
����������
�������

Citation: Malan, L.C.; Pilloton, C.;

Colagrossi, A.; Malan, A.G.

Numerical Calculation of Slosh

Dissipation. Appl. Sci. 2022, 12, 12390.

https://doi.org/10.3390/

app122312390

Academic Editor: Francesca

Scargiali

Received: 2 November 2022

Accepted: 28 November 2022

Published: 3 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Numerical Calculation of Slosh Dissipation
Leon Cillie Malan 1,† , Chiara Pilloton 2,*,† , Andrea Colagrossi 2,† and Arnaud George Malan 1,†

1 Industrial CFD Research Group, Department Mechanical Engineering, University of Cape Town,
Private Bag X3, Rondebosch 7701, South Africa

2 National Research Council, Institute of Marine Engineering (CNR-INM), Via di Vallerano 139,
00128 Rome, Italy

* Correspondence: chiara.pilloton@inm.cnr.it
† These authors contributed equally to this work.

Abstract: As part of the Sloshing Wing Dynamics H2020 EU project, an experimental campaign was
conducted to study slosh-induced damping in a vertically excited tank filled with liquid water or
oil and air. In this work, we simulate these experiments using two numerical approaches. First, a
single-phase, weakly compressible liquid model is used, and the gas flow (air) is not modeled. For this
approach, a proven Smoothed Particle Hydrodynamics (SPH) model is used. In the second approach,
both phases are simulated with an incompressible liquid and weakly compressible gas model via
a Finite Volume Method (FVM) using Volume-of-Fluid (VOF) to track the liquid phase. In both
approaches, the energy distribution of the flow is calculated over time in two- and three-dimensional
simulations. It is found that there is reasonable agreement on the energy dissipation evolution
between the methods. Both approaches show converging results in 2D simulations, although the SPH
simulations seem to have a faster convergence rate. In general, the SPH results tend to overpredict
the total dissipation compared to the experiment, while the finite volume 2D results underpredict
it. Time histories of the center of mass positions are also compared. The SPH results show a much
larger vertical center of mass motion compared to the FVM results, which is more pronounced for the
high Reynolds number (water) case, probably linked to the absence of the air phase. On the other
hand, the limited center of mass motion of the FVM could be linked to the need for higher spatial
resolutions in order to resolve the complex gas–liquid interactions, particularly in 3D.

Keywords: sloshing; fluid damping; SPH; VOF

1. Introduction

The Sloshing Wing Dynamics Project (https://slowd-project.eu/, accessed on 16
September 2019) aims to study fluid sloshing in commercial aircraft wing tanks and how
wing loads can be reduced as a result [1].

The project includes a future experimental campaign of a full scale aircraft wing
structure and corresponding internal fuel tanks. The intention is to excite the structure with
a variety of loading conditions in which slosh loads are the largest.

Various experimental studies were performed during the project [2–4] on a smaller
scale. Some of the findings from these studies included that the two-phase flow in the
tank contributes significantly to damping wing vibrations. The flow in wing tanks is
particularly violent in many load cases of interest. The liquid and gas phases are mixed
well and contain small structures (films, ligaments, drops and bubbles) with the flow often
undergoing a significant amount of liquid–wall and liquid–liquid impact events during the
tank excitation.

In spite of its industrial impact, there are relatively few studies dealing with vertically
excited sloshing flows in the literature. Experimentally, one of the first studies dealing
with this problem is [5] and, more recently [6]. A model scale experimental campaign for
aircraft wing excitation is carried out in [7]. In these experiments, a partially filled tank is
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fixed rigidly to an elastic beam, which is deflected to induce a heaving oscillatory motion
with accelerations up to 10 g. In [8,9], experiments of slosh-induced energy dissipation
in partially filled tanks subject to vertical, harmonic excitation is investigated. In [10] the
decaying harmonic excitation is investigated experimentally, along with an equivalent
mechanical model and a weakly compressible single-phase SPH simulations.

In the present work, we perform numerical simulations of the single degree of freedom
vertical slosh experiments carried out in [4]. This experimental work has recently been
extended [11] with comments on repeatability as well as a study on scaling effects. Previous
results on the experiments in [4] are published [12,13], but new results are added in
this work. Similar to [12,13], we employ an energetic approach to study the dissipation
mechanisms in the tank flow. This is completed for two different numerical approaches.
In the first approach, only the liquid is solved, using a weakly compressible formulation
with a Smoothed Particle Hydrodynamics (SPH) method. The second approach uses the
multi-physics code ELEMENTAL® [14–19], which employs a vertex-centered, Finite Volume
Method (FVM) with Volume-of-Fluid (VOF) tracking of the liquid phase. Both the liquid
and gas (air) are therefore solved. The liquid is assumed incompressible and the gas
weakly compressible [20]. Surface tension effects are accounted for using a Continuum
Surface Force (CSF) method, where the SPH approach does not include capillary effects.
As explained in [21,22], the latter does not have a significant role in the fluid energy
dissipation mechanisms (apart from the initial liquid meniscus). This is due to the high
Weber numbers of the simulated flows. As noted, surface tension is indeed relevant
during the initial upward acceleration of the tank when a Rayleigh–Taylor instability
develops (see, e.g., [23]). The instability is influenced by the fluid meniscus formed at the
intersection between the lateral walls and the liquid surface as the accelerating meniscus
perturbs the interface, leading to the growth of a Rayleigh–Taylor instability during the
upward acceleration of the tank from rest. For this reason, the initial meniscus free-surface
deformation is taken into account in the simulations (see also, e.g., [12,22]).

Test cases are set up and solved using similar initial conditions and tank acceleration
profiles for both approaches. The energy distribution in both cases is studied, as well
as other metrics, such as the center of mass position. In this work, we prescribe the
tank acceleration to match experimental measurements. This allows us a more direct
comparison to the experiment and ensures that both methods are subject to the same
acceleration. There has been research with coupled simulation, where the fluid–structure
interaction is resolved [13], but that is outside the scope of this work. First, two-dimensional
simulations are performed using random interface perturbations to study the variation in
energy metrics with the slight difference in interface shape. Three-dimensional experiments
are also performed to compare the 2D results of each approach as well as an overall
comparison between approaches. The results of these cases provide insights into several
aspects. These include the suitability of the modeling approach (single or two-phase),
the chaotic nature of the flow (in 2D) with random initial perturbations, mesh resolution
effects, and the difference in 3D results compared to 2D.

The experiment will be described next, followed by the mathematical formulation and
numerical method details of each approach.

Problem Description

The experimental campaign on which simulations are based is detailed in [4]. A tank
is connected to a set of six springs: three on the upper and three on the lower side. The rect-
angular tank has the following size: L = 10 cm (length), D = 6 cm (height), W = 6 cm
(depth), while the filling height is denoted H. The tank is filled up to 50% of its volume (i.e.,
H = 3 cm), and water and oil are considered as sloshing liquids (water mass of ml = 0.18 kg
and oil ml = 0.162 kg). This is to study both low and high Reynolds number cases.

When the springs are released, the tank oscillates at a characteristic frequency of about
f0 = 1/T = 6.51 Hz for both the liquids. Figure 1 sketches three pictures taken at different
time instants during the experimental test (more details on the experiment can be found
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in the article by [4]). At time t = T, the tank reaches its maximum vertical displacement
2A = 1.14L and a maximum acceleration amax ≈ 8.8 g. The latter value is close to 10 g,
which is of the same order of magnitude as limit design cases of an airliner wing during
a wind gust (see [2]). The maximum velocity Umax of about 2.33 m/s is reached by the
tank at t = 0.747 T during the first rising stage. The reference energy adopted is the
potential energy (of all fluid in the tank in its initial configuration) when the tank reaches
its maximum vertical displacement, i.e., ∆E = ml g 2A, which is equal to ∆Ew = 0.2013 J
for the water and ∆Eo = 0.1812 J for the oil. The reference power is ∆P = ∆E/T.

The Reynolds number of the problem is calculated using the maximum tank velocity
and length dimension (Re = UmaxL/ν), where ν is the kinematic viscosity of the liquid.
The resulting Reynolds numbers are 233,000 for water and 4660 for oil.

Figure 1. Experimental snapshots of the SDOF vertical sloshing water experiments carried out in [4]
for 50% filling level.

Figure 2 shows the recorded vertical motion of the tank considering both water and oil.
In the oil test case, the total amount of dissipated energy is lower compared to water. This
counter-intuitive result is, indeed, in agreement with the experimental findings in [24] for a
tuned liquid damping system. It is explained that water sloshing flows dissipate energy
mostly through energetic breaking wave phenomena. In liquids characterized by higher
viscosity, the breaking events are less intense and, therefore, less energy can be dissipated.
An analogous result was found in [24,25], where the authors underline that the higher
fragmentation phenomena occurring at higher Reynolds number induces a larger fluid
energy dissipation. This was similarly found in [22], where greater fragmentation resulted
in greater liquid impact.

Figure 2. Tank motion recorded in the experiment of [4]: tank with water (dash-dotted line) and tank
with oil (solid line).

An overview of the respective methods, their mathematical formulations and numeri-
cal methods will be provided next, starting with the SPH method.

2. SPH Method: The SPH-Flow Solver
2.1. Governing Equations Adopted for the SPH Model

The main simplifications adopted for the SPH model are:

• Modeling of only the liquid phase;
• Neglect of thermal conductivity and surface tension;
• Liquid is assumed to be a weakly compressible media through an artificial speed

of sound.
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The use of a single-phase model obliges the neglect of all physics related to the air
contained in the fluid domain. This assumption may appear inappropriate for violent
sloshing simulations where air entrapment is unavoidable. However, in [26], it was shown
that although the air phase plays a relevant role in the flow evolution, the evaluation
of the energy dissipation in violent flows, even under the single-phase hypothesis, is
still accurate enough. A further validation can also be found in [24,25], where the study
of the mechanical energy dissipation induced by sloshing and wave breaking in a fully
coupled angular motion system was investigated. In this work, a single-phase SPH model
is demonstrated to be able to predict the experimental results of the fluid dissipated energy
with reasonable accuracy.

The role of surface tension is negligible according to the velocity and length scales
considered, as also explained in [21], since the Weber number, We = ρ U2

max D/σ (where
σ is the surface tension coefficient of the liquid considered) is larger than 4000 for both
the liquids considered in this work. However, the liquid menisci due to the contact
angle between the lateral walls and the liquid surface need to be considered in the initial
conditions of the simulations presented in this work, since they form the main perturbation
mechanism of the interface leading to the Rayleigh–Taylor instability during the initial flow
stage (see also [23]).

In the SPH model, the flow evolution is considered governed by the weakly compress-
ible Navier–Stokes equations:

Dρ

Dt
= − ρ div(u) ,

Du
Dt

= g + f NI +
div(τ)

ρ

De
Dt

=
:D
ρ

,
Dr
Dt

= u, p = c2
0 (ρ− ρ0),

(1)

where D/Dt represents the Lagrangian derivative, u the flow velocity, r the position of
the material points, ρ the fluid density, τ the stress tensor, D the rate of strain tensor and
g the gravitational acceleration. Regarding the equation of state, which links pressure
to the density field, c0 is the speed of sound of the liquid, while the reference density
value ρ0 refers to the density along the free surface (where p is assumed to be equal to
zero). Under the weakly-compressible hypothesis, the effects of entropy/temperature
on the pressure are assumed to be negligible. Therefore, the pressure p is assumed to be
linearly dependent on the density and proportional to the speed of sound of the liquid c0.
The weakly-compressible condition requires that:

c0 � max

(
Umax,

√
(∆p)max

ρ

)
, (2)

where Umax and (∆p)max, respectively, are the maximum fluid speed and the maximum
pressure variation expected (with respect to the zero pressure free-surface level) within
the fluid domain. To avoid too small time steps, c0 is always set lower than its physical
counterpart (in the present work, about two orders of magnitude lower). The constraint (2),
however, must be respected in the interest of the validity of the weakly compressible
assumption. As discussed in [27,28], if this weakly compressible constraint is indeed
satisfied, the energy dissipation linked to water impacts using Equation (1) is consistent
with that of incompressible flow models.

The thermal conductivity and the surface tension effects are neglected, and the liquid
is assumed to be Newtonian, i.e.,: τ = [−p + λ div(u)] I + 2 µ D, where µ and λ are the
primary and secondary dynamic viscosities of the liquid, and I the identity tensor.

Equation (1) can be either solved in an Inertial Frame of Reference (I-FoR) where the
tank is moving (relative to the reference frame) or in a Non-inertial Frame of Reference
(Ni-FoR), in which the reference frame is fixed to the tank. The Ni-FoR, adopted in this
work, is generally preferred due to its easier implementation. It uses a static mesh with
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tank accelerations applied as an acceleration source term f NI to the fluid in the governing
Equation (1).

2.2. Brief Recall of the δ-LES-SPH Scheme

In the present section, we briefly introduce the SPH scheme defined in [29,30]. The
governing Equation (1) is discretized as a set of fluid particles whose masses mi remain
constant during the motion. The particles are set initially on a lattice with homogeneous
spacing ∆r, and hence, the particles’ volumes Vi are evaluated initially as ∆rn (where n
is the number of spatial dimensions). The particle masses mi are calculated through the
initial density field using the equation of state and the initial pressure field. During the
time evolution, volumes Vi change in time according to the particle density ρi.

For the sake of brevity, in the following text the notation r ji indicates the differences in
the particles positions (r j − ri), and the same holds for the velocity fields uji and δuji, while,
for the generic scalar field the notation fij just indicates the dependency of the field f on the
indices i and j. The spatial gradients are approximated through convolution summations
with a kernel function Wij. This function has a compact support whose reference length
is denoted by h and referred to as the smoothing length. As in [29], a C2-Wendland
kernel is adopted in the present work. For this kernel, the radius of the support is 2h. In
the numerical simulations that follow, the number of neighboring particles is chosen as
2h = 4∆r in two dimensions and 2h = 3∆r in three dimensions.

The governing Equation (1) is discretized within the δ-LES-SPH scheme as:

dρi
dt

= −ρi ∑
j
(uji + δuji) · ∇i Wij Vj + ∑

j
(ρj δuj + ρi δui) · ∇i Wij Vj +D

ρ
i

ρi
dui
dt

= F p
i + Fv

i + ρi(g + f NI) + ∑
j
(ρj uj ⊗ δuj + ρi ui ⊗ δui) · ∇i Wij Vj

dri
dt

= ui + δui, Vi = mi
/

ρi, p = c2
0(ρ− ρ0),

(3)

where the indexes i and j refer to generic i-th and j-th particles, F p
i and Fv

i are the pressure
and viscous forces acting on the particle i. The vector δu is the particle shifting velocity
adopted to regularize the particles’ spatial distribution during their motion. The time
derivative d/dt used in (3) indicates a quasi-Lagrangian derivative since the particles
are moving with the modified velocity (u + δu), and the above equations are written in
an Arbitrary Lagrangian–Eulerian framework. For this reason, the continuity and the
momentum equations contain terms with spatial derivatives of δu (for details, see [31]).

The termDρ
i is the numerical diffusive term introduced by [32] to filter out the spurious

high-frequency noise in the pressure field:

Dρ
i := ∑

j
δij ψji · ∇iWij Vj (4)

The law adopted in the present work for the particle shifting velocity δu term, as well
as the functions δij and ψij, are given in [12] and not reported here for the sake of brevity.

Regarding the pressure and the viscous forces, these are expressed as:

F p
i := − ∑

j

(
pj + pi

)
∇i Wij Vj

Fv
i := K ∑

j
(µ + µT

ij)πij∇iWij Vj K := 2(n + 2)

πij :=
uij · rij

||r ji||2
µT

ij := 2
µT

i µT
j

µT
i + µT

j
µT

i := ρ0 (CS l)2 ||Di||

(5)
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where CS is the so-called Smagorinsky constant set equal to 0.18 (see [33]). The viscous
term (5) contains both the effect of the real viscosity µ, as well as the one related to the local
turbulent viscosity µT

i .

δ-LES-SPH Scheme: Enforcement of the Boundary Conditions

The kinematic and dynamic free-surface and no-slip conditions are applied, respec-
tively, on the free surface and on the solid surfaces and thus coupled with the governing
Equation (1). More specifically, while the free surface boundary conditions are intrinsically
satisfied in the SPH methods (see [34]), it is difficult to resolve thin wall boundary layers
(WBL) as easily performed in mesh-based methods. Concerning the latter, if a solution is
represented by the use of smaller particles close to the walls, it implies large CPU costs
linked to the explicit time integration of the scheme. Indeed, in high Reynolds number
conditions, thin WBLs are developed and a simple no-penetration boundary condition (free-
slip) is preferred to avoid a too-demanding cost in terms of computational resources. The
Reynolds number of the simulations with water, presented in this work, is about 233,000
and an initial estimation of the WBL thickness returns in that the near-wall regions, even
with the maximum spatial resolution, are still under-resolved so the free-slip conditions are
preferred. On the other hand, the Reynolds number in the simulations with oil is about 4660,
and in this condition, the particle size used for water is sufficient to resolve the boundary
layer developed by the oil, thus allowing the application of the no-slip conditions. The limit
of the free-slip assumption for the water simulations is evaluated in [12], and it returns
that the energy dissipation is not substantially influenced by choice of the wall boundary
conditions in the violent free-surface flows presented here. This result is also connected
to two opposing phenomena: the wall friction slows down the run-up of the liquid jet,
decreasing the intensity of the liquid impact against the tank walls, but it represents a
further energy dissipation mechanism.

2.3. δ-LES-SPH Scheme: Evaluation of the Energy Dissipation

Following the analysis performed in [30,35], the energy balance for the particle system
is extended to the δ-LES-SPH equations. For the sake of brevity, only the main terms are
briefly reported in this section. The δ-LES-SPH energy balance can be written as:

ĖK + ĖP −PNF = PV + P turb
V + PN

EK(t) =
1
2 ∑

i
mi u2

i , EP(t) = ∑
i

mi g yi , PNF = ∑
i

mi ( f NI · ui)
(6)

where on the left-hand side, EK and EP are the kinetic and potential energy of the particle
system, and PNF is the power linked to the non-inertial forces. In Equation (6), yi is the
vertical position of the generic i-th particle.

Conversely, the right-hand side of the energy balance (6) contains the dissipation terms
due to the real viscosity PV , to the turbulent viscosity P turb

V , while PN takes into account
the effect of the density diffusion and the particle shifting δu.

The elastic potential energy linked to the compressibility of the liquid is negligible within
the weakly-compressible assumption; hence, it is not considered in the energy balance.

The power related to the viscous forces is directly evaluated through the expressions (5) as:

PV + P turb
V =

K
2 ∑

i
∑

j
( µ + µT

ij ) πij uij · ∇iWij Vi Vj (7)

where the quantity P turb
V refers to the viscous dissipation of the modeled sub-grid scales,

whereas PV refers to the resolved scales.
Finally, the energy dissipated by the fluid can be evaluated by integrating time into

Equation (6)
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EK(t) + EP(t)−WNF(t) = Ediss(t) ,

WNF(t) =
∫ t

t0

(
∑

i
mi f NI · ui

)
dt , Ediss(t) =

∫ t

t0

(
PV + P turb

V + PN
)

dt
(8)

where WNF is the work performed by the non-inertial forces on the fluid. The first equation
of (8) gives two ways for the evaluation of the energy dissipated by the fluid: (i) the first
is using the left-hand side, while (ii) a second way is to use the second equation in which
the three dissipation terms are integrated in time. Both these approaches were adopted in
the SPH simulations in order to verify that the present model is able to close the energy
balance accurately.

3. Relation between Energy Dissipation and Fluid Center of Mass Motion

Considering the motion of the tank as a pure vertical translation, following the analysis
in [12], the energy balance can be reshaped as:

EK(t) + ml g yG(t) + ml

∫ t

t0

ẏG(t) atank(t) dt = Ediss(t) , yG(t) := ∑i ρi Vi yi
ml

, (9)

where atank is the vertical acceleration of the tank and yG the position of the fluid center of
mass in the Ni-FoR. The latter is evaluated in a discrete form on the finite volume cells or
on the SPH particles.

The first equation of (9) highlights the role of the motion of the fluid center of mass
in the Ni-FoR concerning the energy dissipated by the liquid sloshing. In particular, the
phase lag between the velocity ẏG and atank(t) is a crucial aspect of the phenomenon.
The third term of the left-hand side of the first Equation of (9) is the work completed by the
non-inertial force acting on the liquid:

WNF(t) =
∫ t

t0

PNF dt = −ml

∫ t

t0

ẏG(t) atank(t) dt (10)

In the problem studied in this article, WNF is much larger than the kinetic and potential
energy in the Ni-FoR, and therefore, as the time increases, WNF becomes increasingly closer
to the dissipated energy Ediss. Considering the energy balance (9) at the time t f = 30 T at
the end of the experiment, when the fluid almost comes back to a rest condition, they are
going to be very close to each other:

WNF(t f ) ≈ Ediss(t f )

Following again [12], one can find that the acceleration of the center of mass ÿG is
linked to the vertical forces Fy that the liquid exerts on the tank:

ml ÿG(t) = −Fy(t) − ml [g + atank(t)] (11)

and the work completed by those forces of the above expression is:

Wdyn
ext (t) = ml

∫ t

t0

ÿG(t) vtank(t) dt (12)

If the fluid is “frozen” (i.e., no liquid sloshing), the above external work performed by
the tank walls on the fluid is zero since the center of mass yG is a constant in the Ni-FoR.
Considering that at t = t0, the tank is in a rest condition, using integration by parts, it
follows that:

Wdyn
ext (t) = ml ẏG(t) vtank(t) + WNF(t) (13)

where, as explained in [12], the first term on the right-hand side is linked to differences
in the mechanical energy (i.e., EK + EP) evaluated in the I-FoR and in the Ni-FoR. Again,
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similarly to what was stated above, at the end of the experiment (i.e., t = t f ), the tank does

not move anymore; hence, the two work terms Wdyn
ext and WNF, coincide and are practically

both equal to the dissipated energy Ediss (see also Section 5.1).
It is worth noting that the center of mass motion yG(t) can be experimentally evaluated

measuring Fy with a load cell, while the recording of yG(t) from video-camera frames
would require a more complex indirect measure, especially in a three-dimensional context
[private communication, Gambioli, 2021] [36]. Finally, all the relations written in this
section are valid both for no-slip and free-slip conditions on the tank walls. In fact, those
boundary conditions influence the fluid motion, which reflects directly on the center of
mass motion yG(t).

4. Volume-of-Fluid Finite Volume Method: The Elemental Solver
4.1. Background

Consider the generic domain V, which is undergoing a vertical, rigid body acceleration
ad and contains a liquid–gas mixture. A schematic illustration of the inertial reference
frame X, Y, Z and domain volume V inside non-inertial reference frame x, y, z is shown
in Figure 3.

ad(t)

(x0, y0, z0)

g

X

Y

Z

z

V
δα

Ω

Ωi

x

y

Vi

Figure 3. Schematic illustrating a non-inertial simulation domain in reference frame x, y, z, undergo-
ing linear acceleration ad. The simulation domain is represented by volume V with bounding surface
Ω. There is a two-phase flow inside the domain, with δα the interface between fluids.

The absolute velocity ua of the fluid in the global, inertial reference frame is defined as

ua(X, Y, Z, t) = u(x, y, z, t) + ud(X, Y, Z, t) , (14)

where ud is the velocity of the fluid domain relative to the inertial reference frame (X, Y, Z)
and u is the fluid velocity relative to the domain (non-inertial reference frame and simula-
tion domain x, y, z).

4.2. Governing Equations for the Elemental Vertex-Centered FVM

In this section, we present the governing equations used for the ELEMENTAL® vertex-
centered, finite volume VOF solver [19]. They consist of equations for the conservation of
mass, momentum and an advection equation for the VOF, α. The equations are written in
integral form for a volume Vi, which represents a finite volume cell in tank volume V

1
Vi

∫
Vi

[
∂ρu
∂t

+∇ · ρu⊗ u
]

dV =
1
Vi

∫
Vi

[∇ · τ + ρ(g + a) + σκnαδα]dV (15)
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1
Vi

∫
Vi

∇ · u dV =
1
Vi

∫
Vi

(α− 1)
ρg

1
c2

g

∂p
∂t

dV , (16)

with ρ the density, u the fluid velocity relative to the tank, g gravitational acceleration and
a the acceleration of the tank. The last term in (15) is the estimation for the surface force
due to surface tension, with δα a Dirac delta function defined on the VOF interface, nα the
interface normal, σ the surface tension coefficient and κ the interface curvature. In (16),
a weakly compressible gas formulation [20] is used, with α the VOF, which is defined in
volume Vi as a volume weighted tracer of the liquid phase Hα, so that Hα = 1 is in the
liquid and Hα = 0 is in the gas phase

αi =
1
Vi

∫
Vi

Hα dV . (17)

Further, cg is the acoustic velocity in the gas phase. The fluid density and viscosity
are represented as ρ and µ. Throughout this work, a harmonic mean is used for the fluid
viscosity, assuming constant values in each phase. The density within a finite volume Vi is
calculated as an average using the VOF

ρ = αρl + (1− α)ρg , (18)

where the liquid density ρl is a constant in this work, and the gas density ρg is calculated
assuming an ideal gas law with adiabatic compression such that

ρg2 = ρg1

(
p2

p1

)(1/γ)

. (19)

Here, γ =
cp
cv

= 1.4 for air, with cp and cv, respectively, the specific heat capacity at
constant pressure and volume. The gas acoustic velocity is

c2 =
γp
ρg

, (20)

where for dry air at Normal Temperature and Pressure (NTP) ρ = 1.205 kg·m−3 and
p = 101.325 kPa, hence cg = 343 m·s−1.

4.3. Numerical Method

Equations (15) and (16) are solved using a fractional step projection method [19]. First,
a predicted velocity u∗ is calculated from (15), without the pressure term from the values at
time step n:

u∗ =
1

ρn+1

[
ρnun + ∆t

(
−∇ · ρu⊗ u|n +∇ · (µ + µt)

(
∇u +∇uT

)
|n +

+ ρg|n + σκ∇α|n
)]

.
(21)

where µt is the turbulent viscosity which is computed using the LES Smagorinsky–Lilly
model (as per the SPH method).

The pressure term contribution is added to obtain the velocity at the following time
step n + 1:

un+1 = u∗ − ∆t
ρn+1∇pn+1 (22)

Mass conservation (16) is then applied to this equation so that
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∇ · un+1 = ∇ ·
(

u∗ − ∆t
ρn+1∇pn+1

)
= −

(
1− αn+1)

ρgc2
g

pn+1 − pn

∆t

∴ 0 = ∇ ·
(

u∗ − ∆t
ρn+1∇pn+1

)
+

(
1− αn+1)

γpn+1
pn+1 − pn

∆t
. (23)

The VOF is updated in each cell using a compressive, algebraic advection scheme [37],
which ensures mass conservation [38]:

αn+1 = αn − ∆t(∇ · unαn) (24)

A notionally second-order predictor-corrector time integration scheme was used in
this work, so that Equations (21)–(24) are iterated twice per time step.

4.4. Mechanical Energy Calculation: Elemental

The momentum conservation of the fluid system can be written in the inertial reference
frame as:

D
Dt

(ρua) = ∇ · τ + ρg + σκ∇α (25)

where D/Dt is the material (Lagrangian) derivative with respect to time, and other
variables are as defined previously. Without phase change or chemical mass transport
Dρ/Dt = 0. This results in:

D
Dt

(ρua) = ρ
Dua

Dt
. (26)

The temporal change in kinetic energy results from pre-multiplying (26) with ua:

ρua ·
Dua

Dt
= ρ

1
2

D|ua|2

Dt
, (27)

where |ua| =
√

uT
a ua. Returning to (26), the right-hand side is expanded

ρ
Dua

Dt
= ρ

D(u + ud)

Dt
= ρ

Du
Dt

+ ρad

=
∂ρu
∂t

+∇ · (ρu⊗ u) + ρad .

(28)

Equation (25) is now cast in the non-inertial reference frame by assuming that the
contribution of λ∇ · u to the gas is negligible as per [38]:[

∂ρu
∂t

+∇ · (ρu⊗ u) + ρad

]
= −∇p +∇ · (µ + µt)

(
∇u +∇uT

)
+ ρg + σκ∇α . (29)

In this work, we compute the mechanical energy in a manner that is consistent with
the discretization of the governing equations. This is achieved by pre-multiplying the dis-
cretized governing equations at each computational cell i with uai followed by integration
over time:

∑
i

∫ t

0
uai ·

∫
Vi

(
Dρu
Dt

+ ρad

)
dV dt =

∑
i

∫ t

0
uai ·

∮
∂Ωi

(
τ · nΩi

)
dΩ dt + ∑

i

∫ t

0
uai ·

∫
Vi

ρg dV dt + ∑
i

∫ t

0
uai ·

∫
Vi

σκ∇α dV dt ,
(30)

Here, uai = 1
Vi

∫
Vi

uadV is the volume averaged absolute velocity and ∑i Vi = V.
Further, Ωi and nΩi are, respectively, the surface of Vi and outward pointing unit normal.
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We can proceed to group the terms in (30) into various energy containers. The potential
EP and surface Eσ energies are, respectively, given by

EP(t) = ∑
i

EP,i = −∑
i

∫ t

0
uai ·

∫
Vi

ρg dV dt and (31)

Eσ(t) = ∑
i

Eσ,i = −∑
i

∫ t

0
uai ·

∫
Vi

σκ∇α dV dt . (32)

The stress tensor is divided up into internal and external contributions. Internal
contributions are inside the tank boundary and include compressive energy EC (work
performed on the fluid through pressure), as well as viscous dissipation EV . We write these
for a finite volume Vi (shown in Figure 3), and to obtain the total for the domain, we simply
integrate over all cells in the domain:

EC(t) = ∑
i

EC,i = ∑
i

∫ t

0
uai ·

∮
∂Ωi

pnΩi dΩi dt (33)

EV(t) = ∑
i

EV,i =
∫ t

0

(
PV + P turb

V

)
dt

= ∑
i

∫ t

0
uai ·

∮
∂Ωi

[
(µ + µt)

(
∇u + (∇u)T

)
· nΩi

]
dΩi dt ,

(34)

with Ωi any internal surface bounding internal volume Vi. The external energy addition,
or work performed on the fluid by the domain surface Ω or work performed on the fluid
by non-inertial forces, Wext, is given by

Wext(t) = −
∫ t

0
ud ·

∮
∂Ω

pnΩ dΩ dt+

+
∫ t

0
ud ·

∮
∂Ω

[
(µ + µt)

(
∇u + (∇u)T

)
· nΩ

]
dΩ dt .

(35)

where, in this work, the domain boundary velocity ud is constant in space.
For a flow field that varies smoothly in time, from (27), the kinetic energy contained in

Vi at any time t is:

∫ t

0
uai ·

∫
Vi

[
∂ρu
∂t

+∇T(ρu⊗ u) + ρad

]
dV dt =

∫ t

0

∫
Vi

ρ
1
2

D|ua|2

Dt
dV dt

=
∫

Vi

ρ
1
2
|ua|2 dV + EK,0 ,

(36)

with EK,0 the kinetic energy at t = 0. However, liquid slosh involves impact events
(liquid–liquid and liquid–solid), which results in an immediate loss in kinetic energy [39].
Marrone et al. [27] observed that this can be accounted for via the artificial compressibility
scheme [40,41]. For the fractional step method employed in the present work, this irre-
versible energy loss (Eloss) is calculated as the difference between the left- and right-hand
sides of (36) as per [22]:

Eloss(t) = EK(t)−∑
i

∫ t

0
uai ·

∫
Vi

[
∂ρu
∂t

+∇T(ρu⊗ u) + ρad

]
dV dt . (37)

where
EK = ∑

i

∫
Vi

ρ
1
2
|ua|2 dV − EK,0 (38)

The total irreversible dissipated energy is then
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Ediss(t) = Eloss(t) + EV(t) (39)

We can write (30) at any node i and re-shuffle to cast in the following form for the
mechanical energy computed at any time, assuming the initial energy is zero

Wext = EK + EP + EC + Eσ − Ediss , (40)

The terms denote (from left to right) the work performed on the fluid through the
non-inertial boundary surface, kinetic energy, potential energy, compressive (or dilatation)
work, surface energy and dissipation. Equation (40) states that the total energy added to
the fluid through the domain boundary must equal the sum of the stated energy containers
on the right-hand side of the equation or the total energy inside the fluid. In ELEMENTAL®,
the contribution of each energy container to the total energy balance in (40) is calculated
consistently with the respective contribution from each term in the momentum conservation
Equation (29). This is completed very carefully when the contributions from each term are
added to the fractional step solution method. Since momentum is conserved, this ensures
that (40) is satisfied and that all the energy added to the fluid through the accelerating
boundary is accounted for.

5. Results

We now present simulation results from both SPH (liquid only) and finite volume
methods (liquid and gas). For 2D simulations, both numerical methods used small per-
turbations of the initial conditions to perform a statistical analysis of some result metrics.
A subsection will be dedicated for each method to report on two- and three-dimensional
results for both liquids modeled viz. oil and water.

5.1. SPH-Flow Solver Results

SPH-flow results, analyzed in this section, are obtained in a two-dimensional frame-
work and compared with 3D results, respectively, for both water and oil. As discussed
in [12], the problem studied in this work exhibits a chaotic nature. To highlight this be-
haviour, ten different 2D simulations have been performed introducing in the initial rest
condition a small random noise on the particles positions.

5.1.1. Two-Dimensional SPH Water Results

We start to consider the test with water. Figure 4 shows the free-surface particles
just prior to the first roof impact for the first four runs. Clearly, at this stage, the interface
position from four different solutions are starting to deviate. The spatial resolution adopted
is N := H/∆x = 200, corresponding to about 133,000 particles in the liquid domain.

Figure 4. Test with water: free-surface particles for the first four simulations at the first roof impact.

Figure 5 depicts the vorticity field of four simulations, doubling the spatial resolution
from N = 50 up to 400. The time instant considered is related to the fourth bottom liquid
impact event. The chaotic nature of the flow is also clearly visible in this plot, where the free-
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surface of the four fluid domains present large differences from each other. Furthermore,
it is quite evident in the case of water that, by increasing the resolution, the number of
eddies increases considerably. This is an indication that we are still resolving the inertial
range of the turbulence regime. This is also confirmed by the fact that for the first three
resolutions (N = 50, 100 and 200), the turbulent viscosity is one order of magnitude greater
than the material or laminar viscosity. In a more in depth-analysis shown in [12,13], a
resolution of N = 800 is used for obtaining good LES simulations (i.e., for resolving the
Taylor microscales).

However, because of this chaotic behavior, ten runs are performed for the four different
spatial resolutions (N = 50, 100, 200 and 400) in order to perform a statistical analysis for
controlling the convergence of the numerical results. On the other hand, the CPU costs
for resolution N = 800 is too large to perform ten runs, and even for a 2D framework, a
cluster machine would be required. The limitation is not mainly linked to the number of
particles, which are about two million for N = 800, but to the fact that more than 1.5 million
time iterations are required. Figure 6 reports the ensemble average of the dissipated energy
of the forty simulations performed for the spatial resolution N = 50, 100, 200, 400. A
convergence of the curves is obtained, where the error bars refer to the standard deviation
measured between the set of the ten simulations. Even if a resolution N = 800 would be
required, the result trend for N = 200 and 400 indicates that the average dissipation will
likely remain within the standard deviation of the N = 400 case. It is worth noting that
the results for the oil test case presented here are slightly different with respect to the ones
reported in [13] since a different acceleration profile was used for the tank motion.

Figure 5. Test with water: vorticity fields at the fourth bottom impact for different spatial resolutions
N = 50, 100, 200, 400.

Figure 6. Test with water: ensemble average of the energy dissipation Ediss time history for different
spatial resolutions. Error bars refer to the computed standard deviation.
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5.1.2. Two-Dimensional SPH Oil Results

Considering the oil case, the average dissipation results are much closer (compared
to water), as shown in the plot of Figure 7. For all the three resolutions N = 50, 100, 200,
the averaged curves are quite close to each other, with the difference being less than the
standard deviation measured. At the Reynolds number Re = 4660, even with the coarser
resolution, it is possible to capture the main vorticity structure of the wall boundary layer
as well as the large eddies inside the fluid. Even though the vortical structures in Figure 8
seem different at N = 400 compared to N = 50, the turbulent viscosity magnitude always
remains of the same order as its laminar counterpart for all the simulations. Since the
curves at N = 50, 100 and 200 are very close, the ensemble average is not performed at
N = 400, for which only one simulation was performed.

Figure 7. Test with oil: ensemble average of the energy dissipation Ediss time history for different
spatial resolutions N = 50, 100, 200. Error bars refer to the computed standard deviation. Resolution
N = 400, the data refers to a single simulation.

Figure 8. Test with oil: vorticity fields at the fourth bottom impact for different spatial resolutions
N = 50, 100, 200, 400.

5.1.3. Mechanisms of Fluid Dissipation

The plots in Figure 9 show the energy dissipation due to real and turbulent viscosity at
three different spatial resolutions for both oil and water cases. Looking at the water (left of
Figure 9), it is clear that the viscous dissipation due to the sub-scale model is predominant
compared to the real viscosity. This is expected, considering the high Reynolds number.
However, it is interesting that the absolute value of Eturb

V does not increase with N while
for the real viscosity component, it does. This indicates that the viscous dissipation related
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to the real viscosity can be resolved directly beyond the sub-scale turbulent model, which
is something expected when a good LES is performed. For the oil cases, Eturb

V largely
decreases with N and remains lower than EV , indicating that the LES simulation is much
closer to being resolved, compared to water. This is again expected with the large difference
in Reynolds number between the two liquid cases.

Figure 9. Energy dissipation due to the real and turbulent viscosity for different spatial resolutions.
(Left) water test-case. (Right) oil test-case.

Figure 10 depicts the energy dissipated by the numerical diffusion of the scheme,
which acts mainly during the liquid impact events. Because of the complexities of the flow
studied, this component—like the Eturb

V component—is not negligible, even for the lower
Reynolds oil case.

Figure 10. Energy dissipation due to numerical viscosity for different spatial resolutions. (Left) 2D
water test-case. (Right) 2D oil test-case.

In Figure 11, the time history of the energy dissipation Ediss for the water test-cases
and for one of the runs at resolution N = 400 is compared with the histories of the
mechanical energy (kinetic plus potential energy) in the Ni-FoR, along with WNF and Wext

dyn.
As already commented in Section 2.2, the mechanical energy of the fluid in the Ni-FoR
remains quite limited and small during the experiments with respect to the dissipated
energy. Furthermore, in this plot, it can be seen how both the work containers WNF and
Wext

dyn tend to Ediss at the end of the experiment t f = 30T, indeed already after fifteen periods
they are practically the same.

Figure 12 depicts the comparison between the time histories of the tank acceleration
atank, the vertical velocity of the fluid center of mass ẏG(t) and the power exerted by the
non-inertial forces on the fluid PNF. The latter is characterized by large peaks when the first
two are in counter phase giving an indication of when intense fluid dissipation mechanisms
are taking place.
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Figure 11. Test with water: time histories of the dissipated energy Ediss, mechanical energy (Ek + Ep),
work completed by the non-inertial forces WNF and work completed by the tank wall to slosh the
fluid Wext

dyn.

Figure 12. Test with water: time histories of the tank acceleration atank, the fluid center of mass ẏG,
and the power of the non-inertial forces PNF.

5.1.4. Three-Dimensional SPH Water Results

Figure 13 shows the 3D free surface for the water test-case at the first roof impact. The 3D
flow behavior is similar to the 2D one in the sense that during the first upward acceleration
of the tank, a Rayleigh–Taylor instability is influenced by free-surface waves, which are
generated due to the collapse of the menisci at the lateral walls. The waves move from
the lateral walls towards the center of the tank. The further flow evolution is characterized
by a complex 3D free surface, as well as a complex interaction of three-dimensional vortex
tubes, which makes physics much more complex compared to the two-dimensional case. In
addition to these differences, the dimensionless energy dissipation Ediss/∆E remains quite
close, as reported in Table 1 (for more details, see also [42]). We need to underline again
that the 2D results are ensemble averages of ten simulations, while 3D is given by single
simulations. Because of the CPU costs, the spatial resolutions adopted for the 3D simulations
are N = 22, 33, 50 and 75. As expected for the water-case, Ediss varies significantly with N
and, conversely to the 2D case, there is not a clear convergence trend in the results. In the
water test-case, the highest resolution is still too coarse to obtain a convergent result and
an effective LES simulation. A spatial resolution as high as N = 400 corresponds to about
430 million particles and would require about one year of computing time on a cluster with
100 nodes. Even with the above constraints, the dissipated energy given by the 3D simulations
at resolution N = 75 is closest to the experimental data by [4].

Table 1. Total energy fluid dissipation, Ediss(t f ) for 2D/3D SPH simulations with water and with oil
using different spatial resolution N = H/∆x. Numerical outputs are compared with the experimental
data of [4]. The 2D results are ensemble averages of ten different simulations, while 3D simulations
are given by single simulations.

Single-Phase δ-LES-SPH Results (SPH-Flow Solver)

Test-Case N = 50 N = 100 N = 200 N = 400

Ediss(t f )/∆Ew 2D test with water −10.3 −12.4 −13.2 −13.6

Ediss(t f )/∆Eo 2D test with oil −14.0 −14.4 −14.6 −

N = 22 N = 33 N = 50 N = 75 Exp. Data

Ediss(t f )/∆Ew 3D test with water −13.1 −14.5 −15.3 −15.9 −16.3

Ediss(t f )/∆Eo 3D test with oil −17.8 −17.7 −17.6 −17.9 −16.7
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Figure 13. Test with water: free-surface at the first roof impact. Three-dimensional simulation.
(Top) Three-dimensional view, (Bottom) lateral and from above views.

5.1.5. Three-Dimensional SPH Oil Results

In the oil 3D test-case Ediss is evaluated with four resolutions and—as for the 2D
simulations—remains fairly close to each other. From Table 1, the oil 3D results overesti-
mate the experimental data by approximately 7%, while 2D simulations undervalue the
dissipation by approximately 13% and this is linked mainly to the missing friction effects
on the lateral walls (for more details, see also [42]).

It is important to point out that the experimental uncertainty and its effect on Ediss
are unknown. The experimental value of Ediss is calculated using Equation (12), where
just small shifting errors between the forces and the tank velocity measures may imply
non-negligible errors on the dissipation. For the above reasons, an in-depth investigation
on the experimental side is still ongoing [11].

Figure 14 depicts the time histories of different energy components, including real,
turbulent and numerical dissipation obtained for the maximum spatial resolution N = 75.
Analogous to the 2D results, in the water case, the turbulent energy dissipation is the
largest, while in the oil case, the dissipation due to the real viscosity is dominant.

Figure 14. Energy dissipation due to real, turbulent and numerical viscosity for 3D simulations at the
maximum resolution N = 75. (Left) water test-case. (Right) oil test-case.
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In Section 3, the role of center of mass motion of the fluid is highlighted in the
dissipated energy. The top plot of Figure 15 depicts the time histories of the vertical
position yG(t) of the fluid center of mass for the water test-case evaluated by the SPH-Flow
solver for both 2D and 3D framework. Remarkably, the two time histories are very close,
up to t = 10T , while large differences appear in the rest of the evolution. However, in the
first ten periods, about 85% of slosh dissipation takes place. In the bottom plot of Figure 15,
the yG(t) time histories are reported for the oil test case. As already commented above, the
differences in the flow behavior between 2D and 3D are larger here. In particular, the plots
of Figure 15 show that the fluid center of mass in 3D is subjected to a larger motion, which
is related to the higher slosh dissipation reported in Table 1.

Figure 15. Time history of the vertical position of the fluid center of mass yG(t) evaluated by the SPH-
Flow solver for the 2D and the 3D simulation. The 2D results are given by an ensemble average of
ten simulations. Error bars refer to the computed standard deviation. (Top) water test-case. (Bottom)
oil test-case.

5.2. Finite Volume Method Results with ELEMENTAL®

5.2.1. Simulation Setup

For 2D and 3D simulations in ELEMENTAL®, a structured, Cartesian mesh is used.
The mesh resolutions used are similar to the particle resolution in the SPH simulations,
as shown in Table 2.

Table 2. Mesh resolutions for different simulations.

Mesh Description and Dimension
Mesh Resolution:

Cell Dimension (µm)Nx × Ny (2D) or
Nx × Ny × Nz Nodes (3D)

N50 2D 160 × 96 625.00
N100 2D 320 × 192 312.50
N200 2D 640 × 384 156.25
N33 3D 125 × 75 × 75 800.00
N50 3D 160 × 96 × 96 625.00

The interface is initialized as a flat, horizontal plane. To model the effect of liquid
meniscii at the walls, liquid wedges are initialized as equilateral triangles with a height of
1.5 mm, as explained in [12] and used in the SPH simulations. As mentioned earlier, inter-
face perturbations are applied to the interface in 2D simulations. These perturbations are
introduced as sinusoidal waves on the interface, all with an amplitude of 0.15 mm, or 1/10
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the height of the meniscus. Five different wavelengths with randomized phase angles
for each are used, resulting in differences in the interface shape once the Rayleigh–Taylor
instability is formed with the first upward acceleration of the tank. Since the amplitudes of
these perturbations were so small, the total difference in mass between simulations was
negligible. Figure 16 shows the interface position for four different simulations at the N50
resolution for oil and water to illustrate the effect of the initial interface perturbations.

Figure 16. The interface position showing the initial Rayleigh–Taylor instability forming. A VOF
iso-contour at 0.5 is represented by four different colours for four (out of ten) different simulations at
N50 resolution at the same time. Oil is on the left and water on the right.

All simulations are run using the weakly compressible gas formulation for air and
treating the liquid as an incompressible liquid. A continuum surface force (CSF) surface
tension model is used to model surface tension. Like the SPH method, a Smagorinsky–Lilly
large eddy simulation (LES) turbulence model is applied, with a Smagorinsky constant of
0.18 used throughout. For all simulations, the turbulent viscosity is capped to twice the
laminar viscosity. The resulting linear system of Equation (23) is solved using a bi-conjugate
gradient (BiCG) solver with an incomplete lower-upper (ILUT) preconditioner.

The measured tank acceleration is applied as a body force to all fluids in the tank,
along with gravitational acceleration, exactly the same as in the single-phase approach.
The evolution of the energy, as described in Section 4.4, is calculated by integrating (in
time) the different energy components each time step. The total velocity at each time step
is calculated as per Equation (14), where u is the latest fluid velocity relative to the domain,
and ud is the domain velocity as measured experimentally. Note that due to experimental
measurement errors, there are slight inconsistencies between the measured velocity and
acceleration of the tank. This can be seen, for example, in the “drift” of the potential
energy. However, for the total dissipation, it can be shown that the inconsistency does not
noticeably affect the calculated dissipation.

5.2.2. Oil 2D Results

In Figure 17, the oil interface is shown at different time instants as well as the vorticity
in the fluid for a N200 resolution case. The first frame on the left at t = 1.20T shows
the interface just after the central oil structures have impacted the roof for the first time.
The asymmetry in the interface structure is a result of the randomized interface initialization
explained earlier. Compared to the single-phase results in Figure 8, the liquid looks much
more dispersed, or there is a higher degree of mixing between phases.

Since the spatial distribution in the tank differs from very early between single and
two-phase results, it is difficult to perform a precise comparison of the vorticity. However,
the overall vorticity magnitude in the liquid is similar between the approaches. Note that
for the ELEMENTAL® finite volume results, we use a scaled vorticity ω̃ throughout

ω̃ =
ω

2π f0

µ

µ`
=
∇× u
2π f0

µ

µ`
. (41)

The last term is a viscosity ratio scaling factor, which is equal to 1 in the liquid phase
and µg/µ` in the air. Without this scaling, the vorticity in the air phase is dominant and
does not allow for a comparison with the SPH results in Figure 8.
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Figure 17. Two-dimensional oil ELEMENTAL® results on the N200 resolution at various time instants.
The (top) row shows the VOF with oil black and air white. The (bottom) row shows the non-
dimensionalized vorticity.

To illustrate the effect of mesh resolution, the turbulent viscosity ratio is shown in
Figure 18 at the same time for different mesh resolutions. The areas where the turbulent
viscosity ratios are largest are mostly in the air. It was observed for all resolutions that there
is large vorticity generated in the air phase as it is accelerated around in the tank by the
liquid. As the resolution increases, it is evident that the inertial range for turbulence is
increasingly resolved.

N50 N100 N200

Figure 18. Two-dimensional oil ELEMENTAL® turbulent viscosity ratio at different resolutions at
t = 2.21T.

The energy distribution for a N200 case is represented in Figure 19, along with a
magnification of the first five cycles. The total energy dissipation is shown in the light
peach shading. In the zoomed plot (bottom), it can be seen that the dissipation starts to
increase gradually after t = 1.20T, which corresponds with the first roof impact of the oil.
The sharp increase in dissipation just after t = 2.05T corresponds to the second roof impact.
All the contributions to the total dissipated energy are presented in the plot, with the total
viscous dissipation having the largest contribution. The total work done on the fluid, WNF,
consists of the work done by the pressure, WP

NF at the boundary, as well as the viscous
work, WV

NF. It is clear that the viscous component is negligible, and the majority of the work
is performed by the pressure. The compressive EC and surface work Eσ are not plotted
here as both were negligible.

The impact-related loss term is significant, yet slightly less than the total viscous
dissipation. The influence of mesh resolution on the total dissipation is shown in Figure 20.
The difference between mesh resolutions is significantly more than in the SPH case, Figure 7,
but the average dissipation has a convergent trend with increasing resolution. The indi-
vidual dissipation components, as described by Equation (39), are presented in Figure 21.
The impact loss is very similar for the N50 and N200 resolutions, yet the N100 resolution
shows slightly more dissipation. There is no clear explanation for this difference and further
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investigation is required. Looking at the viscous dissipation, however, there is a clear trend
with mesh resolution. The laminar component of the dissipation is not converged, while
the turbulent component remains very similar between the three resolutions, indicating
that most of the inertial range is resolved, as also shown earlier in Figure 18.
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Figure 19. Oil energy distribution for one of the N200 runs.
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Figure 20. Average oil dissipation for 2D runs with standard deviation for the 10 runs at various
resolutions.
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Figure 21. Oil energy dissipation showing the loss (top) and viscous dissipation (bottom).

5.2.3. Water 2D Results

Figure 22 shows the location of the liquid phase at various stages, as well as the
vorticity in the liquid. The same vorticity scaling is applied as for the oil. It was noted that
for oil, the phases seemed more dispersed in comparison to the SPH results. For water, this
tendency is similar. Comparing the 2D approach results of oil and water, the water contains
even more small structures, such as droplets and ligaments. The vorticity magnitude is
comparable to oil and the SPH results, but the vortical structures seem finer than in the oil,
as was also observed in the SPH results.

Figure 22. Two-dimensional water ELEMENTAL® results on the N200 resolution at various time
instants. The top row shows the VOF with the water black and air white. The bottom row shows the
non-dimensionalized vorticity.

When considering the turbulent viscosity ratio for water at different resolution levels,
Figure 23, it is clear that this higher Reynolds number case has much more unresolved
turbulence compared to oil, as expected.

N50 N100 N200

Figure 23. Two-dimensional water ELEMENTAL® turbulent viscosity ratio at different resolutions at
t = 2.21T.
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Figure 24 shows the energy distribution for a 2D water simulation at the N200 reso-
lution. Similar to the oil case, there is very little dissipation in the first cycle of the tank
up to the first roof impact, whereafter there is a gradual increase with the first (t ≈ 1.20T)
and sharp increase with the second roof impact (t ≈ 2.05T). Also similar is the negli-
gible contribution of WV

NF, EC and Eσ. What is different in the case of water is that the
impact-loss-related dissipation is much more significant than the viscous dissipation.
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Figure 24. Water energy distribution for one of the N200 runs.

The total dissipation is plotted in Figure 25, which again shows a larger variation
between resolutions compared to the SPH results, but apparently convergent with increas-
ing resolution.
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Figure 25. Average water dissipation for 2D runs with standard deviation for the 10 runs at vari-
ous resolutions.

The dissipation is divided into the impact loss and viscous components, plotted at the
top and bottom of Figure 26. The impact-related losses are much more dominant, compared
to oil and are also convergent. The viscous dissipation is much lower compared to the oil
case. As can also be seen in Figure 23, the viscous dissipation is not resolved and both
the laminar and turbulent components increase significantly with resolution. This can be
expected since the Reynolds number is almost two orders of magnitude larger than the
oil case.
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Figure 26. Water average energy dissipation components. The (top) shows the impact loss and the
(bottom) viscous dissipation.

5.2.4. Oil 3D Results

Three-dimensional ELEMENTAL® runs were completed at resolutions of N33 and N50,
as per Table 2. Figure 27 shows the oil–air interface in light brown, represented by an
iso-surface of the VOF at the 0.5 level. The developing Rayleigh–Taylor instability is shown
at t = 1.11T, just before the first roof impact. The interface is very three-dimensional in
nature, which explains the difference in computed energy dissipation as compared to the
2D simulations (see below). Different from the 2D simulations, no initial perturbations were
imposed on the interface resulting in a symmetrical interface topology. After the first roof
impact at t ≈ 1.17T, the flow becomes very chaotic with large mixing of the two phases.

Figure 27. Three-dimensional oil ELEMENTAL® results on the N50 resolution at various time instants
prior to and shortly after the first roof impact.

Figure 28 shows the energy distribution for the 3D oil simulation at the N50 resolution,
with similar information as contained in the 2D results in Figure 19. Similar to the 2D simu-
lations, the viscous component of boundary work WV

NF is negligible. For the dissipation



Appl. Sci. 2022, 12, 12390 25 of 31

in this simulation, the impact loss component is much more significant than the viscous
component, which is different from the much finer N200 resolution in 2D. A comparison of
impact loss and viscous dissipation is presented in Figure 29, including results from 2D.
Comparing between 2D and 3D simulations at the N50 resolution level, both the laminar
and turbulent components are larger in 3D than in 2D, with the turbulent (LES) component
significantly so. However, a finer resolution will be required when considering the N200
resolution in 2D, which still has a much more significant laminar viscous component.
Impact losses are also larger in 3D than in 2D, as shown in the middle plot. The result
is that the total dissipation at the N50 resolution in 3D is more than the finest resolution
(N200) in 2D. This indicates that the problem is truly three-dimensional in nature.
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Figure 28. Energy distribution for oil 3D simulation at N50 resolution.
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Figure 29. Comparison of energy viscous dissipation (top), impact losses (middle) and total dissipa-
tion (bottom) for oil.
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5.2.5. Water 3D Results

An iso-surface of the water interface for an N50 resolution 3D simulation is shown
in Figure 30. As with oil, the interface shape is very symmetrical before impact but also
strongly three-dimensional. The interface perturbation from the static meniscus grows
into sheets of liquid with larger horn-like structures in the center. These horns and small
streams in the corners are first to impact the roof, just before t = 1.11T. To illustrate how
mixed the two phases become after the first rounds of roof and floor impact, three views of
the interface at t = 2.21T are shown in the last row.

Figure 30. Three-dimensional water ELEMENTAL® results on the N50 resolution at various time
instants prior to and shortly after the first roof impact.

The energy distribution at the N50 resolution is shown in Figure 31. In this plot, it can
be seen that the dissipation through impact losses is a dominant component of the total
dissipation for this resolution. The impact loss is clearly a much larger component in the
total dissipation when compared to the 3D oil result at the same resolution, as shown in
Figure 28. For viscous dissipation, the turbulent component is dominant.
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Figure 31. Energy distribution for water 3D simulation at N50 resolution.

Figure 32 presents a comparison between 3D resolutions, as well as 2D for water
dissipation components. Similar to the oil 2D vs. 3D comparisons (for the two-phase
model), the 3D simulations show clearly higher dissipation than in 2D. For impact losses,
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even the very coarse 3D simulation (N33) has higher impact-related dissipation than the
N200 2D simulation.
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Figure 32. Comparison of energy viscous dissipation (top), impact losses (middle) and total dissipa-
tion (bottom) for water.

Table 3 shows the dissipation results for ELEMENTAL® at the end of the simulation
compared to experimental energy dissipation estimates. The 3D predicted values correlate
more closely to the experimental values as compared to the 2D simulations. This is as
expected due to the strongly 3D nature of the Rayleigh–Taylor instability. Although the
3D predicted dissipated energy is not yet converged, the results seem to trend toward the
measured values with mesh refinement.

Table 3. Total energy fluid dissipation, Ediss(t f ) for 2D/3D ELEMENTAL® simulations at spatial reso-
lution N = H/∆x. Numerical outputs are compared with the experimental data of [4]. The 2D results
are ensemble averages of ten different simulations, while 3D results are given by single simulations.

ELEMENTAL® Total Dissipation Results

2D 3D Exp. Data

N = 50 N = 100 N = 200 N = 33 N = 50 -

Ediss(t f )/∆Ew Water −6.6 −9.2 −10.6 −9.3 −12.2 −16.7

Ediss(t f )/∆Eo Oil −7.5 −9.8 −11.4 −9.4 −12.5 −16.3
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6. Discussion on the Comparison between Elemental and SPH-Flow Results

In the previous sections, it was underlined that the problem studied in this work
involves complex three-dimension flows involving complex liquid–gas interactions. Fur-
thermore, for the water test-case, the high Reynolds number involved requires very high
spatial resolution in order to perform effective large eddy simulations. In a 3D context,
the CPU costs of those simulations are still prohibitive for both the adopted solvers, EL-
EMENTAL® and SPH-flow. As a consequence, in the present work for the water test-case,
convergent results are not achieved, and the effect of the spatial resolution N is not neg-
ligible in the results presented. However, from the point of view of the slosh dissipation,
the single-phase model and 2D framework are able to supply a reasonable estimation of
Ediss. This result is in agreement with previous literature on different kinds of problems
(see, e.g., [24,26,43,44]).

Regarding the SPH-Flow solver when increasing the spatial resolution N, the 3D
results for both water and oil test-case show a tendency to overestimate the dissipation
compared to experimental measurement. This may be linked to the action of the gas
phase, which is neglected in the adopted δ-LES-SPH model. Conversely, in the case of the
ELEMENTAL® solver, it is evident that the gas–liquid interface is more complex when using
a two-phase model. The liquid and gas phases are much more dispersed compared to the
single-phase model. Consequently, very high spatial resolutions are needed to resolve the
smallest scales (i.e., the small gas bubbles, the small liquid drops and the thin liquid jets).

The comparison between the two solvers and, therefore, the effect of the gas–liquid
interaction is confirmed in 2D results of the vertical position of the fluid center of mass
yG(t), depicted in Figure 33. In these plots, the SPH-Flow solver manifests a significantly
larger motion of the fluid center of mass for both water and oil test-cases. In the water
test-case, as expected, the solvers present remarkable differences not only in the fluid
amplitude but also in the signal time phases. This is not the case in the oil results, where
the two solvers show a good agreement in the time phase of yG(t) and a reduced difference
in the amplitude of liquid motion.

Figure 34 depicts the vertical motion of the fluid center of mass for the three-dimensional
simulations of the two solvers. The result trends are similar to the 2D simulations. In fact,
the center of mass motion of the SPH model presents a larger amplitude again, and in the
water test-case, a significant time-shifting appears on the yG(t) curves in the comparison
between the two codes. The oil case also presents a significant amplitude difference in
center of mass motion, even though the motion is in phase with the SPH results.

CPU Costs

Regarding the CPU costs of the two solvers for the test-cases with water:

• The SPH-Flow 3D simulation with N = 50 (750,000 particles) requires 36 h on 192 cores
for 225,000 time iterations (∆t ' 18 µs).

• The 3D Elemental simulation with N = 50 (1,500,000 cells for discretizing both liquid
and gas phases) requires 46 h on 192 cores for 225,000 time iterations (the same as
SPH-Flow).

The SPH simulations ran on the “Liger” supercomputer at Ecole Centrale de Nantes,
which is equipped with 12–core Intel Xeon (Haswell) E5–2680v3 processors. We evaluated
a computational speed defined as:

η =
CPUtime Ncores

Niteration Nparticles
(42)

For the SPH-Flow solver η = 148 µs, while for ELEMENTAL® η = 100 µs; therefore,
the performance of the two solvers are of the same order.
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Figure 33. Time history of the vertical position of the fluid center of mass yG(t) evaluated by the
SPH-Flow and Elemental solvers in a 2D framework. The 2D results are given by an ensemble
average of ten simulations. Error bars refer to the computed standard deviation. (Top) water test-case.
(Bottom) oil test-case.

Figure 34. Time history of the vertical position of the fluid center of mass yG(t) evaluated by the
SPH-Flow and Elemental solvers in a 3D framework. (Top) water test-case. (Bottom) oil test-case.

7. Conclusions

The violent sloshing flow studied in this work presents several complexities. While
the SPH results are promising in terms of comparison against experimental data, the two-
phase results suggest that there are gas–liquid interactions in the flow leading to enhanced
mixing, which is not captured in the single-phase approach. Conversely, the physical model
adopted in the ELEMENTAL® solver is more rich, showing a more complex evolution of the
gas–liquid interface compared to the single-phase model. However, the spatial resolution
required for converged energy metrics seems to be significantly higher compared to the
single-phase SPH model. This is clear when examining the dissipation components related
to the viscous dissipation, including the sub-grid model. With the SPH solver, these
dissipation components seem to remain bounded for the water test-cases and decreases for
the oil test-cases with increasing resolution. Conversely, with the ELEMENTAL® solver, the
energy dissipation is not yet fully converged with increasing mesh resolution.
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For a future and further step of what is presented in this work, it would be interesting
to extend the analysis using a two-phase SPH model, as well as conduct simulations with
ELEMENTAL® at increased resolutions. Both these improvements, however, will require a
large leap in computational resources.
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