Enhanced Photocatalytic Performance of Bi2O2CO3 Loaded Activated Carbon for Toluene Removal in Air
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Bi2O2CO3
2.3. Synthesis of BOC/AC Composites
2.4. Characterization
2.5. Photocatalytic Activity Test
2.5.1. Photocatalytic Activity Test of Bi2O2CO3
2.5.2. Photocatalytic Activity of BOC/AC Composites
3. Results and Discussion
3.1. Characterization and Properties of Bi2O2CO3
3.2. Characterization and Propertiesof BOC/AC Composites
3.2.1. Microstructure Analysis
3.2.2. Structure and Composition Analysis
3.2.3. Photocatalytic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salthammer, T.; Uhde, E. (Eds.) Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation; WILEY-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Adan, O.C.G.; Samson, C.R. Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living; Wageningen Academic Publishers: Utrecht, The Netherlands, 2011. [Google Scholar]
- Abadi, M.B.H.; Shirkhanloo, H.; Rakhtshah, J. Air pollution control: The evaluation of TerphApm@MWCNTs as a novel heterogeneous sorbent for benzene removal from air by solid phase gas extraction. Arab. J. Chem. 2020, 13, 1741–1751. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Fang, J.; Zou, W.; Dong, L.; Cao, C.; Zhang, J.; Li, Y.; Wang, H. Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). Chemosphere 2019, 218, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wei, W.; Wu, S.; Zhang, F.; Cheng, H. Efficient dichloromethane and toluene removal via lignin derived oxygen and nitrogen-containing activated carbons with well-developed micro-mesopore structure. Diam. Relat. Mater. 2022, 124, 108922. [Google Scholar] [CrossRef]
- Saqlain, S.; Zhao, S.; Kim, S.Y.; Kim, Y.D. Enhanced removal efficiency of toluene over activated carbon under visible light. J. Hazard. Mater. 2021, 418, 126317. [Google Scholar] [CrossRef]
- Kim, K.D.; Park, E.J.; Seo, H.O.; Jeong, M.G.; Kim, Y.D.; Lim, D.C. Effect of thin hydrophobic films for toluene adsorption and desorption behavior on activated carbon fiber under dry and humid conditions. Chem. Eng. J. 2012, 200, 133–139. [Google Scholar] [CrossRef]
- Baur, G.B.; Beswick, O.; Spring, J.; Yuranov, I.; Kiwi-Minsker, L. Activated carbon fibers for efficient VOC removal from diluted streams: The role of surface functionalities. Adsorption 2015, 21, 255–264. [Google Scholar] [CrossRef]
- Baytar, O.; Ahin, O.S.; Horoz, S.; Kutluay, S. High-performance gas-phase adsorption of benzene and toluene on activated carbon: Response surface optimization, reusability, equilibrium, kinetic, and competitive adsorption studies. Environ. Sci. Pollut. Res. 2020, 27, 26191–26210. [Google Scholar] [CrossRef] [PubMed]
- Kutluay, S.; Baytar, O.; Ahin, O.S. Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from Elaeagnus angustifolia seeds. J. Environ. Chem. Eng. 2019, 7, 102947. [Google Scholar] [CrossRef]
- Zhang, G.; Lei, B.; Chen, S.; Xie, H.; Zhou, G. Activated carbon adsorbents with micro-mesoporous structure derived from waste biomass by stepwise activation for toluene removal from air. J. Environ. Chem. Eng. 2021, 9, 105387. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, H.; Gong, L.; Jiang, L.; Lin, D.; Yang, K. New insights into hierarchical pore size and level of concentration in efficient removal of toluene vapor by activated carbon. Sci. Total Environ. 2022, 853, 158719. [Google Scholar] [CrossRef]
- Lei, B.; Liu, B.; Zhang, H.; Yan, L.; Xie, H.; Zhou, G. CuO-modified activated carbon for the improvement of toluene removal in air. J. Environ. Sci. 2020, 88, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Velasco, L.F.; Fonseca, I.M.; Parra, J.B.; Lima, J.C.; Ania, C.O. Photochemical behaviour of activated carbons under UV irradiation. Carbon 2012, 50, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Velo-Gala, I.; Lopez-Peñalver, J.J.; Sanchez-Polo, M.; Rivera-Utrilla, J. Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal. B-Environ. 2013, 142, 694–704. [Google Scholar] [CrossRef]
- Velasco, L.F.; Gomis-Berenguer, A.; Lima, J.C.; Ania, C.O. Tuning the surface chemistry of nanoporous carbons for enhanced nanoconfined photochemical activity. ChemCatchem 2015, 7, 3012–3019. [Google Scholar] [CrossRef] [Green Version]
- Velo-Gala, I.; L’opez-Pe˜nalver, J.J.; S’anchez-Polo, M.; Rivera-Utrilla, J. Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation. Appl. Catal. B-Environ. 2017, 207, 412–423. [Google Scholar] [CrossRef]
- Velasco, L.F.; Maurino, V.; Laurenti, E.; Fonseca, I.M.; Lima, J.C.; Ania, C.O. Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Appl. Catal. A-Gen. 2013, 452, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhao, Z.; Li, J.; Liu, H.; Liu, M.; Zhang, Y.; Su, L.; Pérez-Jiménez, A.I.; Guo, Y.; Yang, F.; et al. Mechanically Induced Highly Efficient Hydrogen Evolution from Water over Piezoelectric SnSe nanosheets. Small 2022, 18, 2202507. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Liu, M.; Liu, X.; Huang, W.; Sun, S.; Jiang, Y.; Liu, Y.; Zhang, J.; Zhang, Z. Remarkably enhanced photocatalytic performance of Au/AgNbO3heterostructures by coupling piezotronics with plasmonic effects. Nano Energy 2022, 95, 107031. [Google Scholar] [CrossRef]
- Taylor, P.; Sunder, S.; Lopata, V.J. Structure, spectra, and stability of solid bismuth carbonates. Can. J. Chem. 1984, 62, 2863–2873. [Google Scholar] [CrossRef]
- Chen, R.; So, M.H.; Yang, J.; Deng, F.; Che, C.-M.; Sun, H. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate. Chem. Commun. 2006, 21, 2265–2267. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, S.; Xu, B.; Xu, Y.; Cao, K.; Jin, Z.; Ohno, T. A facile approach to build Bi2O2CO3/PCNnanohybridphoto catalysts for gaseous acetaldehyde efficient removal. Catal. Today 2018, 315, 184–193. [Google Scholar] [CrossRef]
- Madhusudan, P.; Ran, J.; Zhang, J.; Yu, J.; Liu, G. Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity. Appl. Catal. B-Environ. 2011, 110, 286–295. [Google Scholar] [CrossRef]
- Fan, H.; Zhou, H.; Li, H.; Liu, X.; Ren, C.; Wang, F.; Li, W. Novel Ag2CrO4/Bi2O2CO3 heterojunction: Simple preparation, wide visible light absorption band and excellent photocatalytic activity. Chem. Phys. 2019, 517, 60–66. [Google Scholar] [CrossRef]
- Bai, P.; Tong, X.; Wan, J.; Gao, Y.; Xue, S. Flower-like Bi2O2CO3-mediated selective oxidative coupling processes of amines under visible light irradiation. J. Catal. 2019, 374, 257–265. [Google Scholar] [CrossRef]
- Ding, J.; Wang, H.; Luo, Y.; Xu, Y.; Liu, J.; Lin, Y. Oriented Bi2O2CO3 Nanosheets with Enhanced Photocatalytic Performance for Toluene Removal in Air. Catalysts 2020, 10, 389. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Wang, H.; Luo, Y.; Xu, Y.; Liu, J.; Gao, Y.; Lin, Y. Carbon Quantum Dots Modified(002) Oriented Bi2O2CO3 Composites with Enhanced Photocatalytic Removal of Toluene in Air. Nanomaterials 2020, 10, 1795. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Wang, J.; Dong, F.; Chu, P.K.; Zhang, T.; Zhang, Y. Anionic Group Self-Doping as a Promising Strategy: Band-Gap Engineering and Multi-Functional Applications of High-Performance CO32–-Doped Bi2O2CO3. ACS Catal. 2015, 5, 4094–4103. [Google Scholar] [CrossRef]
- Ding, J.; Wang, H.; Xu, H.; Qiao, L.; Luo, Y.; Lin, Y.; Nan, C. Synthesis and broadband spectra photocatalytic properties of Bi2O2(CO3)1−xSx. Materials 2018, 11, 791. [Google Scholar] [CrossRef] [Green Version]
- Muthirulan, P.; Devi, C.N.; Sundaram, M.M. Synchronous role of coupled adsorption and photocatalytic degradation on CAC–TiO2 composite generating excellent mineralization of alizarin cyanine green dye in aqueous solution. Arab. J. Chem. 2017, 10, 1477–1483. [Google Scholar] [CrossRef] [Green Version]
- Alalm, M.G.; Tawfik, A.; Ookawara, S. Enhancement of photocatalytic activity ofTiO2 by immobilization on activated carbon for degradation of pharmaceuticals. J. Environ. Chem. Eng. 2016, 4, 1929–1937. [Google Scholar] [CrossRef]
- Elizalde-Gonz´alez, M.P.; García-Díaz, E.; Sabinas-Hern’andez, S.A. Novel preparation of carbon-TiO2composites. J. Hazard. Mater. 2013, 263, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Sun, J.; Xie, Z.; Liang, M.; Chen, S. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process. J. Hazard. Mater. 2010, 177, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, X.; Zhao, Q.; Zhang, Q.; Tadé, M.; Liu, S.F. Abrication of α-Fe2O3/In2O3 composite hollow microspheres: A novel hybrid photocatalyst for toluene degradation under visible light. J. Colloid Interface Sci. 2015, 457, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Darlington, A.B.; Dat, J.F.; Dixon, M.A. The Biofiltration of Indoor Air: Air Flux and Temperature Influences the Removal of Toluene, Ethylbenzene, and Xylene. Environ. Sci. Technol. 2001, 35, 240–246. [Google Scholar] [CrossRef]
- Durme, J.V.; Dewulf, J.; Demeestere, K.; Leys, C.; Langenhove, H.V. Post-plasma catalytic technology for the removal of toluene from indoor air: Effect of humidity. Appl. Catal. B-Environ. 2009, 87, 78–83. [Google Scholar] [CrossRef]
- Durme, J.V.; Dewulf, J.; Sysmans, W.; Leys, C.; Langenhove, H.V. A batement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 2007, 68, 1821–1829. [Google Scholar] [CrossRef]
- Hennezel, O.; Pichat, P.; Ollis, D.F. Benzene and toluene gas-phase photocatalytic degradation over H2Oand HCL pretreated TiO2: By-products and mechanisms. J. Photochem. Photobiol. A-Chem. 1998, 118, 197–204. [Google Scholar] [CrossRef]
AC | BOC/AC_50 | BOC/AC_100 | BOC/AC_150 | BOC/AC_200 | |
---|---|---|---|---|---|
Surface area (m2/g) | 953.8 | 931.8 | 955.3 | 951.2 | 851.4 |
Single point adsorption total pore volume (cm3/g) | 0.34 | 0.33 | 0.36 | 0.34 | 0.32 |
Average pore diameter (4V/A by BET) (nm) | 1.44 | 1.43 | 1.52 | 1.45 | 1.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, L.; Li, C.; Xiao, Y.; Gao, Y.; Liu, Y.; Lin, Y.; Ding, J. Enhanced Photocatalytic Performance of Bi2O2CO3 Loaded Activated Carbon for Toluene Removal in Air. Appl. Sci. 2022, 12, 12500. https://doi.org/10.3390/app122312500
Wang X, Chen L, Li C, Xiao Y, Gao Y, Liu Y, Lin Y, Ding J. Enhanced Photocatalytic Performance of Bi2O2CO3 Loaded Activated Carbon for Toluene Removal in Air. Applied Sciences. 2022; 12(23):12500. https://doi.org/10.3390/app122312500
Chicago/Turabian StyleWang, Xiaoyan, Lu Chen, Changfu Li, Yongchao Xiao, Yuchen Gao, Yaochun Liu, Yuanhua Lin, and Junping Ding. 2022. "Enhanced Photocatalytic Performance of Bi2O2CO3 Loaded Activated Carbon for Toluene Removal in Air" Applied Sciences 12, no. 23: 12500. https://doi.org/10.3390/app122312500
APA StyleWang, X., Chen, L., Li, C., Xiao, Y., Gao, Y., Liu, Y., Lin, Y., & Ding, J. (2022). Enhanced Photocatalytic Performance of Bi2O2CO3 Loaded Activated Carbon for Toluene Removal in Air. Applied Sciences, 12(23), 12500. https://doi.org/10.3390/app122312500