The Influence of Subcritical Water Extraction Parameters on the Chemical Composition and Antioxidant Activity of Walnut (Juglans regia L.) Bark Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Reagents
2.3. Methods
2.3.1. Box-Behnken Experimental Design and Statistical Analyses
2.3.2. Subcritical Water Extraction
2.3.3. Total Polyphenols Content (TPC)
2.3.4. Total Flavonoid Content (TFC)
2.3.5. Antioxidant Activity
- DPPH assay
- FRAP assay
2.3.6. Optimization of Subcritical Water Extraction Parameters
3. Results and Discussion
3.1. Extraction Yield and Results of Chemical Analysis
3.2. Total Polyphenols Content (TPC)
3.3. Total Flavonoids Content (TFC)
3.4. The Antioxidant Activity
3.5. Optimization of the Extraction Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Treutter, D. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul. 2001, 34, 71–89. [Google Scholar] [CrossRef]
- Ruhmann, S.; Leser, C.; Bannert, M.; Treutter, D. Relationship between growth, secondary metabolism and resistance of apple. Plant Biol. 2002, 4, 137–143. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar]
- Aherne, S.A.; O’Brien, N.M. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition 2002, 18, 75–81. [Google Scholar] [CrossRef]
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defense mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Britton, M.; Leslie, C.A.; Dandekar, A.M.; McGranahan, G.H.; Caboni, E. Persian Walnut. In Compendium of Transgenic Crop Plants; Kole, C., Hall, T.C., Eds.; Wiley: Hoboken, NJ, USA, 2009; Volume 4, pp. 285–300. [Google Scholar]
- Arcan, I.; Yemenicoglu, A. Antioxidant activity and phenolic content of fresh and dry nuts with or without the seed coat. J. Food Compos. Anal. 2009, 22, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Amaral, J.S.; Casal, S.; Pareira, J.A.; Seabra, R.M.; Oliveira, B.P. Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in Portugal. J. Agric. Food Chem. 2003, 51, 7698–7702. [Google Scholar] [PubMed] [Green Version]
- Amaral, J.S.; Alves, M.R.; Seabra, R.M.; Oliveira, B.P. Vitamin E composition of walnuts (Juglans regia L.): A 3-year comparative study of different cultivars. J. Agric. Food Chem. 2005, 53, 5467–5472. [Google Scholar]
- Li, L.; Yang, R.; Liu, C.; Zhu, H.; Young, J.C. Polyphenolic profiles and antioxidant activities of heartnut (Juglans ailanthifolia var. cordiformis) and Persian walnut (Juglans regia L.). J. Agric. Food Chem. 2006, 54, 8033–8040. [Google Scholar] [CrossRef]
- Reiter, R.J.; Manchester, L.; Tan, D. Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005, 21, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Bou Abdallah, I.; Tlili, N.; Martinez-Force, E.; Rubio, A.G.P.; Perez-Camino, M.C.; Albouchi, A.; Boukhchina, S. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef]
- Kale, A.; Shah, S.; Gaikwad, S.; Mundhe, K.; Deshpande, N.; Salvekar, J. Elements from Stem Bark of Orchard Tree—Juglans regia. Int. J. Chemtech Res. 2010, 2, 548–550. [Google Scholar]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Valentin, E.; Bakhrouf, A. Antifungal properties of Salvadora persica and Juglans regia L. extracts against oral Candida strains. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 81–88. [Google Scholar]
- Haque, R.; Bin-Hafeez, B.; Parvez, S.; Pandey, S.; Sayeed, I.; Ali, M.; Raisuddin, S. Aqueous extract of walnut (Juglans regia L.) protects mice against cyclophosphamide-induced biochemical toxicity. Hum. Exp. Toxicol. 2003, 22, 473–480. [Google Scholar]
- Bhatia, K.; Rahman, S.; Ali, M.; Raisuddin, S. In vitro antioxidant activity of Juglans regia L. bark extract and its protective effect on cyclophosphamide-induced urotoxicity in mice. Redox Rep. 2006, 11, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Nirmla Devi, T.; Apraj, V.; Bhagwat, A.; Mallya, R.; Sawant, L.; Pandita, N. Pharmacognostic and Phytochemical Investigation of Juglans regia Linn. Bark. Pharm. J. 2011, 3, 39–43. [Google Scholar]
- Zakavi, F.; Golpasand Hagh, L.; Daraeighadikolaei, A.; Farajzadech Sheikh, A.; Leilavi Shooshtari, Z. Antibacterial effect of Juglans regia bark against oral pathologic bacteria. Int. J. Dent. 2013, 2013, 854765. [Google Scholar] [PubMed] [Green Version]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. [Google Scholar]
- Noumi, E.; Snoussi, M.; Trabelsi, N.; Hajlaoui, H.; Ksouri, R.; Valentin, E. Antibacterial, anticandidal and antioxidant activities of Salvadora persica and Juglans regia L. extracts. J. Med. Plants Res. 2011, 5, 4138–4146. [Google Scholar]
- Noumi, E.; Snoussi, M.; Noumi, I.; Valentin, E.; Aouni, M.; Al-sieni, A. Comparative study on the antifungal and antioxidant properties of natural and colored Juglans regia L. barks: A high activity against vaginal Candida strains. Life Sci. J. 2014, 11, 327–335. [Google Scholar]
- Vardanega, R.; Carvalho, P.I.N.; Santos, D.T.; Angela, M.; Meireles, A. Obtaining prebiotic carbohydrates and beta-ecdysone from Brazilian ginseng by subcritical water extraction. Innov. Food Sci. Emerg. Technol. 2017, 42, 73–82. [Google Scholar] [CrossRef]
- Nastić, N.; Svarc-Gajić, J.; Delerue-Matos, C.; Fatima Barroso, M.; Soares, C.; Moreira, M.M.; Morais, S.; Masković, P.; Gaurina Srcek, V.; Slivac, I.; et al. Subcritical water extraction as an environmentally—Friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind. Crops Prod. 2018, 111, 579. [Google Scholar] [CrossRef] [Green Version]
- Awaluddin, S.A.; Thiruvenkadam, S.; Izhar, S.; Hiroyuki, Y.; Danquah, M.K.; Harun, R. Subcritical water technology of enhanced extraction of biochemical compounds from Chlorella vulgaris. BioMed Res. Int. 2016, 2016, 5816974. [Google Scholar] [CrossRef] [Green Version]
- King, J.W.; Grabiel, R.D. Isolation of Polyphenolic Compounds from Fruits or Vegetables Utilizing Sub-Critical Water Extraction. U.S. Patent 7208181B1, 24 April 2007. [Google Scholar]
- Smith, R.M. Superheated water: The ultimate green solvent for separation science. Anal. Bioanal. Chem. 2006, 385, 419–421. [Google Scholar]
- Sahin, H.; Topuz, A.; Pischetsrieder, M.; Ozdemir, F. Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur. Food Res. Technol. 2009, 230, 155–161. [Google Scholar] [CrossRef]
- Nastić, N.; Svatc-Gajić, J.; Delerue-Matos, C.; Morais, S.; Fatima Barroso, M.; Moreira, M.M. Subcritical water extraction of antioxidants from mountain germander (Teucrium montanum L.). J. Supercrit. Fluids 2018, 138, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Senorans, F.J.; Cifuentes, A.; Ibanez, E. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J. Pharm. Biomed. Anal. 2010, 51, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, S.M.; Kamal, S.M.M. Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients. Food Eng. Rev. 2016, 8, 23–34. [Google Scholar]
- Cvetanovic, A.; Svarc-Gajic, J.; Zekovic, Z.; Jerkocic, J.; Zengin, G.; Gasić, U.; Tesić, Z.; Masković, P.; Soares, C.; Fatima Barroso, M.; et al. The Influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chem. 2019, 271, 328–337. [Google Scholar] [PubMed] [Green Version]
- Plaza, M.; Amigo-Benavent, M.; Del Castillo, M.D.; Ibanez, E.; Herrero, M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobus, Z.; Krzywicka, M.; Starek-Wójcicka, A.; Sagan, A. Effect of the duty cycle of the ultrasonic processor on the efficiency of extraction of phenolic compounds from Sorbus intermedia. Sci. Rep. 2022, 12, 8311. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar]
- Gupta, A.; Behl, T. Pharkphoom Panichayupakaranan, A review of phytochemistry and pharmacology profile of Juglans regia. Obes. Med. 2019, 16, 100142. [Google Scholar] [CrossRef]
- Żurek, N.; Pawłowska, A.; Pycia, K.; Grabek-Lejko, D.; Kapusta, I.T. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules 2022, 27, 2762. [Google Scholar]
Set | Factor 1 A: Temperature [°C] | Factor 2 B: Fraction Size [mm] | Factor 3 C: Process Time [min] | Factor 1 A: Temperature Coded | Factor 2 B: Fraction Size Coded | Factor 3 C: Process Time Coded |
---|---|---|---|---|---|---|
1 | 110 | 1.4 | 10 | −1 | 0 | −1 |
2 | 140 | 1.4 | 30 | 0 | 0 | 0 |
3 | 170 | 1.4 | 50 | 1 | 0 | 1 |
4 | 170 | 1.9 | 30 | 1 | 1 | 0 |
5 | 140 | 0.9 | 10 | 0 | −1 | −1 |
6 | 140 | 1.9 | 10 | 0 | 1 | −1 |
7 | 140 | 1.9 | 50 | 0 | 1 | 1 |
8 | 110 | 1.9 | 30 | −1 | 1 | 0 |
9 | 140 | 1.4 | 30 | 0 | 0 | 0 |
10 | 140 | 0.9 | 50 | 0 | −1 | 1 |
11 | 110 | 1.4 | 50 | −1 | 0 | 1 |
12 | 170 | 0.9 | 30 | 1 | −1 | 0 |
13 | 110 | 0.9 | 30 | −1 | −1 | 0 |
14 | 140 | 1.4 | 30 | 0 | 0 | 0 |
15 | 170 | 1.4 | 10 | 1 | 0 | −1 |
Process/Optimization Parameters | Lower Limit | Upper Limit | Goals |
---|---|---|---|
A: Temperature [°C] | 110 | 170 | is in range |
B: Raw material fraction size [mm] | 0.9 | 1.9 | is in range |
C: Process time [min] | 10 | 50 | is in range |
Total polyphenols [mg(GAE)/100 g (dry mass)] | maximize | ||
Total flavonoids [mg(QE)/100 g (dry mass)] | maximize | ||
Antioxidant activity (DPPH) [10−6 MTE/1 g (dry mass)] | maximize | ||
Antioxidant activity (FRAP) [10−6 MTE/1 g (dry mass)] | maximize |
Set | Factor 1 A: Temperature [°C] | Factor 2 B: Fraction Size [mm] | Factor 3 C: Process Time [min] | Extract (Dry Mass) [g] | Extraction Yield (Dry Mass) [%] |
---|---|---|---|---|---|
1 | 110 | 1.4 | 10 | 1.533 | 16.8 |
2 | 140 | 1.4 | 30 | 1.947 | 21.4 |
3 | 170 | 1.4 | 50 | 2.907 | 31.8 |
4 | 170 | 1.9 | 30 | 1.979 | 21.7 |
5 | 140 | 0.9 | 10 | 1.605 | 17.6 |
6 | 140 | 1.9 | 10 | 1.791 | 19.7 |
7 | 140 | 1.9 | 50 | 1.906 | 20.9 |
8 | 110 | 1.9 | 30 | 2.406 | 26.4 |
9 | 140 | 1.4 | 30 | 2.786 | 30.4 |
10 | 140 | 0.9 | 50 | 1.574 | 17.3 |
11 | 110 | 1.4 | 50 | 2.687 | 29.5 |
12 | 170 | 0.9 | 30 | 1.391 | 15.3 |
13 | 110 | 0.9 | 30 | 1.891 | 20.7 |
14 | 140 | 1.4 | 30 | 1.523 | 16.7 |
15 | 170 | 1.4 | 10 | 1.960 | 21.5 |
Set | Response 1 TPC 1 mg(GAE)/100 g (Dry Mass) | Response 2 Flavonoids Content mg(QE)/100 g (Dry Mass) | Response 3 Antioxidant Activity (DPPH 2) 10−6 MTE/1 g (Dry Mass) | Response 4 Antioxidant Activity (FRAP 3) 10−6 MTE/1 g (Dry Mass) |
---|---|---|---|---|
1 | 171.541 | 77.528 | 16.888 | 20.48 |
2 | 178.222 | 80.142 | 17.252 | 21.39 |
3 | 128.304 | 28.042 | 11.479 | 17.86 |
4 | 143.484 | 34.470 | 12.407 | 16.87 |
5 | 192.141 | 88.333 | 21.298 | 29.69 |
6 | 175.907 | 80.600 | 18.444 | 24.66 |
7 | 158.031 | 63.568 | 17.252 | 21.39 |
8 | 164.791 | 71.959 | 16.184 | 18.64 |
9 | 170.720 | 79.908 | 17.499 | 26.77 |
10 | 180.000 | 74.832 | 16.881 | 20.75 |
11 | 174.976 | 77.351 | 17.136 | 22.10 |
12 | 162.455 | 48.381 | 14.548 | 22.95 |
13 | 166.858 | 79.350 | 16.298 | 19.96 |
14 | 172.055 | 73.850 | 15.645 | 18.69 |
15 | 153.127 | 52.602 | 13.328 | 19.91 |
Sum of Squares | df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|
Model | 2891.73 | 4 | 722.93 | 12.53 | 0.0007 | significant |
A—Temperature | 1030.49 | 1 | 1030.49 | 17.86 | 0.0018 | |
B—Fraction size | 438.69 | 1 | 438.69 | 7.60 | 0.0202 | |
C—Process time | 330.31 | 1 | 330.31 | 5.73 | 0.0378 | |
A2—Temperature2 | 1092.25 | 1 | 1092.25 | 18.93 | 0.0014 | |
Residual | 576.85 | 10 | 57.68 | |||
Lack of Fit | 544.81 | 8 | 68.10 | 4.25 | 0.2043 | not significant |
Pure Error | 32.03 | 2 | 16.02 | |||
Cor Total | 3468.58 | 14 | ||||
Std. Dev. = 7.60; Mean = 166.17; C.V. % = 4.57, R2 = 0.8337; Adjusted R2 = 0.7672; Predicted R2 = 0.5864; Adeq Precision = 11.3318 |
Sum of Squares | df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|
Model | 4571.42 | 5 | 914.28 | 162.42 | <0.0001 | significant |
A—Temperature | 2545.16 | 1 | 2545.16 | 452.14 | <0.0001 | |
B—Fraction size | 203.00 | 1 | 203.00 | 36.06 | 0.0002 | |
C—Process time | 381.85 | 1 | 381.85 | 67.83 | <0.0001 | |
AC | 148.63 | 1 | 148.63 | 26.40 | 0.0006 | |
A2—Temperature2 | 1292.78 | 1 | 1292.78 | 229.66 | <0.0001 | |
Residual | 50.66 | 9 | 5.63 | |||
Lack of Fit | 25.21 | 7 | 3.60 | 0.2831 | 0.9130 | not significant |
Pure Error | 25.45 | 2 | 12.72 | |||
Cor Total | 4622.09 | 14 | ||||
Std. Dev. = 2.37; Mean = 67.39; C.V. % = 3.52; R2 = 0.9890; Adjusted R2 = 0.9829; Predicted R2 = 0.9744; Adeq Precision = 40.9157 |
Sum of Squares | df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|
Model | 60.09 | 2 | 30.05 | 14.66 | 0.0006 | significant |
A—Temperature | 27.17 | 1 | 27.17 | 13.25 | 0.0034 | |
A2 | 32.92 | 1 | 32.92 | 16.06 | 0.0017 | |
Residual | 24.60 | 12 | 2.05 | |||
Lack of Fit | 22.57 | 10 | 2.26 | 2.23 | 0.3494 | not significant |
Pure Error | 2.03 | 2 | 1.01 | |||
Cor Total | 84.70 | 14 | ||||
Std. Dev. = 1.43; Mean = 16.17; C.V. % = 8.86; R2 = 0.7095; Adjusted R2 = 0.6611; Predicted R2 = 0.5762; Adeq Precision = 7.5156. |
Sum of Squares | df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|
Model | 45.42 | 1 | 45.42 | 4.96 | 0.0443 | significant |
A2—Temperature2 | 45.42 | 1 | 45.42 | 4.96 | 0.0443 | |
Residual | 119.15 | 13 | 9.17 | |||
Lack of Fit | 85.31 | 11 | 7.76 | 0.4584 | 0.8408 | not significant |
Pure Error | 33.84 | 2 | 16.92 | |||
Cor Total | 164.58 | 14 | ||||
Std. Dev. = 3.03; Mean = 21.47; C.V. % = 14.10; R2 = 0.2760; Adjusted R2 = 0.2203; Predicted R2 = 0.0244; Adeq Precision = 3.1552. |
Optimization Parameter | Maximum Obtained Value | Process Temperature [°C] | Raw Material Fraction Size [mm] | Process Time (Duration) [min] |
---|---|---|---|---|
Total polyphenols content [mg(GAE)/100 g (dry mass)] | 192.1 | 131.6 | 0.9 | 10 |
Total flavonoids content [mg(QE)/100 g (dry mass)] | 88.3 | 131.6 | 0.9 | 10 |
Antioxidant activity (DPPH) [10−6 MTE/1 g (dry mass)] | 21.3 | 131.6 | 0.9 | 10 |
Antioxidant activity (FRAP) [10−6 MTE/1 g (dry mass)] | 29.7 | 134.7 * | 0.9 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiński, P.; Tyśkiewicz, K.; Fekner, Z.; Gruba, M.; Kobus, Z. The Influence of Subcritical Water Extraction Parameters on the Chemical Composition and Antioxidant Activity of Walnut (Juglans regia L.) Bark Extracts. Appl. Sci. 2022, 12, 12490. https://doi.org/10.3390/app122312490
Kamiński P, Tyśkiewicz K, Fekner Z, Gruba M, Kobus Z. The Influence of Subcritical Water Extraction Parameters on the Chemical Composition and Antioxidant Activity of Walnut (Juglans regia L.) Bark Extracts. Applied Sciences. 2022; 12(23):12490. https://doi.org/10.3390/app122312490
Chicago/Turabian StyleKamiński, Piotr, Katarzyna Tyśkiewicz, Zygmunt Fekner, Marcin Gruba, and Zbigniew Kobus. 2022. "The Influence of Subcritical Water Extraction Parameters on the Chemical Composition and Antioxidant Activity of Walnut (Juglans regia L.) Bark Extracts" Applied Sciences 12, no. 23: 12490. https://doi.org/10.3390/app122312490
APA StyleKamiński, P., Tyśkiewicz, K., Fekner, Z., Gruba, M., & Kobus, Z. (2022). The Influence of Subcritical Water Extraction Parameters on the Chemical Composition and Antioxidant Activity of Walnut (Juglans regia L.) Bark Extracts. Applied Sciences, 12(23), 12490. https://doi.org/10.3390/app122312490