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Abstract: This paper presents a modified model for hand–eye calibration based on dual quaternion
algebra. By using dual quaternions to represent the rotations and translations of a rigid body
simultaneously in the task space, the formulation is elegant for the analysis of the hand–eye equation.
The hand–eye transformation derived in this study is represented in a compact manner, which uses
a combination of the dual part and the real part of the dual quaternion. Although the hand–eye
equation can be solved by using six elements of a dual quaternion without using its scalar parts,
the scaler numbers in both the real and dual parts of a dual quaternion contain part of the pose
information. The originality is based on the derivation of the construct of the identification algorithm
of external parameters of the camera by using all eight elements of a dual quaternion. Then, the
data transformation between the cameras of the dual-arm hand–eye robot system is presented. The
corresponding results demonstrate that the proposed hand–eye calibration algorithm can process
measurement data with noise and can also improve the identification accuracy to verify its efficiency.

Keywords: industrial robotics; dual quaternion; hand–eye calibration

1. Introduction

Designing a robot system to operate like a human being requires mimicking the basic
human ability of obtaining environmental information, and a camera can provide the vision
function for the robot. For example, a medical robot system can provide an intraperitoneal
view for doctors in order to perform minimally invasive medical surgery [1], and image-
guided systems can form a material sorting system [2]. The robotic hand–eye system
usually needs a calibration procedure which includes the determination of the internal
and the external parameters of the camera. There are many different methods that can be
adopted to solve hand–eye calibration problems in different application environments [3–5].
Most of these methods need the consideration of transformation constraints that contain the
parameters of the camera and the characteristics of the corresponding pictures. The model
of a hand–eye system can be established through known reference points or geometric
features of the targets in view of the camera, and then, the equations can be solved by
numerical methods or learning methods in order to identify the parameter values [6,7].

1.1. Brief Overview of the Hand–Eye Equation

Many previous studies have shown that the hand–eye calibration problem can be
summarized as the solution of the equation AX = XB, such as the classic Faugeras method,
Tsai’s two-step method, and Zhang Zhengyou’s calibration method [8–10]. In 1989, Shiu
summarized the basic transformation equation among the camera coordinate, the world
coordinate, and the end-effector coordinate. Since then, many other researchers have
studied different ways to summarize this topic. Tsai and Lenz used Rodrigues’ formula to
transform a rotation matrix into a rotation vector, and the calibration matrix could be solved
by the geometric transformation algorithm but may have encountered the problem of pose
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singularity [11]. Malti proposed a robust way of solving the hand–eye equation, and it can
be used for medical robots [12]. Shah used the Kronecker product to solve the hand–eye
calibration problem in a convenient way [13]. Faugeras proposed a method to derive
a linear model from the transformation matrix of the scene points and the coordinates
in order to construct a combination of the internal and external parameters so that the
results could be estimated by using the extended Kalman filter [14]. Tsai’s two-step method
was proposed in 1987, and it considers radial distortion. This method can obtain some
external parameters by using radial permutation constraints; then, the internal parameters
and the remaining parameters can be obtained by solving the nonlinear equations [15].
Heller studied the properties of hand–eye and robot–world transformation matrixes and
proposed an effective global polynomial optimization way to solve this problem [16].
Pachtrachai studied the remote centre of motion during a robot control procedure and
presented a practical and effective method of hand–eye calibration to be applied in medical
robots [17]. Zhang Zhengyou proposed the method of calculating the homography matrix
from the image feature data of the target, and then, the parameters could be calculated
by using the maximum likelihood estimation [18]. In 1989, Wei proposed a calibration
method using blanking points in three-dimensional Euclidean space in the deduction and
derived the direction information of blanking points in the projective space in order to
solve the calibration equation; then, the camera parameters could be obtained by using
the projective geometry [19]. Hartley and Faugeras proposed a self-calibration method
for a hand–eye robot system without using specific targets and the information of robot
motion in 1992. This method makes use of the conversion relationship between camera
parameters and image data so that the parameter results can be obtained by nominal
numerical methods [20,21]. In 1993, Basu and Du proposed an algorithm to derive the
estimation solution of the internal and external parameters of the camera by using the
rotation transformation of itself [22]. Wang studied the coupling factors of rotation and
translation during the pose transformation of a hand–eye robot system and proposed an
effective optimal calibration method for robot–world and hand–eye calibration [23].

1.2. Dual Quaternion Algebra and Hand–Eye Calibration

From a certain point of view, there are two forms of hand–eye robot systems, such as
the eye-in-hand systems and the eye-to-hand systems. The difference between the two is
whether the relative pose of the camera changes with the movement of the end-effector.
Normally, the hand–eye calibration procedure contains the steps of extracting the pose
information of image data from the camera coordinate to the robot coordinate. After
hand–eye calibration, the robot system can transform image information extracted from
the camera into the representation of that with respect to the base coordinate so that the
robot operation can be processed into the motion control instruction of the system, which
is expressed in a unified coordinate [24]. Moreover, based on the classification of the
camera mode, the hand–eye system can also be divided into three types, such as monocular,
binocular, and the multi-ocular. From another point of view, the main work of hand–eye
calibration is to find the transformation matrix between the camera coordinate and the robot
coordinate. Furthermore, the equivalence relationship of the basic transformation matrix
can be deduced by analyzing the robot vision system as well. Chen studied dual quaternion
algebra and proposed an effective regularization-patching optimization method for hand–
eye calibration based on dual quaternion [25]. Huang and Wang studied the camera
projection matrix by analyzing the constraints step by step in order to identify the internal
and external parameters of the camera, and then, the corresponding transformation matrix
could be obtained by using the quaternion algebra [26,27]. Park proposed an algorithm for
analyzing the hand–eye equation by using the properties of the Euclidean groups; then,
the equation could be decomposed based on the special orthogonal group SO(3) and the
special Euclidean group SE(3) in Lie algebra so that the transformation matrix could also
be solved by using multiple groups of the measured data and the least square method [28].
Furthermore, the nonlinear calibration equation could be established by collecting the
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information of the feature points among multiple images. The corresponding parametric
results could be obtained by the optimization algorithm or the intelligent algorithm [29].

As mentioned above, early researchers such as Tsai and Shui have summarized the
methods of hand–eye calibration to obtain the hand–eye equation which can be solved
by traditional algorithms. More importantly. this can elicit more researchers to study a
variety of specific ways that can also solve this problem [30,31]. Furthermore, most of these
methods need the intrinsic parameters of the target in space and its image data in different
directions in the camera view. Horaud and Dornaika used quaternions to represent the
rotation variables and vectors to describe the displacement of an object in space, and then,
the calibration results could be obtained by nominal nonlinear algorithms [28]. Chou and
Kamel used quaternions to represent the pose transformation of the rigid body motion in
space so that the rotation matrix and the displacement vector could be separated. Then,
the corresponding identification model could be established and used for obtaining the
calibration results [32]. However, the combination concept of quaternion and dual numbers,
that is called dual quaternion, has been used repeatedly in robotics recently. Furthermore,
dual quaternion algebra has its own calculating characteristics, and it is not similar to
the homogeneous transformation, but also combines the characteristics of screw axes.
This concept has been used as a mathematical tool to deal with robotic problems and is
considered to be the most efficient and compact way of representing the transformations
of a rigid body in coordinates [33,34]. This could be the main factor that the calibration
problem in robotics can also be solved by using dual quaternion algebra. Zhongtao Fu
presented an algorithm for calibrating the transformation parameters of robot–robot and
tool–flange based on dual quaternions, simultaneously, and modified the accuracy of
coordinate calibration in robot collaborative motion [35,36]. Daniilidis used dual quaternion
algebra to decompose the constraint equation of the hand–eye rotation matrix and obtained
the displacement matrix by using the characteristics of screw axes as well. Then, the
classical numerical solution method, which is a singular-value decomposition, was used
to obtain the corresponding identification results [14]. Furthermore, the method based
on dual quaternion algebra can not only express the rotation and translation changes in
a rigid body, simultaneously, but can also obtain more accurate calibration results. The
identification method proposed by Daniilidis uses the characteristics of screw axes and
a 6 × 1 dimensional matrix, which represents the rigid body in three-dimensional space.
However, the two elements ignored in this method contain some information on the
transformation matrix of hand–eye coordination, which means all of the eight elements
should be analyzed for the complete pose information of transformation. More specifically,
the corresponding dual quaternion can be integrated into an 8 × 1 dimensional matrix, and
the scalar parts of the real part and the dual part may not be equivalent to zero always.
The dual quaternion contains eight elements, and all of them can be calculated by its own
algebra. Furthermore, it can be seen from the kinematic model of the hand–eye robot
system that the scalar part of the real part of a dual quaternion does not belong to the null
space, but the real number space, and the dual part does as well. The eight elements of a
dual quaternion contain all of the information on the position and orientation of the rigid
body in space. Most hand–eye calibration methods based on dual quaternion ignore the
scalar parts of the real part and the dual part of the dual quaternion. Therefore, research
on the calibration of hand–eye robot systems using eight elements of a dual quaternion
should be carried out. Furthermore, the extrinsic parameters of the camera are the main
consideration during hand–eye calibration [35]. In addition, this paper mainly considers the
modified solution of hand–eye calibration based on dual quaternion, which provides full
information on the transformation between the robot coordinate and the camera coordinate.
Thus, the improved hand–eye calibration algorithm based on dual quaternion includes full
information on the pose transformation. It can include considerations of the uncertainty of
the pose representation of the camera relative to the robot in the hand–eye system, and a
complete form of hand–eye calibration using dual quaternion is formed. This is very useful
for constituting a robot visual system as well as vision savoring control in further studies.
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In the rest of the paper, the full model for hand–eye calibration based on dual quater-
nion is presented in an explicit form. In addition, this paper is organized as follows:
Section 2 briefly introduces the kinematic analysis of a dual-arm hand–eye robot based on
dual quaternion and shows the derivation of the identification algorithm for each dual part
and scalar part of the dual quaternion. Section 3 presents a computer simulation example
of the corresponding algorithm. The hand–eye identification experiment is conducted on a
dual-arm robot (the robot type is SDA5F) in Section 4. Section 5 concludes the paper.

2. Methodology
2.1. Kinematic Analysis of the Dual-Arm Hand–Eye Robot Based on Dual Quaternion

Generally speaking, there are two ways to set up the vision system of the hand–eye
robot. More importantly, different hand–eye systems can be selected according to different
operation tasks and control objectives. The first one is the eye-to-hand system, in which the
camera is fixed near the workspace of the robot. In this kind of system, the relative pose
between the camera and the end-effector of the robot is not fixed, so that the system can
observe local image details. The second one is the eye-in-hand system, in which the camera
is also fixed on the robot body. In this kind of system, the camera can follow the movement
of the end-effector of the robot in the world coordinate. Even though different installation
ways have different features, all of them have to determine the pose constraints among the
world coordinate, the robot coordinate, the end-effector coordinate, the camera coordinate,
and the picture coordinate, etc., so that the vision system can describe and express the
target information using pictures in the three-dimensional space accurately.

Generally, the pictures captured by commercial cameras are corrected or compensated
according to the internal parameters of the camera itself provided by the manufacturers.
However, usually it is necessary to identify the external parameters of the camera in order
to construct the transformation model between the corresponding coordinates in the hand–
eye system. This paper mainly considers the identification of the external parameters of
the camera, which is important in the hand–eye calibration procedure. The dual-arm robot
contains two normal manipulators, and both of them share some common workspace,
while the system has more flexible operation ability. The dual-arm robot can also use
the vision system to acquire a picture of the external environment in order to expand the
system function. For example, the vision system can acquire data on the moving object
in order to derive the relative pose of that expressed in the robot coordinate for further
control commands. As mentioned above, many papers have proposed effective methods
to calibrate the constraint model of hand–eye systems so that the premise of the robot
vision ability can be obtained for further development. In addition, among the classical
hand–eye calibration solutions up to now, Tsai and Shui have summarized the methods
and the procedure of that in order to obtain the equation AX = XB and also have studied
the corresponding solutions earlier. In addition, Horn presented an online identification
algorithm for the extrinsic parameters of the camera based on dual quaternion and solved
the corresponding numerical equation by using the globally fast optimization method [34].
Pachtrachai presented a solution for the trocar limitation which may cause ill-conditioned
constraints during the procedure of hand–eye calibration based on dual quaternion and
solved the problem by using the Levenberg–Marquardt algorithm [7]. These subtle methods
use the operational derivation of dual quaternion algebra but are also not the same as that
presented by Daniilidis [14]. The main purpose of this section is to deduce the procedure of
identifying the external parameters of the hand–eye equation by using the eight elements
of the dual quaternion.

Assuming that, first, in the example of eye-to-hand systems, the camera is mounted
near the base of the dual-arm robot, so that it mimics the human view, the relative position
and orientation of the object or the end-effectors of the robot can be obtained from the
image data.

For the general analysis, Figure 1 shows the example setup of the coordinate systems
for a dual-arm robot equipped with two cameras. q̂ca_2

ca_1 is the dual quaternion representation
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of the coordinate {ca_1} of camera 1 with respect to the coordinate {ca_2} of camera 2,
q̂ca_1

robot is the dual quaternion representation of the robot coordinate {robot} with respect
to the coordinate {ca_1} of camera 1, q̂robot

ca_2 is the dual quaternion representation of the
coordinate {ca_2} of camera 2 with respect to the robot coordinate {robot}, q̂e_1

robot is the
dual quaternion representation of the robot coordinate {robot} with respect to the end-
effector coordinate {e_1} of arm 1, q̂e_2

robot is the dual quaternion representation of the robot
coordinate {robot} with respect to the end-effector coordinate {e_2} of arm 2, q̂e_1

tr_1 is the
dual quaternion representation of the calibration plate {tr_1} of arm 1 with respect to the
end-effector coordinate {e_1} of arm 1, and q̂e_2

tr_2 is the dual quaternion representation of
the calibration plate {tr_2} of arm 2 with respect to the end-effector coordinate {e_2} of
arm 2. These coordinates construct the hand–eye robot coordinate system.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 15 
 

ied the corresponding solutions earlier. In addition, Horn presented an online identifica-

tion algorithm for the extrinsic parameters of the camera based on dual quaternion and 

solved the corresponding numerical equation by using the globally fast optimization 

method [34]. Pachtrachai presented a solution for the trocar limitation which may cause 

ill-conditioned constraints during the procedure of hand–eye calibration based on dual 

quaternion and solved the problem by using the Levenberg–Marquardt algorithm [7]. 

These subtle methods use the operational derivation of dual quaternion algebra but are 

also not the same as that presented by Daniilidis [14]. The main purpose of this section is 

to deduce the procedure of identifying the external parameters of the hand–eye equation 

by using the eight elements of the dual quaternion. 

Assuming that, first, in the example of eye-to-hand systems, the camera is mounted 

near the base of the dual-arm robot, so that it mimics the human view, the relative position 

and orientation of the object or the end-effectors of the robot can be obtained from the 

image data. 

For the general analysis, Figure 1 shows the example setup of the coordinate systems 

for a dual-arm robot equipped with two cameras. �̂�𝑐𝑎_1
𝑐𝑎_2 is the dual quaternion represen-

tation of the coordinate {𝑐𝑎_1} of camera 1 with respect to the coordinate {𝑐𝑎_2} of cam-

era 2, �̂�𝑟𝑜𝑏𝑜𝑡
𝑐𝑎_1  is the dual quaternion representation of the robot coordinate {𝑟𝑜𝑏𝑜𝑡} with 

respect to the coordinate {𝑐𝑎_1} of camera 1, �̂�𝑐𝑎_2
𝑟𝑜𝑏𝑜𝑡  is the dual quaternion representation 

of the coordinate {𝑐𝑎_2} of camera 2 with respect to the robot coordinate {𝑟𝑜𝑏𝑜𝑡}, �̂�𝑟𝑜𝑏𝑜𝑡
𝑒_1  

is the dual quaternion representation of the robot coordinate {𝑟𝑜𝑏𝑜𝑡} with respect to the 

end-effector coordinate {𝑒_1} of arm 1, �̂�𝑟𝑜𝑏𝑜𝑡
𝑒_2  is the dual quaternion representation of 

the robot coordinate {𝑟𝑜𝑏𝑜𝑡} with respect to the end-effector coordinate {𝑒_2} of arm 2, 

�̂�𝑡𝑟_1
𝑒_1  is the dual quaternion representation of the calibration plate {𝑡𝑟_1} of arm 1 with 

respect to the end-effector coordinate {𝑒_1} of arm 1, and �̂�𝑡𝑟_2
𝑒_2  is the dual quaternion 

representation of the calibration plate {𝑡𝑟_2} of arm 2 with respect to the end-effector co-

ordinate {𝑒_2} of arm 2. These coordinates construct the hand–eye robot coordinate sys-

tem. 

 

Figure 1. Example setup of the coordinate systems in the dual-arm hand–eye calibration. 

There are two cameras in Figure 1 in order to show the example of the relative trans-

formation between the robot and different cameras, which capture pictures used by the 

dual-arm robot system. Two or more cameras can offer the robot system a greater range 

of visual perception, which can extend the functionality of the dual-arm robot in further 

usages. The procedure of hand–eye calibration not only requires the optical information, 

which is determined by the pictures, but also obtains the external parameters of the cam-

era. Furthermore, it was necessary to determine the transformation model of the output 

from the nonlinear model, which was formed by the pixel coordinate of the picture in the 

two-dimensional sensor space and the world coordinate in the three-dimensional scene 

Figure 1. Example setup of the coordinate systems in the dual-arm hand–eye calibration.

There are two cameras in Figure 1 in order to show the example of the relative
transformation between the robot and different cameras, which capture pictures used by
the dual-arm robot system. Two or more cameras can offer the robot system a greater range
of visual perception, which can extend the functionality of the dual-arm robot in further
usages. The procedure of hand–eye calibration not only requires the optical information,
which is determined by the pictures, but also obtains the external parameters of the camera.
Furthermore, it was necessary to determine the transformation model of the output from
the nonlinear model, which was formed by the pixel coordinate of the picture in the two-
dimensional sensor space and the world coordinate in the three-dimensional scene state.
The pictures of the calibration board contain the information of that with respect to the
system coordinates as the robot moved to different poses so that the constraints could be
constructed from the data of multiple two-dimensional pictures, which were captured by
the cameras, and the external parameters of the cameras could be obtained.

As Figure 1 is a dual-arm hand–eye robot system, it was necessary to perform a
hand–eye calibration procedure on each of the two cameras and to construct the relative
transformation between the two cameras. The equation of the two camera coordinates
could be formed as:

q̂ca_1
ca_2 = q̂ca_1

robot ∗ q̂robot
ca_2 (1)

Nevertheless, the hand–eye calibration of one end-effector and one camera should be
carried out first. In general, one arm in the example shown in Figure 1 is chosen for further
derivation. The relative pose constraint between the end-effector coordinate of the one
arm and the other coordinate should mainly be considered. Two-dimensional hand–eye
calibration boards with known geometric parameters were fixed to the end-effectors of the
robot in Figure 1, and the cameras captured the different poses of the target as the robot’s
arm pose changed.
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According to the picture data of the calibration board, the constraint equation of
the camera coordinate, the robot coordinate, and the end-effector coordinate could be
established as:

q̂e_n
tr_k = q̂e_n

robot ∗ q̂robot
ca_j ∗ q̂ca_j

tr_k (2)

where e_n is the end-effector of arm 1 or arm 2, tr_k is the k-frame picture of the calibration
board, ca_j is camera 1 or camera 2, q̂e_n

tr_k is the dual quaternion representation of the coordi-
nate {tr_k} with respect to the end-effector coordinate {e_n}, q̂e_n

robot is the dual quaternion
representation of the robot coordinate {robot} with respect to the end-effector coordinate
{e_n}, q̂robot

ca_j is the dual quaternion representation of the camera coordinate {ca_j} with

respect to the robot coordinate {robot}, and q̂ca_j
tr_k is the dual quaternion representation of

the coordinate {tr_k} with respect to the camera coordinate {ca_j}.

2.2. Identification Algorithm of Each Dual Part and Scalar Part of the Dual Quaternion

Using Equation (2) and the differences among different pictures, the following equa-
tions were obtained:

q̂e_1
tr_k = q̂e_2

tr_k (3)

q̂e_2∗
robot ∗ q̂e_1

robot ∗ q̂robot
ca_j = q̂robot

ca_j ∗ q̂ca
tr_2 ∗ q̂ca∗

tr_1 (4)

On the other hand, the homogeneous transformation matrixes A, B, and X were
directly converted into the corresponding dual quaternion forms by using the basic equation
of the hand–eye calibration, and the similar form of the basic equation was obtained as:

Â ∗ q̂robot
ca_j = q̂robot

ca_j ∗ B̂ (5)

where Â is the dual quaternion form of A, B̂ is the dual quaternion form of B, and q̂robot
ca_j is

the dual quaternion form of X.
Furthermore, there is the equation:([

Â+
]
−
[
B̂−
])

q̂robot
ca_j = QABq̂robot

ca_j = 0 (6)

where
[
Â+
]

is the matrix form of Â when it used left multiplication,
[
B̂−
]

is the matrix

form of B̂ when it used right multiplication, QAB is an 8× 8 dimensional matrix, and q̂robot
ca_j

is an 8× 1 dimensional matrix.
The matrix QAB can be written in a partitioned matrix form as:

QAB =

[
Q11 04×4
Q21 Q22

]
(7)

The matrix q̂robot
ca_j can also be written in a partitioned matrix form as:

q̂robot
ca_j =

[
qrob_ca_j

11
qrob_ca_j

21

]
(8)

The first rows of Q11, Q21, and Q22 in Equation (7) do not belong to the zero vectors,
and the scalar parts of the real and dual parts of q̂robot

ca_j in Equation (8) do not belong to the
null space either. In addition, the matrix QAB is not fully ranked so that the block matrices
of QAB and q̂robot

ca_j could be identified, respectively.
The formulas that were obtained from Equations (6)–(8) are:

Q11qrob_ca_j
11 = 04×1 (9)

Q21qrob_ca_j
11 + Q22qrob_ca_j

21 = 04×1 (10)
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It was necessary and convenient to solve Equation (9) using the singular-value de-
composition (SVD) method first and then to obtain the real part result of the rotation
information contained in the dual quaternion q̂robot

ca_j . The dual part of the dual quaternion

q̂robot
ca_j includes the combination information of the rotation and the translation, and it is

not an intuitive representation form of the position vector. Therefore, it was necessary to
substitute the result of Equation (9) into Equation (10), and the dual result of q̂robot

ca_j was
obtained by using the SVD method so that a complete representation of the identification
result was formed finally.

In order to improve the accuracy and the precision of the calibration results, it was
necessary to acquire data of multiple pictures in order to form a combined identification
algorithm during the specific implementation procedure of the hand–eye calibration so
that there would be equations expressed as follows:

T11 =
(

GT
1 GT

2 · · · GT
n

)T
(11)

T21 =
(

HT
1 HT

2 · · · HT
n

)T
(12)

GT
n =

(
Q11qrob_ca

11

)T

k
(13)

HT
n =

(
Q21qrob_ca

11 + Q22qrob_ca
21

)T

k
(14)

where n is the number of the measurement, and k is the serial number of the k-th picture.
Using the SVD method to identify Equations (11) and (12), successively, can obtain

more reasonable results than that identified by using Equations (9) and (10). Furthermore,
based on the dual quaternion q̂robot

ca_j , which is the camera coordinate {ca} with respect to

the robot coordinate {robot}, the dual quaternion q̂robot
ca_j contains the same transformation

information as the homogeneous transformation matrix of the actual robot system. Oth-
erwise, the rotation angle and the translation value contained in the dual quaternion can
represent the intuitive numerical meaning in the corresponding coordinate.

From the above analysis and derivation, the steps of the modified hand–eye calibration
algorithm based on dual quaternion algebra can be concluded as follows: First, fix the
two-dimensional calibration board at the end-effector of one arm, and use the camera to
capture different poses of the board. Second, compute the real part of q̂robot

ca_j by using the
SVD method to solve the combination of Equations (6) and (11). Third, compute the dual
part of q̂robot

ca_j by using Equations (6) and (12) and the result of the second step. Therefore,

complete the overall result of q̂robot
ca_j . After following these steps of the procedure, the

relative transformation between the two cameras can be obtained by using Equation (1).
Furthermore, the dual-arm hand–eye robot system discussed in Figure 1 has two

arms, and the relative position and orientation between the two end-effectors and the
two cameras should be obtained in order to complete the procedure so that the kinematic
equation of these two end-effectors and the corresponding two cameras can be written as:

q̂e_2
ca_1 = q̂e_2

robot ∗ q̂robot
ca_1 (15)

q̂e_1
ca_2 = q̂e_1

robot ∗ q̂robot
ca_2 (16)

From the discussion above, the modified hand–eye calibration for the dual-arm robot
system based on dual quaternion can be summarized in Algorithm 1. In addition, an
abbreviation is used to express the corresponding algorithm as MDQ, which means the
modified hand–eye calibration using dual quaternion.
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Algorithm 1: Modified hand–eye calibration for the dual-arm robot system using dual quaternion

Input: The pictures captured by cameras; the poses data of end-effectors; the corresponding dual
quaternions Â, B̂.
1: Compute the real part and the dual part of q̂robot

ca_j based on Equations (6), (11), and (12).

2: initial q̂robot(0)
ca_j ← the first solution in step 1; n← 1

3: while ‖
([

Â+
]
−
[
B̂−
])

q̂robot(n)
ca_j ‖ > ε, do

Form solution based on Equations (11) and (12);
n← n + 1 ;

4: Form kinematic equation of robot system based on Equations (15) and (16);
end while

Output: q̂robot
ca_j ← q̂robot(n)

ca_j

3. Simulation and Discussion

In this section, the initial observation data of the hand–eye robot are set in the simula-
tion in order to verify the hand–eye calibration algorithm proposed above. This simulation
was conducted on a model of the dual-arm hand–eye robot system, which contains a
dual-arm robot SDA5F and two monocular cameras. Moreover, it was important to make
the basic assumption that the eye-to-hand robot system in the simulation included one
manipulator and one monocular camera typically.

Multiple sets of dual quaternions that represented the transformations between the
robot base coordinate and the camera coordinate were set. The simulation data included
the information of translation vectors and rotation angles of the camera coordinate with
respect to the robot coordinate. Furthermore, the dual quaternions that contained the
information on the measurement data of the corresponding hand–eye equation were set as
random quantities at the same time. For the comparison, the method proposed by Lu in
reference [21] was used to process the sets of the same data in this simulation. Furthermore,
the norm values of the position were set in the range (50, 500) mm, and random noise was
added in the angle data which was in the range (−0.01, 0.01). In general, the errors between
the sets of the nominal pose data and the sets of the pose results that were obtained by
the identification were greatly affected by interference. MATLAB was used for algorithm
simulation and discussion using the Windows operating system in this part.

As a result, the quadratic norm of its position vector error was changed according
to the quadratic norm of the nominal position vector in the simulation. In addition, the
orientation error changed with the random characteristic to some extent.

Figure 2 shows the root mean square (RMS) relative errors in translation between the
simulation results and the nominal values without noise interference, and the RMS errors
in translation are less than 0.33 mm. Figure 3 shows the RMS errors in rotation between the
simulation results and the nominal values without noise interference, and the RMS errors
in rotation are less than 0.02 rad.
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It can be seen from Figures 2 and 3 that the results of the hand–eye calibration algo-
rithm proposed in this paper are very close to the nominal values without interference. In
addition, the results have a smaller error range compared with the method proposed by Lu
mentioned in the reference [21].

Furthermore, Figure 4 shows the RMS relative errors in translation between the
simulation results and the nominal values interfered with random noise, and the RMS
errors in translation are less than 0.36 mm. Figure 5 shows the RMS errors in rotation
between the simulation results and the nominal values interfered with random noise, and
the RMS errors in rotation are less than 0.025 rad. It can be seen from Figures 4 and 5 that
the results obtained by the MDQ algorithm proposed in this paper have RMS relative errors
in translation less than 0.23 mm and RMS errors in rotation less than 0.01 rad. The scales
of the results of the simulation are small, and the MDQ algorithm has smaller errors than
that. These results mean that the MDQ algorithm can also improve the anti-interference
ability with respect to the compared method. Moreover, the simulation results can verify
the effectiveness of the MDQ algorithm proposed in this paper.
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4. Experiment and Analysis

In order to further verify the hand–eye calibration algorithm described above, an
experiment was conducted on a real dual-arm hand–eye robot system, which contains a
dual-arm robot SDA5F and two monocular cameras.

The SDA5F is a kind of humanoid robot made by Yaskawa Electric for scientific
research, and the two monocular cameras were used for mimicking the different views
of a human being. Both of the cameras were calibrated in the experiment. As shown in
Figure 6, the two cameras were fixed near the rotational axis of the dual-arm robot base,
and both of them were monocular RGB cameras. Camera 1 looked up at an angle from the
horizon plane in order to mimic the upward view of a human being, and camera 2 looked
down at an angle from the horizontal plane in order to mimic the downward view of a
human being.
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The two monocular cameras have the ability to sense the body, and the main properties
of them are RGB image acquisition functions with adjustable frequencies. During the
experiment, the software platforms were running in the Windows operating system, and
C++ was used to carry out the secondary development of the robot control programs,
including the hand–eye calibration and result analysis of the dual-arm robot. The model of
the robot control cabinet is FS100, which is a type of processing center manufactured by
Yaskawa Electric Co., Ltd. in Kitakyushu, Fukuoka, Japan. The control cabinet can connect
to the PC in order to obtain the predetermined instructions from the host computer.

The hand–eye calibration algorithm proposed in this paper mainly considers the
identification of the external parameters of the cameras and requires multiple pictures with
the known two-dimensional board as the target.

Figure 7 shows the setup of the hand–eye calibration of the dual-arm hand–eye robot
system during the experiment, and the external parameters of the two cameras were
identified. Figure 7a shows the calibration setup of the left arm of the SDA5F robot and
camera 1. Figure 7b shows the calibration setup of the right arm of the SDA5F robot and
camera 2.

It is necessary to calibrate the two arms and cameras to describe them in a unified
coordinate system at last. The data extracted from the pictures describe the movement of
the target that is useful for further processing such that that the two-dimensional board is
fixed at the end-effector of one arm of the dual-arm robot, and its orientation is close to that
of the end-effector coordinate. Although the simulation of the MDQ algorithm proposed
could obtain better results with added random noise, it is also affected by the accuracy of
the poses or other factors which would be difficult to model in this experiment. Therefore,
in order to make the adverse effects on the observed data as acceptable as possible, it
was necessary to use a calibration board with a flat surface and a suitable accuracy so
that more groups of experimental data for calibration could be collected and conveniently
processed. In order to obtain better experimental results, approximately random poses
of each end-effector were selected in different areas of the robot workspace. The cameras
captured multiple sets of pictures and collected reasonable data. For the comparison, the
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same data were identified by the method mentioned in the reference [21]. The two arms of
the dual-arm robot and the two cameras were calibrated in the experiment, and the results
were processed with the same set of the measurements as the two arms have the same
structure.
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Figure 8 shows some pictures of the calibration board captured by the two cameras in
the experiment, and each camera was calibrated separately.
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Figures 9 and 10 show the results of the RMS errors in translation and rotation after
hand–eye calibration by the two methods within the distance range of 1 m. Due to the
measurement, position, and orientation errors of the end-effectors and other unmolded
nonlinear factors, the experimental data are interfered and have more errors than that of
the single-factor methods.
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Otherwise, it can be seen from Figures 9 and 10 that the actual effects are different
from the results of the simulation above, but the results are still reasonable. As the scale and
unit of the translation are different from the rotation, the threshold ranges of them are also
different. It can be seen from the resulting curves in Figures 9 and 10 that the RMS relative
errors in translation using MDQ are within 3.7 mm. This means MDQ can obtain better
results for translation during the hand–eye calibration in the real experiment. The RMS
relative errors in rotation using MDQ are within 0.13 rad. This means MDQ can obtain
better results for rotation during the hand–eye calibration in the real experiment. After
the steps of the hand–eye calibration for each camera and each arm, the relative pose data
of the arbitrary target captured by one camera can be transformed to the other camera by
using Equation (15) or Equation (16). The calibration procedure was repeated several times,
and the last results of the linear offsets of camera 1 along the x, y, and z axes were 24.51,
9.67, and 45.32, respectively, in millimeters; the rotational offsets of camera 1 along the x,
y, and z axes are 0.005, 0.062 and 0.003, respectively, in rad. The last results of the linear
offsets of camera 2 along the x, y, and z axes are 34.92, 11.86, and 463.75, respectively, in
millimeters; the rotational offsets of camera 1 along the x, y, and z axes are 0.006, 0.102, and
0.007, respectively, in rad. Moreover, Figure 11 shows the test of the movement after the
hand–eye calibration of the dual-arm robot, which can be used in real applications and in
further studies using a robot to hit a Ping-Pong ball.
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Figure 11. The test of the movement after the hand–eye calibration of the dual-arm robot.

The full procedure of the dual-arm hand–eye calibration was completed and was
necessary for further applications of the dual-arm robot. The comparison between the
two methods shows that the MDQ algorithm has a better performance than the reference
one, which means the effectiveness of the MDQ algorithm proposed in this paper can
be illustrated.

5. Conclusions

Based on the analysis of the hand–eye equation, a modified hand–eye calibration
algorithm based on a dual quaternion was proposed. A modified identification matrix and
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the steps derived from the hand–eye equation for identifying the external parameters of
the camera were presented. The simulation task, summarized in MATLAB, was performed
to deal with the comparison of this modified algorithm and the other algorithm. The
real hand–eye calibration experiment was carried out on a dual-arm robot, and the data
of the calibration plate were measured by the real cameras and were calculated for the
comparisons. The corresponding calibration algorithm for the dual-arm hand–eye robot
system was also constructed, and it can deal with the problem of data transformation
between the two cameras. Meanwhile, the results of the simulation and experiment show
that this algorithm considers the scalar parts of the real part and the dual part of the
dual quaternion, and it can obtain more accurate results. Furthermore, the corresponding
calibration results of the simulation and experiment were improved by the proposed
algorithm, and it could be the modified solution for the hand–eye calibration problem
based on dual quaternion.

Author Contributions: G.L. designed this study, supervised and led the experimental process,
and wrote the original draft; S.Z. reviewed and revised the manuscript and provided funding for
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