN models as presented
in Figure 2 and their different behavior (Figure 3), which may be counter-intuitive for an
inexperienced engineer, one of the main reasons for the method proposed in the following
sections is to facilitate the creation of complex models.

2.2. Early QPN Models of Generators

In the next step, based on Queueing Petri Nets (QPN) [33], we modeled a generator of
requests. The study results show that appropriately adjusting queueing Petri net models
could help produce expected streams of tokens. The general mathematical generator model
of QPN was defined in [2]. The second model (Figure 4a) allows us to freely join the user
tokens with the resource tokens to obtain any distribution (populations with the expected
distribution of the output stream). Transition modes and firing weights (Figure 4b) could
be used to model the probability of choosing the appropriate binding of the transition. The
main logic lies in the firing of transitions with weights and handling of the token colors.

(a) Main model. (b) Incidence function.

Figure 4. QPN model.

The generator model is represented by a set of places (RESOURCES and STREAM), queue-
ing place (USERS), and the immediate transition GENERATOR. Requests and resources are
modeled by tokens of different colors. Place USERS generates tokens of requests as user1
and user2. RESOURCES generates tokens of resources such as resource1 and resource2.
After acquiring a resource from the Res place, the requests are placed into the STREAM
place. The STREAM place consists of user1resource1, user1resource2, user2resource1
and user2resource2 tokens. Place USERS has an infinite server queue with an initial popu-
lation of tokens. Firing the GENERATOR transition creates a token in the STREAM place and
assigns one of the resources to one of the users. STREAM is an ordinary place that contains
the resulting stream of the mean token population. The restriction is modeled by setting
the appropriate firing weight.

Detailed analysis of this approach could be found in [2], so only brief conclusions are
presented here. The QPME tool [31] generates a report showing the predicted population
for the individual model configuration. We can find that the mean token population is
appropriately distributed for tokens (user1resource1, user1resource2, user2resource1,
user2resource2). Some examples can be found in the article [2]. The quantities of the
generated tokens in the STREAM place for each mode are consistent with the appropriate
firing weights. Therefore, various distributions of the tokens in the stream can easily be
modeled by appropriate changes in the firing weights.

3. Systematization of the Generator Models

As shown in Section 2, the models of web systems described in the literature usually
implement some kind of generator. Sometimes such a generator is separated from the main
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model (e.g., in [22]), and sometimes is an integral part of it (e.g., [23–25]). Various generators
are considered, from trivial [23] to quite sophisticated [22]. Their time and stochastic
parameters differ, therefore, we feel that the further development of the discrete event
generators requires systematization. We decided to introduce four classes of generators,
namely:

• untimed deterministic,
• untimed stochastic,
• timed deterministic,
• timed stochastic.

A generator is referred to as deterministic if its output is identical in every execution.
In particular, the numbers of any type of generated events remain unchanged, as well as
the times of event emission (in a timed model) are fixed. The deterministic model can be
useful, e.g., to adjust the parameters of some system, provided that it is repeatedly excited
by the same input. On the other hand, a stochastic generator produces events that are
randomly disturbed in their number or/and emission time. The disturbance is, however,
well-defined in the sense of probability distribution. A typical use case of this generator
type involves performance analysis of a system in which parameters remain fixed but the
input varies within some range. Untimed generators produce a complete set of events at
once and the events are not ordered using the notion of time. It does not mean that models
with such generators are trivial, as they may exhibit complex behavior dependent on the
number of input events and proportions between events of different types. In the case of
timed generators, an additional ordering parameter is taken into account that imitates the
real-time flow. Note that the deterministic and stochastic variants of the event generators
are opposite and mutually exclusive. Similarly, a generator has to be untimed or timed. It
implies four combinations of generator sub-types presented in the following sections.

Although the introduced classification of event generators is general and can be
applied in various formalisms, we decided to focus on the TCPN formalism to over-
come the problems mentioned in Section 2.1. In this section, some examples of TCPN
models of generators of each class are presented. For consistency, all models meet the
following assumptions:

1. There is a place named Config. The initial marking of this place is a list and each
element of this list describes one type of event generated by the model.

2. The element describing an event has the form of n-tuple in which the first element
is a color representing the event type and the remaining n− 1 elements specify in
detail how this event is to be generated. This specification depends on the generator
version.

3. Each generated event is represented by one token of type EVT (untimed models) or
EVT_T (timed models). These tokens are collected in the place named Events.

In the examples presented in this section, to keep things clear and simple, event types
are represented by an enumeration color set

colset EVT = with Evt1 | Evt2 | Evt3;

that distinguishes three types and assigns them simple labels.

3.1. Untimed Models

The untimed deterministic variant assumes that given numbers of events of given
types are immediately present. In a CPN model, it is represented by a multiset of related
event colors in the destination place Events. There is a need, therefore, to transform a
configuration list to the marking of Events. The list has to specify the number of events of
any type, so its color set CFG is defined as follows

colset EVTN = product EVT * INT;
colset CFG = list EVTN; (*1*)
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and i-th list element is a pair (ei, ni), where ei is the element color and ni denotes its
multiplicity.

The untimed deterministic model is presented in Figure 5. It is a simple design
with only one transition generate. An exemplary initial marking (Figure 5a) declares the
generation of 30 events of type Evt1 and Evt2, as well as 40 events of type Evt3. The
transition generate fires only once that leads to the expected final marking shown in
Figure 5b. To transform the configuration initial marking to the target marking of Events,
the following SML function is used

fun generateEvents([]) = empty
| generateEvents((e,n)::r) = (n‘e) ++ generateEvents(r);

which recursively maps the head list element (e,n) to the multiset n‘e.

Config

CFG

[(Evt1,30),(Evt2,30),(Evt3,40)]

Events

EVT

generate

cfg

generateEvents(cfg)

1 1`[(Evt1,30),(Evt2,30),(Evt3,40)]

(a) Initial marking.

Config

CFG

[(Evt1,30),(Evt2,30),(Evt3,40)]

Events

EVT

generate

cfg

generateEvents(cfg)

100
30`Evt1++
30`Evt2++
40`Evt3

(b) Final marking.

Figure 5. Untimed deterministic CPN-based event generator.

The untimed stochastic model is presented in Figure 6. The configuration color set
CFG (*1*) is reused again in this model, but its interpretation changes. Now, the i-th element
(ei, fi) of the configuration list specifies the event color ei followed by its relative frequency
fi. In the initial marking (Figure 6a) the transition init is ready. Its firing moves the
configuration token from Config to Cfg2 and additionally calls the function

fun fsum([]) = 0
| fsum((e,f)::r) = f+fsum(r)

calculating the sum fsum = ∑
Ntp
i=1 fi, where Ntp denotes the number of event colors, i.e., the

length of the configuration list. The result is inserted to the place FSum. After that, only
the transition generate remains active, as the marking of Config is empty. Each firing of
generate produces one new event by insertion the related token to the place Events. It is
controlled by the function

fun generateEvent(c,s,[]) = empty
| generateEvent(c,s,(e,f)::r)
= if c<=s andalso c+f>s then 1‘e
else generateEvent(c+f,s,r)

In the function call expression (see the inscription of the arc from generate to Events),
an integer from Ud(0, fsum−1) is assigned to the variable s. The function recursively
inspects intervals

Ii =

[
i−1

∑
k=1

fk,
i

∑
k=1

fk

)
, i = 1, 2, . . . , Ntp,

and returns the event ei if s ∈ Ii. Therefore, fi has indeed the meaning of the relative
frequency of ei in the stochastic process. In other words, the probability of ei has the value
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πi =
fi

Ntp

∑
i=1

fi

.

Note that if ∑
Ntp
i=1 fi = 100, then fi directly expresses the probability in percents.

Let Nevt be the initial marking of the place Num. Each firing of generate consumes
one token from Num, so the considered model generates Nevt events. In particular, it is
1000 events in the presented example (Figure 6b).

Cfg2

CFG

Events

EVT

Num

1000

Config

CFG

[(Evt1,30),(Evt2,30),(Evt3,40)]

FSum

INT

generate

init

cfg

generateEvent(0,discrete(0,fs-1),cfg)

cfg

cfgfsum(cfg)

fs

1000 1000`()

1 1`[(Evt1,30),(Evt2,30),(Evt3,40)]

(a) Initial marking.

Cfg2

CFG

Events

EVT

Num

1000

Config

CFG

[(Evt1,30),(Evt2,30),(Evt3,40)]

FSum

INT

generate

init

cfg

generateEvent(0,discrete(0,fs-1),cfg)

cfg

cfgfsum(cfg)

fs

1 1`[(Evt1,30),(Evt2,30),(Evt3,40)]

1000
290`Evt1++
301`Evt2++
409`Evt3

1 1`100

(b) Final marking.

Figure 6. Untimed stochastic CPN-based event generator.

Assuming an ideal stochastic process, the expected number of events of type ei equals
πi Nevt. The actual number of such events ηi is a random variable of binominal distribution
B(Nevt, πi). It is well known that if πi Nevt and (1− πi)Nevt are large enough, in practice
greater than 5, this distribution is well approximated by the normal distribution [34]

Nη

(
µi = πi Nevt, σi =

√
πi Nevt(1− πi)

)
. (1)

Let us evaluate the model against the expected distribution. First, for convenience, we
define the relative deviation of the i-th type events number from its expected value

δi =
ηi

πi Nevt
− 1. (2)

The mapping from ηi to δi given by (2) transforms the distribution Nη (1) to

Nδ

(
µ∗i = 0, σ∗i =

√
1− πi
πi Nevt

)
. (3)

Two series of 1000 simulation experiments have been performed for Nevt = 1000 and
Nevt = 10,000. Their results in the form of δi distributions are presented in Figures 7 and 8,
respectively. The red lines show the expected limit normal distribution Nδ (3). One can
observe good compatibility between the experimental and predicted results, in particular,
the dispersion of δi decreases with the increase of Nevt.
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3.2. Timed Models

Events generated in timed simulation could be defined in many ways. A basic idea is
to describe events of the i-th type by the data structure(

ei, [ti,1, ti,2, . . . , ti,ni ]
)
,

where ei is the event color and the values ti,j, j = 1, 2, . . . , ni directly specify the times at
which the event has to be generated. Such an approach could be based on a simple CPN
model, similar to the one presented in Figure 5, so the solution is not going to be presented.

The scenario considered here shows that generator configuration determines the
frequency of events on given time intervals, while the individual events are generated
automatically. It is a more practical variant, useful in many simulations, e.g., for system
performance analysis, but it is also more complex for implementation.

The i-th element of the configuration list has the form(
ei, [(di,1, pi,1), (di,2, pi,2), . . . , (di,j, pi,j), . . . , (di,mi , pi,mi )]

)
, (4)

where di,j specifies the duration of the interval during which events are generated with
the period pi,j. When the time of the j-th interval expires, the generation switches to the
(j+1)-th one, and so on, with the exception that j = mi is followed by j = 1. In this way,
the generation process is a cycle. More precisely, the events of type ei are issued at the times

ti ∈ Ti =
∞⋃

g=0

⌊−1+di,(g mod mi)+1
pi,(g mod mi)+1

⌋
⋃

h=0

{
hpi,(g mod mi)+1 +

mi

∑
k=1

⌊
mi + g− k

mi

⌋
di,k

}
, (5)

where g+1 indicates the generated interval number and h+1 is the event number in
the interval.

To implement the generator in the form of a CPN model, the following additional
color set definitions are needed

colset INT2 = product INT * INT; (*2*)
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colset INT2_L = list INT2; (*3*)
colset ECFG = product EVT * INT2_L; (*4*)
colset CFG = list ECFG; (*5*)
colset EVT_T = EVT timed; (*6*)
colset INTV = product EVT * INT * INT * INT * INT; (*7*)
colset INTV_T = INTV timed; (*8*)

The declarations (*2*)–(*5*) construct the color set compatible with (4). The color set
(*6*) is a timed version of the event type. The declarations (*7*)–(*8*) introduce untimed
and timed variants of auxiliary 5-tuple describing a single interval of generated events.

The TCPN model of the generator is presented in Figure 9. Most of the arc inscriptions
are 5-tuple adjacent to the color set INTV. They are interpreted as(

ei, j, ni,j, di,j, pi,j
)
, (6)

where the meaning of ei, j, di,j, pi,j is consistent with (4), and ni,j indicates the number of
the next interval in the repetitive cycle, namely

ni,j =

{
j + 1, j < mi

1, j = mi
. (7)

Each firing of the transition init1 consumes one configuration element from Config
and splits it into separate interval representations adjacent to (6) using the function

fun splitCfg(j,(evt,[(dur,per)]))
= 1‘(evt,j,1,dur,per)
| splitCfg(j,(evt,(dur,per)::r))
= 1‘(evt,j,j+1,dur,per)++splitCfg(j+1,(evt,r))

Note that this function derives the values of ni,j (the third tuple element) according
to (7). Firings of the transition init2 move the tokens describing the intervals with j = 1
to Intvs and the remaining tokens from StartIntvs are moved to ActiveIntv as a result
of the transition init3 firings. All the transitions init1/2/3 have all their input arcs
from the places of untimed types, so they execute at the global time 0 and initialize the
generation mechanism.

After the initialization, the generation of the events comes down to firing the transition
generate over and over again. For example, consider the configuration imposed by
the initial marking of Config in Figure 9, specifically, the part related to Evt1. As a
result of the initialization, the token (Evt1,1,2,3600,30) is in ActiveIntv and the tokens
(Evt1,2,3,3600,60), (Evt1,3,1,3600,10) are in Intvs at time 0. At this simulation
time, the transition generate is executed with evt bind to Evt1 on all its input/output
arcs. According to inscriptions of these arcs, the token (Evt1,1,2,3600,30) is effectively
replaced by (Evt1,2,3,3600,60) in ActiveIntv. Simultaneously, the time stamp of the
token inserted to ActiveIntv is delayed by the value durA of the removed token, i.e., d1,1
from (4) and (6). Therefore, the next token exchange related to Evt1 will happen at the
simulated time d1,1, and this delay represents the duration of the first interval. Then, it
repeats for (Evt1,2,3,3600,60), (Evt1,3,1,3600,10), again for (Evt1,1,2,3600,30),
and so on. The right order is asserted by binding the colors representing j and ni,j to the arc
expressions. Of course, each event type is subject to this procedure independently.

Note that the transition generate is fired once at the beginning of each event genera-
tion interval, but many events have to be issued during the interval. The individual events
within intervals are prepared by the following function building the tokens inserted to the
place Events

fun generateEvent(t,dur,per,evt) = if t<dur then (1‘evt@+t)
+++generateEvent(t+per,dur,per,evt) else empty



Appl. Sci. 2022, 12, 12385 12 of 18

It recursively constructs a sequence of tokens representing the events delayed by
0, pi,j, 2pi,j, . . ., from starting time of the interval up to its completion. It is equivalent to
iteration over h subject to fixed g in (5).

The set Ti in (5) is infinite, but an actual simulation generates a finite number of events.
In particular, if the simulation finishes at the global clock value T, there is asserted that all
the ei events with time stamps ti ∈ Ti such that ti < T have been generated.

Intvs
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Active
Intv

INTV_T

Events

EVT_T

Config

CFG

[(Evt1,[(3600,30),(3600,60),(3600,10)]),
(Evt2,[(1800,15),(7200,40),(1800,90)]),
(Evt3,[(2700,70),(2700,20)])]

Start
Intvs

INTV

generate

init1

init2
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[seq<>1]
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(evt,seq,next,durA,perA) (evt,next,x,durB,perB)

(evt,next,x,durB,perB)@+durA

generateEvent(
0,durA,perA,evt)

ecfg::cfg

(evt,1,next,durA,perA)

splitCfg(1,ecfg)
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(evt,seq,next,
durA,perA)

(evt,seq,next,durA,perA)

cfg

5

1`(Evt1,1,2,3600,30)++
1`(Evt1,2,3,3600,60)++
1`(Evt2,1,2,1800,15)++
1`(Evt2,2,3,7200,40)++
1`(Evt3,2,1,2700,20)

3
1`(Evt1,3,1,3600,10)@18000+++
1`(Evt2,3,1,1800,90)@19800+++
1`(Evt3,1,2,2700,70)@16200

1862

1`Evt1@17940+++
1`Evt1@17880+++
1`Evt1@17820+++
1`Evt1@17760+++
1`Evt1@17700+++
1`Evt1@17640+++
1`Evt1@17580+++
1`Evt1@17520+++
1`Evt1@17460+++
1`Evt1@17400+++
1`Evt1@17340+++
1`Evt1@17280+++
1`Evt1@17220+++
1`Evt1@17160+++
1`Evt1@17100+++
1`Evt1@17040+++
1`Evt1@16980+++
1`Evt1@16920+++
1`Evt1@16860+++
1`Evt1@16800+++
1`Evt1@16740+++
1`Evt1@16680+++
1`Evt1@16620+++

1 1`[]

Figure 9. Timed deterministic CPN-based event generator.

For the generator configuration from Figure 9, the resulting cumulated number of
generated events as a function of simulated time is shown in Figure 10a. It is assumed that
the simulation time unit corresponds to one millisecond, so the plot covers the simulated
time interval [0, 15,000]. As the periods di,j are tiny compared to the simulation time-span,
the events are dense so that the related points form a solid line in the plot. However, if one
increases the periods 10 times, the events become distinguishable, as shown in Figure 10b.
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Figure 10. Number of events as a function of time obtained from the timed deterministic model.

For uniformity, we propose the stochastic variant of the timed generator very similar
to the deterministic one. The difference is that periods of event generations are no longer
fixed, but are defined as random variables. Namely, the event type description (6) obtains
the form (

ei, j, ni,j, di,j, pL
i,j, pU

i,j

)
,
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where pi,j is replaced by the pair pL
i,j, pU

i,j. The redefined period is now interpreted as the
random variable

Ud

(
pL

i,j, pU
i,j

)
. (8)

The model of the timed stochastic generator is shown in Figure 11. Compared to the
design from Figure 9, some color sets have been extended to include one new parameter
and some functions have been slightly modified. There are two relevant changes.

First, the function generateEvent is redefined in the form

fun generateEvent(t,dur,perL,perU,evt) = if t<dur then (1‘evt@+t)
+++generateEvent(t+discrete(perL,perU),dur,perL,perU,evt) else empty

Therefore, the time differences between consecutive events of the same interval are ran-
domly generated using the discrete uniform distribution function discrete(perL,perU),
being an implementation of (8).

Second, whole interval times are also randomly disturbed. The disturbing compo-
nent is given in the third line of the inscription on the arc from generate to ActiveIntv
(Figure 11). It is the random distribution

Ud

(⌊
pL

i,j − pU
i,j

2

⌋
,

⌊
pU

i,j − pL
i,j

2

⌋)
,

equivalent to (8) with an accuracy of integer values, but with the expected value changed
to 0, so that the expected value of the interval time remains di,j.

The stochastic character of the model asserts different outcomes when the simulation
is repeated multiple times. Indeed, the effect of 100 repetitions is shown in Figure 12, and
stochastic fluctuations result in a bunch of dispersed values (green). The outcome of one
exemplary simulation is distinguished (red). The reference deterministic profile (blue) is
also shown, having the ratios di,j/pi,j equal to mean values from the configuration given in
Figure 12. As expected, the stochastic bunch disperses around this profile.

Intvs

INTV

Active
Intv

INTV_T

Events

EVT_T

Config

CFG

[(Evt1,[(3600,70,530),(3600,150,1050),(3600,10,190)]),
(Evt2,[(1800,25,275),(7200,150,650),(1800,400,1400)]),
(Evt3,[(2700,310,1090),(2700,80,320)])]

Start
Intvs

INTV

generate

init1

init2

init3

[seq<>1]

(evt,seq,next,durA,
perLA,perUA)

(evt,seq,next,durA,
perLA,perUA)

(evt,next,x,durB,
perLB,perUB)

(evt,next,x,durB,
perLB,perUB)@+(durA
+discrete((perLB-perUB) div 2,(perUB-perLB) div 2))

generateEvent(0,durA,
perLA,perUA,evt)

ecfg::cfg

(evt,1,next,durA,
perLA,perUA)

splitCfg(1,ecfg)

(evt,1,next,durA,
perLA,perUA)

(evt,seq,next,durA,
perLA,perUA)

(evt,seq,next,durA,perLA,perUA)

cfg

5

1`(Evt1,1,2,3600,70,530)++
1`(Evt1,2,3,3600,150,1050)++
1`(Evt2,1,2,1800,25,275)++
1`(Evt2,2,3,7200,150,650)++
1`(Evt3,2,1,2700,80,320)

3

1`(Evt1,3,1,3600,10,190)@17325++
+
1`(Evt2,3,1,1800,400,1400)@19101+
++
1`(Evt3,1,2,2700,310,1090)@16218

192

1`Evt1@16652+++
1`Evt1@15701+++
1`Evt1@14968+++
1`Evt1@14778+++
1`Evt1@14582+++
1`Evt1@13946+++
1`Evt1@13834+++
1`Evt1@13757+++
1`Evt1@13577+++
1`Evt1@13252+++
1`Evt1@12802+++
1`Evt1@12449+++
1`Evt1@12012+++
1`Evt1@11897+++
1`Evt1@11660+++
1`Evt1@11573+++
1`Evt1@11380+++
1`Evt1@10987+++
1`Evt1@10472+++
1`Evt1@10424+++
1`Evt1@10234+++
1`Evt1@10129+++
1`Evt1@9986+++

1

Figure 11. Timed stochastic CPN-based event generator.
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Figure 12. Number of events as a function of time obtained from the timed stochastic model.

4. Case Study

We provide a simple example to demonstrate the usage of the proposed solution. It
combines the most advanced timed stochastic generator model and a simplified model of a
web server. The HTCPN structure of the system is presented in Figure 13.

The model reuses the generator structure presented in Figure 11 along with all the
initial markings, resulting in the sequence of generated events shown in Figure 12. The
generator is now enclosed inside the substitution transition EventGenerator to better
display the new web server structure.

In the part consisting of the transition mapToRequest and the place Requests, the
generated events are first mapped from their generic representation Evt1, Evt2, Evt3 to
request form (Usr1,Res1), (Usr1,Res2), (Usr2,Res2), respectively. Requests are pairs
that indicate a user and a resource needed for it.

Requests
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ReqFIFO

REQT_L

[]

NProc

INT

16

Processed

BSY_T

Finished

FIN

Queue
Load

QLD

Events

EVT_T

mapToRequest
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startProc
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endProc

cleanUp

[n=x]

EventGenerator

EvtGenEvtGen

case evt of
     Evt1 => (Usr1,Res1)
   | Evt2 => (Usr1,Res2)
   | Evt3 => (Usr2,Res2)

req

reqs reqs^^[(req,now())]

((u,r),tim)::reqsreqs

n n-1

nn+1

((u,r),tim,now())@+
((if r=Res1 then 735 else 442)
+(if u=Usr1 then 157 else 283))

(req,tim,tim2)
(req,tim,
tim2,now())

((u,r),tim,now())

(req,n,x)

evt

1 1`[]

1 1`16

Figure 13. Simulation HTCPN-based model of web server system (initial marking).

Any execution of the transition addToQueue puts a triple including the user, the re-
source, and the entry time now() of a new request into the FIFO queue modeled by the
place ReqFIFO. It is a model of the buffer collecting the requests waiting for processing
by the server. The FIFO regime is asserted by the list in ReqFIFO, the input elements are
added to its end, while the exiting ones are removed from its beginning by the transition
startProc. The latter transition executes whenever the FIFO list is not empty and the
guard expression n > 0 is satisfied, and its execution models start request processing. In
turn, execution of the transition endProc models the processing completion. Between the
start and completion, the token representing the processed request is held in the place
Processed with a time delay being the processing time depending on the related user
and resource. The delay is determined by the expression of the arc from startProc to
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Processed. The value of the token in NProc represents the number of free processors and it
is used to block the processing of new requests while all processors are busy.

Remaining elements: QueueLoad, cleanUp, Finished register data from the model
for further analysis. In particular, the final marking of QueueLoad represents FIFO entry
and exit times of the requests delayed by the queue, while the final marking of Finished
contains the entry, starting, and completion times of all processed requests.

Simulation experiments have been performed for the configurations with 8 and 16 pro-
cessors. One can observe on histograms in Figure 14 that there are many delayed requests
while using 8 processors and the delays reach up to 4 s (Figure 14a). On the other hand,
there are only a few insignificant delays in the case of 16 processors (Figure 14b). It imme-
diately reveals that the requests cannot be effectively processed in the first configuration,
while the second one is sufficient. This observation is consistent with other characteristics
plotted below.
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Figure 14. Histograms of the input FIFO queue delays.

The number of requests waiting in the input FIFO queue as a function of time is shown
in Figure 15a. There are almost no waiting requests for 16 processors, while their number
starts to increase since about 8 s for the server with 8 processors, up to approximately
40 requests. Note that the FIFO queue delay time as a function of the request entry time
(Figure 15b) is proportional to the number of waiting requests, and its maximum value is
about 4 s, in accordance to the histogram in Figure 14a.
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Figure 15. Input FIFO queue analysis.

The data useful for processor load analysis is given in Figure 16. The 8-processor server
is fully loaded since 8 s and it does not process requests on time. There is no such problem
in the second case, where the number of processors turns out just right and all processors
work together only at very short time intervals (Figure 16a). As long as the servers are not
overloaded they process requests with similar efficiency, but then the 16-processor server
works relatively faster (Figure 16b). It is easy to note that the 8-processor server overload
observed in all Figures 15 and 16 is caused by the increased speed of request generation
since about 8 s, visible in Figure 12 (Evt1 and Evt3). Therefore, appropriate parametrization
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of the applied generator, gradually increases the speed of generating requests, which may
facilitate the detection of potential bottlenecks in the system model.

The described example indicates that event generators based on TCPNs are very useful
components for web systems simulation and analysis. Here, connecting one of the proposed
generators with a simple web server model, we have performed quite comprehensive
load tests.
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Figure 16. Processors load analysis.

5. Summary

The classification of discrete event generators has been introduced in the paper. Exem-
plary TCPN models of such generators have been described and analyzed. They can be
used to facilitate the generation of input streams for TCPN models of distributed systems,
e.g., web systems. The proposed approach is flexible and can be tailored to suit developer
needs, to produce events according to requested constraints and predefined distribution.
Thus, performance evaluation of system models under various workloads is possible even
at the early stages of system development.

We developed an approach that helps us to prepare a stream of requests. The study
demonstrates the modeling advantages and shows how the discussed generator models
could be used in a simple web system. Next, we shall consider analyzing the web system
response time characteristics for classes of clients to effectively model Internet requests. Fu-
ture research will focus on the following: evaluation and optimization of the various model
parameters; the impact of different requests to model results; and the quantitative study of
the impact of the events generator model proposed in this paper on the performance of
modeled web system.
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