Measuring Maritime Paint Thickness under Water Using THz Cross-Correlation Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. THz-CCS System
2.2. Reflection Setup
2.3. Spectroscopic Model
2.4. Reference Measurement
2.5. Silicone Contact Patch
2.6. Underwater Measurements
3. Results and Discussion
3.1. Dry Measurement of Paint Sample without Contact Patch
3.2. Attenuation Coefficient of Silicone and Measuring Underwater
3.3. Measurement of Paint Sample through Contact Patch Underwater and Application of Fitting Algorithm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
THz | Terahertz |
CCS | Cross-correlation spectroscopy |
FFT | Fast Fourier transform |
DFT | Dry film thickness |
References
- Cullinane, K.; Cullinane, S. Atmospheric Emissions from Shipping: The Need for Regulation and Approaches to Compliance. Transp. Rev. 2013, 33, 377–401. [Google Scholar] [CrossRef]
- Smith, T. Third IMO GHG Study 2014: Executive Summary and Final Report; International Maritime Organization (IMO): London, UK, 2014. [Google Scholar]
- Faber, J. Fourth IMO Greenhouse Gas Study; International Maritime Organization (IMO): London, UK, 2020. [Google Scholar]
- Reducing Emissions from the Shipping Sector. Available online: https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-shipping-sector_en (accessed on 18 August 2022).
- Initial IMO GHG Strategy. Available online: https://www.imo.org/en/MediaCentre/HotTopics/Pages/Reducing-greenhouse-gas-emissions-from-ships.aspx (accessed on 18 August 2022).
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Bressy, C.; Lejars, M. Marine Fouling: An Overview. J. Ocean. Technol. 2014, 9, 19–28. [Google Scholar]
- Michelis, A.; Gougoulidis, G. Current and Future Trends in Marine Antifouling Coatings and the Study of Energy Efficiency Benefits for a Naval Fleet. In Proceedings of the Conference: Environment & Energy in Ships (EEinS), Athens, Greece, 22–24 May 2015. [Google Scholar]
- Sonak, S.; Giriyan, A.; Pangam, P. A method for analysis of costs and benefits of antifouling systems applied on ship hull. J. Ship Technol. 2010, 6, 73–83. [Google Scholar]
- Kim, B.J.; Park, S.M.; Jo, N.J. Self-Polishing Properties of Antifouling Paint Resins Based on Polyurethanes According to the Types of Polyol. Polym. Korea 2017, 41, 811–819. [Google Scholar] [CrossRef]
- Apostolidis, A.; Merikas, A.; Merika, A. The Modelling of Maintenance Cost: The Case of Container-Ships in Dry-Dock. J. Comput. Optim. Econ. Financ. 2013, 5, 27. [Google Scholar]
- How Much Fuel DO Shipping Companies Lose If the Hull Is in Bad Condition? Available online: https://marine-digital.com/article_hull_condition (accessed on 18 August 2022).
- Drake, J.; Lodge, D. Hull fouling is a risk factor for intercontinental species exchange in aquatic ecosystems. Aquat. Invasions 2007, 2, 121–131. [Google Scholar] [CrossRef]
- Sánchez, A.; Yebra, D. 16—Ageing tests and long-term performance of marine antifouling coatings. In Advances in Marine Antifouling Coatings and Technologies; Hellio, C., Yebra, D., Eds.; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Cambridge, UK, 2009; pp. 393–421. [Google Scholar] [CrossRef]
- Dry Film Thickness Gauge Coating Thickness Gauge Linshang. Available online: https://www.linshangtech.com/product/LS220H_EN.html (accessed on 18 August 2022).
- Zhang, J.; Cho, Y.; Kim, J.; Malikov, A.K.u.; Kim, Y.H.; Yi, J.H.; Li, W. Non-Destructive Evaluation of Coating Thickness Using Water Immersion Ultrasonic Testing. Coatings 2021, 11, 1421. [Google Scholar] [CrossRef]
- Gardco: Wet Film Measurement. Available online: https://gardco.com/pages/filmthickness/wf/wet-film-thickness.cfm (accessed on 18 August 2022).
- van Mechelen, J.L.M. Predicting the dry thickness of a wet paint layer. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018. [Google Scholar] [CrossRef]
- Devanny, S.; Riastuti, R. Corrosion resistance of epoxy primer, polyurethane, and silyl acrylate anti-fouling on carbon steel. IOP Conf. Ser. Mater. Sci. Eng. 2019, 541, 012052. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.; Sharpe, S.; Lee, S.; Allen, M. Terahertz Time Domain Measurements of Marine Paint Thickness; Optica: Orlando, FL, USA, 2007. [Google Scholar] [CrossRef]
- Izutani, Y.; Akagi, M.; Kitagishi, K. Measurements of paint thickness of automobiles by using THz time-domain spectroscopy. In Proceedings of the 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves, Wollongong, Australia, 23–28 September 2012; pp. 1–2. [Google Scholar]
- Ketelsen, H.; Mästle, R.; Liebermeister, L.; Kohlhaas, R.; Globisch, B. THz Time-Domain Ellipsometer for Material Characterization and Paint Quality Control with More Than 5 THz Bandwidth. Appl. Sci. 2022, 12, 3744. [Google Scholar] [CrossRef]
- Sizov, F. Brief history of THz and IR technologies. Semicond. Phys. Quantum Electron. Optoelectron. 2019, 22, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Thrane, L.; Jacobsen, R.; Uhd Jepsen, P.; Keiding, S. THz reflection spectroscopy of liquid water. Chem. Phys. Lett. 1995, 240, 330–333. [Google Scholar] [CrossRef]
- Mukherjee, A.; Joshi, M.; Misra, S.; Ramesh, U. Antifouling paint schemes for green SHIPS. Ocean. Eng. 2019, 173, 227–234. [Google Scholar] [CrossRef]
- Farkas, A.; Degiuli, N.; Martić, I.; Dejhalla, R. Impact of Hard Fouling on the Ship Performance of Different Ship Forms. J. Mar. Sci. Eng. 2020, 8, 748. [Google Scholar] [CrossRef]
- Hansen, R.; Bæk, T.; Lange, S.; Israelsen, N.; Mäntylä, M.; Bang, O.; Petersen, C. Non-Contact Paper Thickness and Quality Monitoring Based on Mid-Infrared Optical Coherence Tomography and THz Time Domain Spectroscopy. Sensors 2022, 22, 1549. [Google Scholar] [CrossRef] [PubMed]
- Krumbholz, N.; Schwerdtfeger, M.; Hasek, T.; Scherger, B.; Koch, M. A fiberstretcher operating as an optical delay line in a fiber-coupled THz spectrometer. In Proceedings of the 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves, Pasadena, CA, USA, 15–19 September 2008. pp. 1–2. [CrossRef]
- RS PRO, Trykstøbt aluminium Kabinet, IP66, Skærmet, 250 × 250 × 100 mm, Sort|RS. Available online: https://dk.rs-online.com/web/p/allround-kabinetter/5174314 (accessed on 22 August 2022).
- Krimi, S.; Klier, J.; Jonuscheit, J.; von Freymann, G.; Urbansky, R.; Beigang, R. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology. Appl. Phys. Lett. 2016, 109, 021105. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Pistone, A.; Scolaro, C.; Visco, A. Mechanical Properties of Protective Coatings against Marine Fouling: A Review. Polymers 2021, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, P.D. Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J. Appl. Phys. 2011, 109, 043505. Available online: https://aip.scitation.org/doi/10.1063/1.3549120 (accessed on 18 August 2022).
Type of Measurement | Thickness (μm) |
---|---|
Estimated DFT based on the amount of wet paint applied | 200 |
Average DFT from Alicona 3D scan | 230.0 ± 9.4 |
DFT from THz-CCS measurement without water | 235.0 ± 0.2 |
DFT from THz-CCS measurement in water |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knarreborg, J.Ø.; Hjortshøj-Nielsen, J.; Mølvig, B.H.; Bæk, T.; Jepsen, P.U.; Lange, S.J. Measuring Maritime Paint Thickness under Water Using THz Cross-Correlation Spectroscopy. Appl. Sci. 2022, 12, 12397. https://doi.org/10.3390/app122312397
Knarreborg JØ, Hjortshøj-Nielsen J, Mølvig BH, Bæk T, Jepsen PU, Lange SJ. Measuring Maritime Paint Thickness under Water Using THz Cross-Correlation Spectroscopy. Applied Sciences. 2022; 12(23):12397. https://doi.org/10.3390/app122312397
Chicago/Turabian StyleKnarreborg, Johan Østergaard, Jonathan Hjortshøj-Nielsen, Bjørn Hübschmann Mølvig, Thorsten Bæk, Peter Uhd Jepsen, and Simon Jappe Lange. 2022. "Measuring Maritime Paint Thickness under Water Using THz Cross-Correlation Spectroscopy" Applied Sciences 12, no. 23: 12397. https://doi.org/10.3390/app122312397
APA StyleKnarreborg, J. Ø., Hjortshøj-Nielsen, J., Mølvig, B. H., Bæk, T., Jepsen, P. U., & Lange, S. J. (2022). Measuring Maritime Paint Thickness under Water Using THz Cross-Correlation Spectroscopy. Applied Sciences, 12(23), 12397. https://doi.org/10.3390/app122312397