friried applied
e sciences

Article

Clipping-Based Post Training 8-Bit Quantization of
Convolution Neural Networks for Object Detection

Leisheng Chen * and Peihuang Lou

check for
updates

Citation: Chen, L.; Lou, P.
Clipping-Based Post Training 8-Bit
Quantization of Convolution Neural
Networks for Object Detection. Appl.
Sci. 2022, 12, 12405. https://doi.org/
10.3390/app122312405

Academic Editor: Byung-Gyu Kim

Received: 26 October 2022
Accepted: 1 December 2022
Published: 4 December 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
* Correspondence: chenleisheng@nuaa.edu.cn

Abstract: Fueled by the development of deep neural networks, breakthroughs have been achieved in
plenty of computer vision problems, such as image classification, segmentation, and object detection.
These models usually have handers and millions of parameters, which makes them both computa-
tional and memory expensive. Motivated by this, this paper proposes a post-training quantization
method based on the clipping operation for neural network compression. By quantizing parameters of
a model to 8-bit using our proposed methods, its memory consumption is reduced, its computational
speed is increased, and its performance is maintained. This method exploits the clipping operation
during training so that it saves a large computational cost during quantization. After training, this
method quantizes the parameters to 8-bit based on the clipping value. In addition, a fully connected
layer compression is conducted using singular value decomposition (SVD), and a novel loss function
term is leveraged to further diminish the performance drop caused by quantization. The proposed
method is validated on two widely used models, Yolo V3 and Faster R-CNN, for object detection
on the PASCAL VOC, COCO, and ImageNet datasets. Performances show it effectively reduces
the storage consumption at 18.84% and accelerates the model at 381%, meanwhile avoiding the
performance drop (drop < 0.02% in VOC).

Keywords: object detection; quantization; clipping; post-training quantization; accuracy loss

1. Introduction

With the development of big data and computer hardware, it has become possible
to train large deep neural networks (DNNs). Therefore, deep neural networks have been
widely studied in recent years and applied to face recognition, image classification, au-
tonomous driving, natural language processing, and other artificial intelligence fields.
Although deep neural networks have excellent performance and have been able to lead
humans in some tasks, most deep neural network models have the disadvantages of large
size (large space consumption for model storage) and high computational cost.

The excellent performance of deep neural networks comes at the cost of high compu-
tational complexity and huge memory consumption. As the network grows in size, the
number of parameters in the network grows and the amount of computation becomes
larger. This leads to two core problems:

1. Itis difficult to deploy it in some resource-constrained devices, which greatly limits
the application scenarios of neural networks. For example, in scenarios such as the
Internet of Things (IoT), embedded systems not only lack rich computing and storage
resources but also have a very urgent need for low power consumption.

2. Itis difficult to apply in some industrial scenarios with high real-time requirements,
such as autonomous driving. These technologies require extremely high real-time
network inference; otherwise, there will be safety hazards.

Appl. Sci. 2022, 12, 12405. https:/ /doi.org/10.3390/app122312405

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312405
https://doi.org/10.3390/app122312405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app122312405
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312405?type=check_update&version=2

Appl. Sci. 2022, 12, 12405

20f18

Therefore, a variety of deep neural network compression and acceleration techniques
have emerged to try to remove redundancy in the network while ensuring network accuracy,
i.e, to find a good tradeoff between network performance and computational cost.

In general, model compression and acceleration of deep neural networks have both
industrial application and academic research implications: In terms of application, the
technology can make it easier to land artificial intelligence applications. Current deep
neural networks are difficult to use in scenario-constrained environments due to their large
number of parameters and computations, and studying how to compress and accelerate
deep neural networks will help solve such problems. In theoretical research, the technique
can help people to better understand deep neural networks. Various existing deep neural
networks all suffer from information redundancy. By using model compression and
acceleration algorithms, the redundancy in the network can be removed and the part of the
network that really works can be uncovered. The study of this part will help people directly
design deep neural networks that are more efficient and have better generalization ability.

Previous methods could be roughly divided into two categories. The first category
is to design a lightweight network structure. Taking MobileNet [1], SqueezeNet [2] Shuf-
fleNet [3], and DenseNet [4] as examples, the main idea of these methods is to design a more
efficient network computing method to reduce network parameters without decreasing
network performance; however, although the lightweight models could effectively reduce
network parameters, their generalization abilities are partly sacrificed and perform more
poorly than conventional models. For example, the lightweight model MobileNet-224
achieves 70.6% accuracy on the ImageNet classification, but a non-conventional model such
as SENet obtains 83.8% accuracy. It motivates us to seek new mechanisms for achieving
compressed models. The second class quantizes the weights and input of a CNN from
a 32-bit float number to a lower-bit number. This paper mainly studies the method for
quantification.

This paper focuses on the study of 8-bit quantization with minimal accuracy loss.
According to the traditional quantization method, the post-training quantization method
based on clipping is proposed. Firstly, the weight information and the floating-point
number of the input data flow are clipped to a fixed-point range in the training, which can
not only avoid the search and calculation of the range of the input data flow in the dynamic
quantification process but also greatly reduce the amount of calculation. Moreover, the loss
caused by the clip operation in the training process can be compensated by the Lq loss we
proposed during model training. It penalizes the differences between clipped weights and
non-clipped weights for diminishing the performance drop. Then, the model is converted
to 8-bit for inference. Our approach is simple but effective in compressing the model while
maintaining its performance. To validate the effectiveness of the proposed method, it is
conducted on YOLO V3 and Faster R-CNN model for object detection on the PASCAL
VOC benchmark dataset. Performances demonstrate that our model could compress the
model to 18.84% without losing the accuracy of detection, and the speed is increased by
about 381%.

The contributions of our work are three folds:

1. A clipping-based post-training 8-bit quantization method is proposed, which can
reduce the calculation amount in the traditional quantification method and reduce
the accuracy loss.

2. A method using singular value decomposition (SVD) in the full connection layer is
proposed, which can effectively reduce the redundant parameters and improve the
training speed.

3. AnLgqloss is proposed to reduce the accuracy loss caused by clipping during training
in this training—clipping method.

In the next section, we present some of the outstanding work in the field of quantifica-
tion and explain the excellence of our approach. In the third section, we will introduce the
previous int8 quantization methods and their problems. The fourth section will elaborate
on our methods and their advantages. In the fifth section, we will verify the superiority

Appl. Sci. 2022, 12, 12405

30f18

of the clipping-based method in the mainstream object detection network. There is a dis-
cussion section about the limitations and future developments, and the last section will
summarize the contributions of this paper.

2. Related Work

According to the degree of low precision, network quantization can be further divided
into ultra-low precision quantization and 8-bit quantization. Ultra-low precision quanti-
zation refers to the use of 1 to 4-bit values to replace 32 floating-point parameters in the
source network. A representative work of ultra-low precision quantization is the binary
quantization network (BNN) [5]. When training the neural network, BNN quantizes the
network weight parameters and activation values to 1 or —1, so the exclusive OR (XOR)
operation in the logical operation can be used to replace the matrix multiplication and
addition operation of the original network, which greatly improves the operation efficiency.
A three-valued quantization network (TWN) [6] quantizes ownership values to —1, 0,
and 1. Incremental quantization network (INQ) [7]: By iterative logarithmic transformation
of weight parameters, the quantization error of each iteration is reduced, and finally the
network performance degradation caused by the quantization process is reduced. However,
due to the ultra-low precision quantization, the precision of the network performance is
usually negatively affected. Moreover, the training error fluctuates violently in the training
process. The most commonly used quantization method in the industry is 8-bit quantiza-
tion. Its quantization strategy is relatively conservative. Using an 8-bit fixed-point number
to store and calculate network parameters has little effect on network accuracy.

Recently, to solve the problem of accuracy loss and instability in the simulation
quantification, work such as that of [8] carried out the theoretical analysis of the convergence
stability of quantitative training, and based on this, proposed the error-sensitive learning
rate adjustment and the direction-adaptive gradient truncation method. Dettmers proposed
a fixed-point method using single instruction multiple data (SIMD) operations to improve
model performance [9]. Zhu E et al. established a unified 8-bit (Int8) training framework for
general convolutional neural networks, which can accurately and efficiently train various
networks and tasks. A direction-sensitive gradient clipping technique to reduce the gradient
direction deviation and a deviation back learning rate scaling technique to avoid illegal
gradient updating along the wrong direction were also proposed [10]. Jacob B proposed
a quantization scheme, which only depends on an integer algorithm to approximate the
floating-point calculation in neural networks. The training the of simulation quantization
effect helps to recover the accuracy of the model to almost the same level as the original
data [11].

Some well-known methods of 8-bit quantization are introduced above, but recently
there have been some novel quantization methods that can be referred to and compared.
Peng proposes an optimization method based on the idea of quantization compensation [12].
Compared with their work, we design a new loss function to compensate for clipping
loss, which can avoid model bias. Bao proposed a clipping method based on learning
parameters to quantize the network parameters during the training phase [13], while our
method performs clip processing before training and then quantifies the inference, which
is more efficient and has less final accuracy loss. Gheorghe also proposes a quantization
method for adaptive models [14], but the author’s method of improving model efficiency by
removing the fully connected layer leads to a large loss of information, while our processing
of the fully connected layer using SVD can refine the effective information with higher
accuracy. Ullah’s method also quantifies by weight intervals [15]. However, the author’s
method was only validated on shallower networks such as VGG, and its processing of only
valid bits may lead to accuracy loss in deeper networks.

Appl. Sci. 2022, 12, 12405

40f18

3. Preliminary Knowledge

The process of quantization is the process of converting floating-point numbers into
fixed-point numbers, and it is also the process of changing from continuous values to
discrete values. The quantization methods are generally divided into training-aware
quantization and post-training quantization, as shown in Figure 1a,b, and Figure 1c briefly
illustrates the clipping-based post-training quantization method that we propose.

float32

r
. = ///
!‘ int8 int8

[oupu
(a) (b) (c)

Figure 1. Demonstration of training-aware quantization, post-training quantization, and clipping-
based post-training 8-bit quantization. (a) Training-aware quantization. Both input and weights are
quantized and the model is trained the quantized to 8-bit number. (b) Post-training quantization.
The input and weights are pseudo-quantized to 32-bit integer for training and further quantified
after training. (c) Clipping-based post-training 8-bit quantization. The input and weights are pseudo-
quantified and clipped to a predesigned range, and then further quantified after training.

The basic ideas of the three strategies in Figure 1 are as follows.

(a) Training quantization: The model is directly quantized, and the input and weights
are converted to 8-bit numbers during model training. At last, inverse quantization is
performed during model inference.

(b) Post-training quantization: The model is still trained with 32-bit floating point num-
bers, and the weight distribution is obtained to derive the quantization parameters,
and finally the quantized model is deployed in the inference stage.

(c) Clipping-based post-training 8-bit quantization: The weights and inputs are clipped
before training so that they are trained as 32-bit fixed-point numbers, and then the
quantization model is deployed to the inference stage.

This is only a brief description of the method. The details of the operational mechanism,
formulae derivation, and strengths and weaknesses analysis will be described later in
Sections 3.1, 3.2, and 4.1.

Next, we analyze the defects in training-aware quantization and post-training quanti-
zation methods.

Appl. Sci. 2022, 12, 12405

50f18

3.1. Training-Aware Quantization

Training-aware quantization conducts quantization during training. It uses floating-
point numbers to save fixed-point parameters during training and uses fixed-point param-
eters directly during the final inference. The quantization parameters in the network are
learned and updated during the training process.

The forward propagation of quantization during training is as follows. It first multi-
plies the input x and weight w by the scale and then converts it to " and @’ through the
round function for calculation (formulas (1) and (2)):

x' = q(x) @

w' = q(w) ©)

In backpropagation, since x’ is a discrete value, the second term in (formulas (3)
and (4)) is non-derivable. To solve this problem, researchers proposed a straightforward
estimator [16] (STE), as shown in Figure 2. The stepwise function in Figure 2 represents
a common uniform quantization method, and its gradient is normally difficult to find.
STE is actually a sign function that takes 1 when the gradient of the stepwise function is
greater than or equal to 0, so that the gradient here can be regarded as 1. By doing so, the
quantization function becomes an identity mapping f(x) = x for backpropagation.

dL dL dx’
dx e N dx ©)
dL dL du’
do v X dw @)
A /
/
/
/

A
v

v

Figure 2. STE diagram.

In short, the discrete values in the neural network will lead to a performance drop,
caused by its low number of bits. Moreover, the inherent discrete nature of the quantized
model hinders the conventional backpropagation calculations, which assume the weights
are continuous. Although mandatory fitting methods could train a model in a discrete
manner, it makes the training unstable.

3.2. Post-Training Quantization

Post-training quantization refers to the quantization of model parameters after training
when the weights of the model are fixed. Generally, the quantization parameters that mini-
mize the quantization loss of each layer of the network are obtained through the validation
set. The quantization process could be generally divided into dynamic quantization and
static quantization.

Appl. Sci. 2022, 12, 12405

6 of 18

(1) Post-training dynamic quantification

This method is to quantize the operations after the convergence of the floating-point
model training, where the weights are quantized in advance. The activation output needs
to be dynamically quantified in the forward propagation process during inference. During
quantization, each layer calculates a quantization parameter to obtain the maximum and
minimum input and then quantizes them. In the actual calculation process, each layer
needs to be traversed, which increases the calculation cost.

(2) Post-training static quantification

The weights are quantized in advance in this method. Moreover, the activation
output is quantized based on the fixed quantization parameters recorded in the small
sample calibration process (the maximum and minimum values of each layer). There is no
recalculation of quantization parameters in the whole process, so the computational cost
is low However, the risk of accuracy drop is relatively high because small samples often
cannot accurately reflect the data distribution and data range of the whole dataset.

Taking our commonly used uniform linear quantization as an example, we briefly
describe the traditional post-training quantization method. Assuming that the weights
of convolution are w, the input is x, and the weight quantization parameters obtained
in advance are w5 and w,,;,, the input quantization parameters are x;,,x. Formulas (5)
and (6) show the process that input and weights are linearly adjusted to (-1, 1):

xl — z(x — xmin) _ 1 (5)

Xmax — Xmin
ZU/ — Z(ZU B wmin) 1 (6)
Wmax — Wmin
The normalized input x" and weights w’ are multiplied by a magnification S and
rounded to an integer (if S is 128, then the new x” and w"” are converted to int8):
x" = round (Sx") 7)

w" = round (Sw") (8)

The core of the convolutional neural network is the matrix multiplication of w and x.
In the following, we use a series of dequantization operations to simplify this multiplication.
Formulas (7) and (8) are obtained from formulas (5) and (6):

(x/ + 1)(xmax - xmin)

X = Xpin + > (9)
/ — .
W = Wpin + (w + 1)(w72ﬂﬂx wmm) (10)
Multiply formulas (7) and (8):
wx = (xmax*xmin)iwmax*wm[n)wlx/ + (xmax*xmin)iwmux+wmin)x/
(11)

(Xmax+Xmin) (Winax —Wiin) . 1 (Xmax+Xmin) (Winax+Wiin)
+ i w' + i

Since Xmax, Xmin, Wmax, Win are known constants, the formula is simplified with kq, kp,
k3, k41

w-x = kiw'x’ + kpx' + kaw' +ky (12)
klw// x// kzx// k3w//

X RS k 13

w-x o S + S + kyq (13)

In short, the calculation of training-aware quantization is complex and requires a
long training time. As for the dynamic post-training quantization, the range of dynamic

Appl. Sci. 2022, 12, 12405

7 of 18

input
= B

statistical input is needed, the amount of calculation is large, and the computational
complexity of inverse quantization is high. For static post-quantization, the clip value
obtained by small samples cannot fully reflect the data distribution of the whole dataset,
which inevitably leads to accuracy loss. Therefore, in the next section, we propose a simple
and efficient quantitative method with little accuracy loss.

3.3. Object Detection Networks

At present, object detection algorithms based on convolutional neural networks can
be divided into two categories: one-stage object detection and two-stage object detection
algorithm. The one-stage object detection algorithm is based on convolutional networks.
The feature map directly returns the location of the target, and the model further classifies
the target categories. The representative works are SSD [17] and YOLO [18-21] series.
In two-stage target detection algorithms, the first stage is to generate region proposals,
and the second stage is to return to the target location and classify the target category
based on the regional proposal, which is represented by the R-CNN [22] series algorithms,
including R-CNN, Fast R-CNN [23], Faster R-CNN [24], and mask R-CNN [25]. This paper
takes a one-stage mature representative network, YOLOv3, and a two-stage representative
network, Faster R-CNN, for validating the effectiveness of our designs The process and
experimental design of the clipping-based post-training 8-bit quantization method are
shown in Figure 3. As shown in Figure 3, we apply our clipping base quantization method
to two representative one-stage, two-stage target detection networks. After fine-tuning, we
check whether the accuracy loss meets the expectation, and if the accuracy still decreases,
we adjust the loss function considering the loss of clipping operation to obtain the result.

Training-clipping
quantization

Yolov3
Multi-scale output

Fine-Tuning
Conv layers D

expectations?

/

Faster-RCNN

L~ L~ ~ [
- Add new
— . Lq loss
Conv layers e ~
» ~ FC layers

RPN Roi pooling

Object detection network

Figure 3. Architecture of the clipping-based post-training quantization method.

4. Method

Usually, the neural network model takes 32-bit single-precision floating-point num-
bers as parameters. The floating-point number consists of three parts: symbol (one bit),
exponential (eight bits), and tail numbers. The pipeline of floating-point addition and
subtraction includes: (1) Checking the 0 operands. If the number of operations involved is
zero, the operations directly return the results. (2) Comparing the size of two order codes
and completing the alignment for the addition or subtraction of the tail number. (3) The
results are rounded and standardized. When the network size is large, it requires a lot of
memory and computational resources to conduct the floating-point operation. Differently,

Appl. Sci. 2022, 12, 12405

8 of 18

the low-precis fixed-point operation could save memory and compute, because it computes
the summation directly; it is needless to conduct alignment before computing. Network
quantification is based on this idea. It transfers the number from floating points to fixed
points by discretization of the weight parameters of the network. It effectively compresses
the storage space of network parameters and reduces the amount of calculation. Specifi-
cally, it uses a low-precision way to store and calculate network parameters. Usually, the
neural network uses 32-bit floating-point number to store all the parameters and calculation
results of the network. If a small amount of network performance is sacrificed, the data are
mapped to a smaller numerical range by using the quantitative method, which can greatly
reduce the number of parameter storage and the memory space occupied by calculation.
By adopting a reasonable low-precision method, only a small part of network precision can
be lost while the model volume is greatly compressed.

To reduce the model and solve the excessive accuracy loss caused by traditional
quantification methods, we propose a post-training quantization method combined with a
clip during training. In addition, a fully connected layer compression method based on
singular value decomposition is conducted to minimize storage consumption. Furthermore,
we propose a new loss function to improve the accuracy and avoid the performance
drop during quantization. These methods have achieved good results in the following
experiments in Section 4, and their mechanism will be sequentially introduced as follows

4.1. Clipping-Based Post-Training Quantization

The key to this method is to clip input and weights during training. The clipping
process will inevitably bring some accuracy drop. Differently from the traditional method,
we clip the input to a fixed range in the training process. During the training of the model,
the input learning of each layer can make up for a certain accuracy loss caused by clip
operation to the greatest extent. Moreover, after clipping to a fixed range, we will know the
maximum and minimum values of each layer parameter in each calculation process. It is
helpful to avoid the cyclic calculation process of searching the range of input data stream
dynamically, and we can also ensure that the range of input values is fixed in the range of
our clip in order to avoid the risk of accuracy drop of post-training static quantization.

The calculation method is as follows. We first clip the input and weight to [—277,27/]

and [-27%,27K], where j and k are integers:

x = clip [—2*1',2*1} (14)

w = clip [—Z*k,Z*k] (15)

Similarly, the input and weight are converted into int8 type by multiplying an amplifi-
cation factor and round function:

x' = round (27+jx) (16)

w' = round (27+kw> (17)
Next, the dequantization process is also very simple (as shown in Figure 4):

x'w'

WX = Djtkt14 (18)
x/.w/ 7+k x/.w/
q(w-x) = ojkr1a = 57 (19)

Appl. Sci. 2022, 12, 12405

90f18

[27+kW1] [27+kW2]

Figure 4. Forward propagation using clipping-based post-training quantization.

Figure 4 shows a simplified forward propagation process for neural networks. Com-
bined with Equations (16)—(19), it shows that the computational effort in forward propaga-
tion can be saved by multiplying the quantization parameters. This ingenious combination
avoids many redundant parameter calculations. By comparing formula (18) with formu-
las (11)—(13), we can find that we have saved a lot of computation in the process of inverse
quantization. In short, our post-training quantization method combined with clip during
training has obvious advantages in avoiding the huge amount of calculation in dynamic
post-training and solving the problem of accuracy loss in static post-training.

It is worth mentioning that the clip values of our training—clipping method are sym-
metrically centered on 0 and are the integer power of 2; this minimizes the amount of
computation with the representation of int8, but the closer the value of the clip to the
real data range, the smaller the accuracy loss. In the experiment in Section 4, we will
comprehensively consider these effects to obtain the best quantitative results.

4.2. Decomposition of Fully Connected Layers

Singular value decomposition (SVD) is a widely used algebraic feature extraction
method in the field of machine learning [26]. Singular value decomposition (SVD) is
to decompose a linear transformation into two linear transformations, one representing
rotation and one representing stretching.

In the object detection network, most of the classification results or prediction results
need to be processed through the fully connected layer. The fully connected layer generally
has a large number of parameters. In this paper, the first-order input with the size of 1024
is taken as an example (as shown in Figure 5), and the parameter number in the traditional
fully connected layer is 1024 x 1024 in an object detection model such as Faster R-CNN.
Using the SVD method, the key information is firstly saved in a compressed 256-size linear
layer and then expended to a 1024-size fully connected layer. In this way, the number of
parameters is equal to 1024 x 256 x 2, and the method can reduce 50% of the calculation
cost, only losing some unimportant information.

1024 1024 1024 1024

a b

Figure 5. SVD transformation in the fully connected layer. (a) General fully connected layer. (b) Fully
connected layer after SVD.

Appl. Sci. 2022, 12, 12405

10 0of 18

4.3. Lq Loss Function

At present, the loss function of the mainstream object detection algorithm is mainly
composed of three parts. The first part is for classification where the cross-entropy loss is
mostly used. The second part is for bounding box regression, and different algorithms will
be used in different frameworks. The third part is the loss of category confidence. However,
in our clipping-based method, the existing loss ignores the clipping process. We hope that
this part of the loss can also participate in training to improve the accuracy. Therefore,
we designed a new Lq loss (formula (20)), which involved the loss caused by the clipping
process in training. The new loss function is shown in Formula (21), which shows a good
effect on improving accuracy in the experiment in Section 4.

m n
Lq:)\ZZij—ijHz (20)
i=1j=1

where m, n represent the number of categories and numbers, respectively, w; represents
the original weight value, and Cw; represents the weight value after clipping. Figure 6 is a
good example of two weights.

—

0.501 0.257 0.5 0.25

(a) (b)

Figure 6. An illustration of wj and Cw;. (a) w;. (b) Cw;.

As shown in Figure 6, the original weight wj is the float number of 32 bits, while Cw;
represents the fixed point number of integer power of 2 nearest to w;.

Thus, with the addition of Lg, the total loss L is shown as in formula (21). Where LP is
the previous loss of the network, L is the modified loss:

L=1L,+Lg (1)

Therefore, in the process of fine-tuning of the model, the update of the weight gradient
when it propagates backward becomes:

w=w — adwy (22)
where w represents weight, a represents learning rate, dw, equals:
dwg = dw, 4 2(wj — Cw;) (23)

where dw, represents partial derivative in the quantization model, dw, means partial
derivative in the previous model, 2(w; — Cw;) represents the partial derivative to new
Lq loss.

Appl. Sci. 2022, 12, 12405

110f18

5. Experiments

Experiments on mainstream object detection frameworks Yolov3 and Faster R-CNN
were conducted. In the experiment, we mainly used average precision (AP) and average
recall (AR) of three different sizes in the COCO index as the evaluation criteria, and our
dataset was PASCAL VOC2007 + 2012 [27]. The experimental hardware configuration used
Intel Core i7-9800X CPU @ 3.80 GHz processor, NVIDIA GTX 2080 Ti card, 32 GB RAM, 3
TB mechanical hard disk, and the operating system was Windows 10 with a 64-bit system.
The programming language was Python, and the deep learning framework was PyTorch.
GPU acceleration library was CUDA10.2 and CUDNNS.0.

5.1. YOLO Experiments

The clipping experiment was mainly to validate the influence of clipping operation
on the model accuracy and obtain the parameter values with the smallest influence for
post-quantization. Thus, to minimize the effect of the clipping operation, we needed to
make the value of the clipped values approximate to the real values in the original models.

The weight value is static and can be obtained by training. We obtained the range
of model weight from the original models, as shown in Figure 7. It can be found that the
weights of the convolution layer are distributed between [-1, 1], mainly concentrated in
[—0.0625, 0.0625]. The total number of network parameters is 62,944,352, of which 99.2% of
the parameters are located between [—0.03125, 0.03125], and 0.67% of the parameters are
between [—0.0625, —0.03125] and [0.03125, 0.625].

40,000
35,000
30,000
25,000

20,000

Params/k

15,000
10,000
5,000

0
(-0.125, -0.0625) (-0.0625, -0.03125) (-0.03125, 0) (0, 0.03125) (0.03125, 0.0625) (0.0625, 0.125)

Figure 7. Histogram of weight distribution.

The values of input data flow are dynamic and difficult to collect. We used the following
steps to determine its value range. First, the weights were clipped to [-1, 1]. Since the
weight was within this range, as shown in Figure 7, the weights were not changed at this
time. Then, according to the experience, the clip strategies of three data streams [—8, 8],
[—4, 4], [-2, 2] were selected for experiments. The experimental results are shown in Table 1.
Table 1 compares these three clip strategies, and it can be found that the accuracy decreases
the least when the input interval is [—8, 8] compared to baseline, there is a small loss of
accuracy when it is [—4, 4], and there is a significant decrease of 5% when the input interval
is [-2, 2]. The smaller the interval is, the more missing parameters there are and the greater
the decrease in accuracy. This indicates that the inputs are mainly distributed in the interval
[-8, 8].

Table 1. Results of three input clip strategies in float type during training.

Input Clip AP(IOU) AP(IOU) AP(IOU) AR(IOU) AR(IOU) AR(IOU)

Strategies 0.5:0.95 0.5 0.75 0.5:0.95 0.5:0.95 0.5:0.95
[-8, 8] 0.5853 0.7990 0.6417 0.4700 0.6812 0.6971
[—4, 4] 0.5703 0.7911 0.6345 0.4636 0.6728 0.6861
[-2,2] 0.5302 0.7453 0.5868 0.4400 0.6377 0.6491

Baseline 0.5858 0.8010 0.6421 0.4702 0.6831 0.6976

Appl. Sci. 2022, 12, 12405

12 0f 18

According to the distribution of weights reflected in the figure, five clipping strategies
were adopted for the clipping experiment of weights to observe the change of accuracy,
including [-1, 1], [-0.5, 0.5], [-0.25, 0.25], [-0.125, 0.125], and [—0.0625, 0.0625]. We first
clipped the data stream to [—8, 8], and then compared these five weights clipping strategies.
The results are in Table 2. Table 2 shows that the accuracy loss becomes smaller step by
step as the weighting interval narrows from [—1, 1] to [-0.0625, 0.0625]. However, it is
worth mentioning that the accuracy loss is very small when the weight interval is from
[—1, 1] to [-0.125, 0.125], and the accuracy difference with the baseline is kept within
0.1%. This indicates that the weights are mainly distributed between [—0.125, 0.125], and
the small number of parameters in other parts hardly affects the accuracy. However, at
[-0.0625, 0.0625], the maximum accuracy is only 0.78, with a significant accuracy drop of
2%, indicating that the number of parameters between 10.0625, 0.125| has increased and
their absence has affected the accuracy. Therefore, we selected the first four strategies for
the subsequent experiments.

Table 2. Results of five weight clip strategies in float type during training.

Weight Clip AP(IOU) AP(IOU) AP(IOU) AR(IOU) AR(IOU) AR(IOU)
Strategies 0.5:0.95 0.5 0.75 0.5:0.95 0.5:0.95 0.5:0.95
[—1,1] 0.5853 0.7990 0.6417 0.4700 0.6812 0.6971
[-0.5,0.5] 0.5849 0.7990 0.6413 0.4697 0.6804 0.6962
[—0.25,0.25] 0.5839 0.7995 0.6432 0.4692 0.6779 0.6910
[—0.125, 0.125] 0.5830 0.7987 0.6397 0.4700 0.6783 0.6914
[—0.0625, 0.0625] 0.564 0.7805 0.6222 0.4612 0.6613 0.6725
Baseline 0.5858 0.8010 0.6421 0.4702 0.6831 0.6976

5.1.1. Quantization Test

After the clipping experiment, the quantization experiment was carried out according
to the four selected weight clipping strategies. First, the weights trained by four weight
clip strategies were obtained, and then the weights were clipped into int8 types in the
same range as before. According to the corresponding weight range, the inference process
was directly conducted. This is our post-training quantization process, and the results are
shown in Table 3.

Table 3. Results of four weight clip strategies in int8 type during inference.

Weight Clip AP(IOU) AP(IOU) AP(IOU) AR(IOU) AR(IOU) AR(IOU)
Strategies in Int8 0.5:0.95 0.5 0.75 0.5:0.95 0.5:0.95 0.5:0.95
[—1,1] 0.5600 0.7990 0.6260 0.4490 0.6560 0.6690
[-0.5,0.5] 0.5720 0.7960 0.6410 0.4610 0.6670 0.6810
[—0.25,0.25] 0.5770 0.7990 0.6400 0.4640 0.6710 0.6850
[—0.125, 0.125] 0.5780 0.7980 0.6420 0.4650 0.6730 0.6860
Baseline 0.5858 0.8010 0.6421 0.4702 0.6831 0.6976

Table 3 shows the performance of the four weight-clipping strategies in model in-
ference. There is basically a trend that the smaller the clipped interval is, the higher the
accuracy is. However, in the interval of [—1, 1], the model inference effect is obviously
inferior to other strategies, and there is an about 2% decrease in accuracy. The accuracy of
[—0.125, 0.125] is the highest, reaching 0.6420 at 0.75AP, which is only 0.0001 worse than
the baseline; thus, we chose this weight clipping strategy as the main strategy.

5.1.2. Lq Loss Experiment

In previous experiments, it was found that even if the training—clipping quantization
method is used, there will still be an about 1% accuracy loss. We propose to add a new
Lq loss function, which takes the difference between the float point number and the fixed-
point number after clipping into backpropagation, and effectively compensates for the
loss caused by the clip operation. Moreover, we found that different learning rates have

Appl. Sci. 2022, 12, 12405

13 0f 18

different effects on accuracy, as shown in Table 4, where L represents the training result
obtained by the original loss and L + Lq represents the training result after adding Lq
loss. The results show that the accuracy of adding Lq loss is about 1.126% higher than the
original average, and the accuracy error of the baseline is less than 0.2%, which can realize
the quantification of no accuracy loss.

Table 4. Lq loss performance contrast.

. AP(IOU) AP(IOU) AP(IOU) AR(IOU) AR(IOU) AR(IOU)
Strategies

0.5:0.95 0.5 0.75 0.5:0.95 0.5:0.95 0.5:0.95

L 0.5780 0.7980 0.6400 0.4650 0.6730 0.6860
L+Lqg 0.5849 0.8020 0.6414 0.4705 0.6815 0.6938
Baseline 0.5858 0.8010 0.6421 0.4702 0.6831 0.6976

5.2. Faster-RCNN Experiments

In Faster-RCNN, similarly to YOLO, clipping and quantization experiments were
conducted. However, the difference is that Faster-RCNN was finally classified by the
fully connected layer. Here, we verified the results of SVD improvements and found that
reducing the learning rate is beneficial to compensate for certain accuracy losses.

5.2.1. Quantization Test

In this section, no longer repeating the same experimental methods and steps as
YOLO, [-0.5,0.5] and [—1, 1] of the two weight clipping strategies are better in the clipping
experiments. Table 5 shows the performance of the two previously selected weight-clipping
strategies in the model. The two 32-bit float-point clipping results represent the accuracy
results of the model at training time; the two 8-bit integer clipping results represent the
results of the model at the inference stage. It can be observed that the clipping strategy
[—0.5, 0.5] is more prominent, the accuracy reduction is only 1%, and many indicators do
not even decline, proving the superiority of our method. The mAP curve of this strategy
is compared with the baseline, as shown in Figure 8. In Figure 8, the accuracy of the
two curves remains almost the same at the beginning of the training period, with some
fluctuations in the middle of the training period, but at the end of the training period, it can
be observed that the quantized accuracy curve and the baseline maintain the same trend
and are below the baseline with a small difference in accuracy.

Eval mAP

0.625 1
0.600 4
0.575 4
0.550 1

o
% 0.525 4

0.500 4

0.475 ﬂ
\ = Baseline

0.450

== Quantized curve

0425 3 T T T T T T
0 2 4 6 8 10 12 14
epoch

Figure 8. mAP contrast.

Appl. Sci. 2022, 12, 12405 14 0f 18
Table 5. Clipping and quantitative results of the two strategies.
Weight Clip AP(IOU) AP(IOU) AP(IOU) AR(IOU) AR(IOU) AR(IOU)

Strategies 0.5:0.95 0.5 0.75 0.5:0.95 0.5:0.95 0.5:0.95

}Eli)it ;3]2 0.5191 0.8021 0.5784 0.4461 0.6327 0.6399
Float 32

[=0.5, 0.5] 0.5187 0.8003 0.5806 0.4458 0.6316 0.6381

[eqgl] 0.4830 0.7950 0.5310 0.4250 0.6130 0.6220

. é‘;tso 5] 0.5090 0.8000 0.5690 0.4410 0.6250 0.6320

Baseline 0.5191 0.8030 0.5756 0.4468 0.6317 0.6389

5.2.2. SVD Test

In the head part of Faster RCNN, we used SVD decomposition to compress the fully
connected layer, which can reduce the redundant parameters and improve the detection
speed. However, reducing the parameters involved in the calculation often leads to lower
accuracy. We tested the accuracy of SVD decomposition under different learning rates
(LR), as shown in Table 6. It can be found that SVD undeniably still brings some loss to
the model accuracy, and the maximum accuracy loss reaches 6% when the learning rate is
0.005 (base learning rate). However, the reduction of the learning rate helps to reduce the
accuracy loss. When the learning rate is reduced to 1/100, although there is about a 1%
difference between the accuracy of baseline, the accuracy has been improved by 0.6%, and
the accuracy difference between the model before using SVD (int8 [0.5, 0.5] in Table 5) has
been greatly reduced.

Table 6. SVD performance on learning rate decade strategies.

SVD LR AP(IOU) APIOU) AP(IOU) AR(IOU) ARIOU) AR(IOU)
Strategies 0.5:0.95 0.5 0.75 0.5:0.95 0.5:0.95 0.5:0.95
LR =0.005 0.5033 0.7380 0.5540 0.4340 0.6177 0.6228

LR = 0.0005 0.5050 0.7340 0.5590 0.4379 0.6195 0.6263
LR =0.00005 0.5087 0.7900 0.5610 0.4400 0.6230 0.6280
Baseline 0.5191 0.803 0.5756 0.4468 0.6317 0.6389

5.2.3. Lq Loss Experiment

Similarly to the Lq experiment in YOLO, we used the loss function with Lq loss to
train and compare the accuracy results with the accuracy and baseline without Lq loss.
The results are shown in Table 7. Compared with the original loss results, the accuracy is
significantly improved by about 1%, basically consistent with the accuracy of the baseline.
The feasibility and effectiveness of adding Lq loss are verified.

Table 7. Lq loss performance contrast.

AP(IOU) AP(IOU) AP(IOU) AR(IOU) AR(IOU) AR(IOU)

Strategies 5.5 95 0.5 0.75 0.5:0.95 0.5:0.95 0.5:0.95
L 0.5090 0.8000 0.5690 0.4410 0.6250 0.6320
L+Lq 0.5190 0.8032 0.5754 0.4465 0.6315 0.6378
Baseline 0.5191 0.8030 0.5756 0.4468 0.6317 0.6389

5.3. Competition Test

In previous experiments, we have verified that our training—clipping method can
maintain detection accuracy in the 8-bit quantization process. In this section, we compare
the accuracy and speed of other advanced quantization methods in Faster RCNN, as shown
in Table 8 (here TOP-1 ACC means top-1 accuracy).

Appl. Sci. 2022, 12, 12405

150f18

Table 8 compares the baseline and two outstanding 8-bit quantization methods in
terms of accuracy, number of parameters, compression ratio, and CPU inference time. In
terms of precision, the training—clipping method has the highest precision, even slightly
exceeding baseline. Moreover, the precision also reaches 80% after adding the SVD method,
which is 0.9% higher than the method in [11] and 1.6% higher than the method in [28],
reflecting the effectiveness of our improved quantization compensation loss function (Lq).
In terms of the number of parameters and the compression rate, the basic ratio is kept at
1/4 because they are all 8-bit quantization, and the SVD method is significantly better than
the other methods, reaching a compression rate of 18.84%, which greatly reduces the model
redundancy and proves the reliability of the SVD method. In terms of inference time, our
training—clipping method has an inference time of 79 ms for one image, which is 280%
faster compared to the baseline. Compared with the method of [11], we directly clipped
out the interval of weights to avoid the search time of weights, which is improved by 13 ms,
but in the method of [28], model pruning is added in addition to the quantization strategy,
which is 5 ms faster than our method. However, after using SVD, the inference time of our
method was shortened to 58 ms, which is better. In general, our method is superior in both
inference speed and accuracy.

Table 8. Comparison with 8-bit quantization methods.

Methods TOP-1 ACC Parameters Compressing Rate I;ference
ime/ms
Baseline 0.8030 160 M 100% 221
[11] 0.7910 40M 25% 92
[28] 0.7840 39M 24.375% 74
Training—clipping 0.8032 39.58 M 24.737% 79
Training—clipping + SVD 0.8000 30.15M 18.840% 58

To further verify the reliability of our method, experiments were conducted on other
widely used datasets and achieved good results. The experimental results are shown in
Table 9. On the ImageNet dataset, the training—clipping approach’s best accuracy is 69.73%,
which is only 0.03% worse than the baseline. Even with the SVD method, the high accuracy
of 69.71% is ensured. The accuracy of the training—clipping approach drops by 0.27% on
the COCO dataset, which is nine times greater than that of ImageNet. The SVD method’s
use on the COCO dataset similarly results in an accuracy loss of 0.05%. This indicates that
in the hard-to-learn samples with multi-scale bounding boxes, the subtle information loss
may lead to some misdetection and omission, but overall, our quantization method still
maintains a small accuracy loss and shows reliability on different datasets.

Table 9. Comparison with other datasets.

TOP-1 ACC (%)

Datasets . - A - A
Baseline Training—-Clipping Training—Clipping + SVD

vOC 80.30 80.32 80.00

COCO [29] 37.10 36.87 36.82

ImageNet [30] 69.76 69.73 69.71

6. Discussion

This paper provides an innovative idea for model quantification in the field of object
detection, but there are still some issues that need to be discussed. In this section, our
approach is investigated from the perspectives of both method limitations and future
development directions.

Appl. Sci. 2022, 12, 12405

16 of 18

6.1. Limitations

In practical application scenarios, dynamic input clipping is a necessary part. The
main idea of training clipping is to cut out a large number of redundant parameters through
weights and input clipping operations, and then compensate for the loss caused by clipping
through model training. The problem is that the weights are easy to obtain, but the input is
dynamically changing in a range, and this dynamic range needs to be obtained by manual
search, comparison, and experiment, which has a certain randomness. However, since the
change of model accuracy is mainly caused by the weights, and the model training will
compensate the loss of input clipping, in general, the impact on model accuracy is thus
not significant.

6.2. Future Development

Although the clipping-based post-training method has achieved good experimen-
tal results, in view of its limitations, combined with some current research work and
development trends, we have the following two outlooks on this field.

1. More flexible and efficient dynamic quantization: One of the ideas for performing effi-
cient neural network inference acceleration is how to utilize quantization redundancy
in neural networks more flexibly and efficiently. The design space for this problem is
usually large and requires experimental exploration and tradeoffs between the choices
of multiple variables. The idea in this paper is to avoid redundancy by cropping and
training, but this still requires manual intervention, and manual selection is usually
very time-consuming and labor-intensive; thus, the approach of automatic search opti-
mization is starting to become a popular idea. This approach requires better modeling
so that the model can well reflect the effect of parameter changes on the performance
of the integer. The recent works of many scholars [31-34] are based on this modeling
idea. Therefore, using the model search approach to balance the network accuracy
and inference efficiency in complex and variable practical applications is a direction
worthy of research and optimization.

2. Joint optimization of multiple compression and acceleration techniques: At present,
various model compression techniques are emerging, and the application of multiple
compression techniques may improve each other’s performance. For example, Han
proposed a joint model compression based on pruning, trained quantization, and
Huffman coding in 2015 [35], which achieved excellent results. Recently, Cardinaux
also proposed a joint parametric model solver, and the method in this paper is actually
an optimized training-inference strategy in essence, which can be used together with
other current model compression methods [36]. Multi-technology fusion studies are
more likely to be executed sequentially as multiple steps of deployment separately, and
there are a large number of hyperparameters to be configured for each method. How to
synergistically optimize multiple techniques from a system perspective to effectively
improve the network compression rate and inference performance is currently a
direction worthy of in-depth research.

7. Conclusions

This paper proposes a post-training 8-bit quantization method based on clipping for
model compression. It could compress the model, maintain the performance, and accelerate
the inference speed. To achieve this goal, we mainly conducted three main improvements.
Firstly, we introduce a carefully designed clipping operation before the training process. It
decreases the computational burden of the post-training 8-bit quantization and meanwhile
avoids performance drop. Secondly, the SVD is used to further compress the redundant
weights in the fully connected layer. Thirdly, a new loss function term is leveraged to
minimize the performance drop caused by quantization. The three methods could work
harmoniously to compress a model without performance drops. To validate the effective-
ness of our method, it was validated on YOLOv3 and Faster R-CNN model for object
detection on the PASCAL VOC benchmark dataset. The good performances reveal the

Appl. Sci. 2022, 12, 12405 17 of 18

superiority of our designs. Moreover, our method surpasses other widely used 8-bit quan-
tization methods, measured by the compression efficiency and the capacity on avoiding
performance drop.

Author Contributions: Conceptualization, L.C.; methodology, L.C.; software, L.C.; validation, L.C.;
formal analysis, L.C.; investigation, L.C.; resources, P.L.; data curation, L.C.; writing—original draft
preparation, L.C.; writing—review and editing, L.C.; visualization, L.C.; supervision, P.L.; project
administration, P.L.; funding acquisition, P.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Howard, A.G.; Zhu, M,; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

2. Iandola, EN.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 0.5 MB model size. arXiv 2016, arXiv:1602.07360.

3. Zhang, X.; Zhou, X,; Lin, M; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 28-23 June 2018;
pp. 6848-6856.

4. Huang, G,; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 4700-4708.

5. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv 2016, arXiv:1602.02830.

6. Li, E; Zhang, B.; Liu, B. Ternary weight networks. arXiv 2016, arXiv:1605.04711.

7. Zhou, A; Yao, A.; Guo, Y,; Xu, L.; Chen, Y. Incremental network quantization: Towards lossless CNNS with low-precision weights.
arXiv 2017, arXiv:1702.03044.

8. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the speed of neural networks on CPUs. In Proceedings of the Deep Learning and
Unsupervised Feature Learning Workshop, NIPS 2011, Granada, Spain, 16-17 December 2011.

9. Dettmers, T. 8-bit approximations for parallelism in deep learning. arXiv 2015, arXiv:1511.04561.

10. Zhu, F; Gong, R.; Yu, F; Liu, X.; Wang, Y.; Li, Z.; Yang, X.; Yan, J. Towards unified int8 training for the convolutional neural
network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13-19
June 2020; pp. 1969-1979.

11. Jacob, B,; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18-23 June 2018; pp. 2704-2713.

12. Peng, H.; Wu,].; Zhang, Z.; Chen, S.; Zhang, H.T. Deep network quantization via error compensation. IEEE Trans. Neural Netw.
Learn. Syst. 2021, 33, 4960-4970. [CrossRef] [PubMed]

13. Bao, Z.; Zhan, K,; Zhang, W.; Guo, J. LSFQ: A Low Precision Full Integer Quantization for High-Performance FPGA-Based CNN
Acceleration. In Proceedings of the 2021 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS), Tokyo, Japan,
14-16 April 2021; pp. 1-6.

14. Gheorghe, S.; Ivanovici, M. Model-based weight quantization for convolutional neural network compression. In Proceedings of
the 2021 16th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 10-11 June 2021;
pp- 1-4.

15. Ullah, S.; Gupta, S.; Ahuja, K.; Tiwari, A.; Kumar, A. L2L: A highly accurate Log_2_Lead quantization of pre-trained neural
networks. In Proceedings of the 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France,
9-13 March 2020; pp. 979-982.

16. Yin, P; Lyu, J.; Zhang, S.; Osher, S.; Qi, Y.; Xin, J. Understanding straight-through estimator in training activation quantized
neural nets. arXiv 2019, arXiv:1903.05662.

17. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28 June 2014;
pp. 580-587.

http://doi.org/10.1109/TNNLS.2021.3064293
http://www.ncbi.nlm.nih.gov/pubmed/33852390

Appl. Sci. 2022, 12, 12405 18 of 18

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Girshick, R. Fast --CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7-13 December
2015; pp. 1440-1448.

Ren, S.; He, K; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137-1149. [CrossRef] [PubMed]

He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask r-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22-29 October 2017; pp. 2961-2969.

Liu, W,; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11-14 October 2016; Springer: Cham, Switzerland,
2016; pp. 21-37.

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 779-788.

Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 7263-7271.

Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.

Bochkovskiy, A.; Wang, C.Y.; Liao HY, M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
Wall, M.E.; Rechtsteiner, A.; Rocha, L.M. Singular value decomposition and principal component analysis. In A Practical Approach
to Microarray Data Analysis; Springer: Boston, MA, USA, 2003; pp. 91-109.

Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303-338. [CrossRef]

Li, Z,; Sun, Y,; Tian, G.; Xie, L.; Liu, Y.; Su, H.; He, Y. A compression pipeline for one-stage object detection model.]. Real Time
Image Proc. 2021, 18, 1949-1962. [CrossRef]

Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dolldr, P; Zitnick, C.L. Microsoft coco: Common objects in
context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 740-755.

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84-90. [CrossRef]

Liu, Z.; Zhang, X.; Wang, S.; Ma, S.; Gao, W. Evolutionary quantization of neural networks with mixed-precision. In Proceedings
of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON,
Canada, 6-11 June 2021; pp. 2785-2789.

Fei, W.; Dai, W.; Li, C.; Zou,].; Xiong, H. General bitwidth assignment for efficient deep convolutional neural network quantization.
IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 5253-5267. [CrossRef] [PubMed]

Tsuji, S.; Yamada, F.; Kawaguchi, H.; Inoue, A.; Sakai, Y. GPQ: Greedy Partial Quantization of Convolutional Neural Networks
Inspired by Submodular Optimization. In Proceedings of the 2020 7th International Conference on Soft Computing & Machine
Intelligence (ISCMI), Stockholm, Sweden, 14-15 November 2020; pp. 106-109.

Haase, P.; Schwarz, H.; Kirchhoffer, H.; Wiedemann, S.; Marinc, T.; Marban, A.; Miiller, K.; Samek, W.; Marpe, D.; Wiegand, T.
Dependent scalar quantization for neural network compression. In Proceedings of the 2020 IEEE International Conference on
Image Processing (ICIP), Virtual. 25-28 October 2020; pp. 36—40.

Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149.

Cardinaux, F,; Uhlich, S.; Yoshiyama, K.; Garcia, J.A.; Mauch, L.; Tiedemann, S.; Kemp, T.; Nakamura, A. Iteratively training
look-up tables for network quantization. IEEE |. Sel. Top. Signal Processing 2020, 14, 860-870. [CrossRef]

http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1007/s11263-009-0275-4
http://doi.org/10.1007/s11554-020-01053-z
http://doi.org/10.1145/3065386
http://doi.org/10.1109/TNNLS.2021.3069886
http://www.ncbi.nlm.nih.gov/pubmed/33830929
http://doi.org/10.1109/JSTSP.2020.3005030

	Introduction
	Related Work
	Preliminary Knowledge
	Training-Aware Quantization
	Post-Training Quantization
	Object Detection Networks

	Method
	Clipping-Based Post-Training Quantization
	Decomposition of Fully Connected Layers
	Lq Loss Function

	Experiments
	YOLO Experiments
	Quantization Test
	Lq Loss Experiment

	Faster-RCNN Experiments
	Quantization Test
	SVD Test
	Lq Loss Experiment

	Competition Test

	Discussion
	Limitations
	Future Development

	Conclusions
	References

