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Abstract: The extraction of quantitative medical imaging features, or radiomics, has been an expo-
nentially growing research field in recent decades. Nonetheless, more studies are investigating the
limitations of the quantitative imaging features, especially the reproducibility of RFs across different
scanning settings. In this experiment, we investigate the reproducibility of renal cell carcinoma (RCC)
RFs between the non-contrast, arterial, and late phases contrast-enhanced computed tomography (CE-
CT) scans; and the ability of ComBat technique to harmonize these RFs. In addition, we assessed the
predictive performance of the RFs extracted from the different phases. A total of 69 CECT scans with
the three different phases were analyzed. Original RFs were extracted from the segmented lesions on
each phase using Pyradiomics toolbox. The agreement in RF values before and after harmonization
was evaluated with the concordance correlation coefficient (CCC). Our results show that most RFs
are not reproducible across different imaging phases. In addition, ComBat harmonization did not
significantly increase the number of reproducible RFs in any of the three scenarios. Furthermore, RFs
extracted from the arterial phase were, on average, the most predictive of overall survival in RCC
patients. The findings can guide the analysis of retrospective RCC heterogeneous data acquired in
different phases and add to the call for radiomics-specific harmonization techniques.

Keywords: handcrafted radiomics; feature harmonization; RCC

1. Introduction

With the advancement of imaging technologies and computing powers within re-
cent decades, an opportunity for mining medical images for additional information us-
ing quantitative image analysis has arisen. Radiomics—“the high throughput extraction
of quantitative features from medical images that are further correlated with biologic
information”—was introduced as a result [1]. To date, research into the potential applica-
tions of quantitative medical image analysis using radiomic features (RFs).

The basis in radiomics analyses is that using quantitative imaging features or RFs could
result in extracting additional information to that perceived by human experts. The extracted
RFs can then be used for statistical analyses and machine learning modeling [2–4]. A signifi-
cant number of studies reported on the predictive ability of RFs to decrypt information on
computed tomography (CT) [5–7], magnetic resonance (MR) [8–11], and positron emission
tomography (PET) scans [12–14]. Clinical implementation of radiomics tools has the benefits
of being a minimally invasive, rapid, and highly reproducible tool that can characterize the en-
tirety of the lesion in comparison to the current clinical standard of care, such as tissue biopsy.
However, radiomics analyses must be methodologically sound to ensure the generalizability
of the developed radiomic signatures.

Radiomics analyses generally aim to devise the RFs as clinical biomarkers, which
requires that the RFs are both predictive and reproducible [15]. With the advancement of
the field, the limitations of RFs have been increasingly researched. Several studies have
studied the effects of variations in some imaging parameters on phantom and human
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data [16–23]. These studies reported that significant percentages of RFs are sensitive to
the variations in imaging hardware and parameters used for scanning. Other studies
reported on the effects of inter-observer variability on the reproducibility of RFs and
reported variable results depending on the type of lesions investigated and the number
and experience of observers participating in the study [24–27]. Most importantly, the
lists of reproducible RFs differed based on the site and the scanning settings used for
acquiring the data for the analysis. This indicates the need for more thorough analyses of
the reproducibility of RFs before performing radiomics modeling.

The incidence of Renal cell carcinoma (RCC), which currently constitutes 2% of the
global cancer burden, is expected to rise, especially in the developed world [28]. Around
90% of RCCs are found incidentally on abdominal scans obtained for other diagnostic
reasons, and only 10% of the cases present with symptoms [29,30]. Clinically, A number
of approaches are used for the diagnosis and treatment of RCC patients that are tailored
based on the staging of the disease. Nonetheless, advanced non-invasive diagnostic and
prognostic clinical tools remain unmet clinical needs.

Numerous studies investigated the possibility of developing clinical decision support
tools using radiomic signatures in renal carcinomas, e.g., the differentiation between benign
and malignant renal lesions [7,31,32], and the prediction of overall survival [33–35]. How-
ever, the limitations of radiomics, as mentioned earlier, hinder incorporating these models
in clinical practice. Understanding the impacts of different imaging parameters on RFs is
currently the most crucial objective in the field since the majority of imaging datasets are
collected retrospectively and most frequently contain scans that were acquired differently.

ComBat harmonization is a data-driven harmonization method that was established
as a tool to remove different batch effects on gene expression arrays [36]. Because of its
successful application in genomics, ComBat has been explored in some studies to har-
monize RFs extracted from scans acquired differently [12,37–40]. A number of previous
studies investigated the ability of ComBat harmonization to remove the effects of different
batches on the values of RFs on various phantom datasets on patient data [16–18,41]. Other
studies investigated the change in the predictive ability of RFs following ComBat harmo-
nization [37–39,41]. Nonetheless, the reported effects of ComBat harmonization on RFs
varied across different studies, with no consensus on how to apply it in radiomics analysis.

This study investigates the reproducibility of RFs extracted from renal lesions seg-
mented on three different contrast enhancement phases (non-contrast, arterial and late
phases). In addition, we assess the agreement in renal lesions’ RF values across the non-
contrast, arterial, and late phase scans following the application of ComBat harmonization.
The aim is to examine and ultimately guide the ability to combine scans acquired in dif-
ferent imaging phases in radiomics analyses. Furthermore, we investigate the differences
in the ability to predict overall survival using RFs extracted from the different imaging
phases, which could help identify the preferential imaging phase for predicting outcomes
of renal lesions.

2. Materials and Methods
2.1. Imaging Data

In this study, we analyzed the publicly available imaging dataset (Kidney and Kidney
Tumors Segmentation Challenge 2019-KiTS) on the cancer imaging archive (TCIA.org) [42,43].
Imaging CT data for 210 patients were available. Of these 210 patients, 69 had the scans for
three imaging phases available. These patients were used for the analyses in this manuscript.
The patients were scanned in different medical centers using different imaging parameters
and vendors (Table 1). The segmentations of target lesions were provided on TCIA.

TCIA.org
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Table 1. Imaging hardware and parameters of the data included.

Vendor Number of Scans Convolution Kernels Slice Thickness (mm) Pixel Spacing (mm2)

GE 12 Standard 1.25–5.0 0.69 × 0.69–0.86 × 0.86
Philips 2 B 3, 4 0.68 × 0.68–0.97 × 0.97

Siemens 54 B20f, B30f, B30s, B31f, B31s,
B41f, I26f, I30f, I40f, I41f, I44f 1–7 0.55 × 0.55–0.98 × 0.98

Toshiba 1 FC18 2 0.74 × 0.74

2.2. Radiomic Features Extraction

Before feature extraction, we matched the regions of interest (ROIs) on the non-contrast,
arterial, and late phase scans. RFs were extracted from these ROIs using Pyradiomics
Toolbox (version 3.0.1, https://pyradiomics.readthedocs.io/en/latest/, last accessed on
16 October 2022). The majority of Pyradiomics RFs are defined based on theImaging
Biomarkers Standardization Initiative (IBSI) guidelines [44]. A binwidth of 25 Hounsfield
Units (HUs) was defined to bin the image intensities to lessen the degree of noise and
the sizes of the texture matrices used for calculating the RFs, as well as the computation
power needed. The original images were used for feature extraction. A description of RFs
calculated using Pyradiomics can be found at (https://pyradiomics.readthedocs.io/en/la
test/features.html, last accessed on 16 October 2022).

2.3. ComBat Harmonization

ComBat method is a statistical harmonization tool that employs empirical Bayesian
models to approximate the variations in RF values attributed to the variations in batches
ofgiven data. For a given RF, ComBat assumes that the equation can approximate its value:

Yij = α + β Xij + γi + δiεij (1)

α represents the average RF value for the ROI j on batch i; X depicts a design matrix of the
biologic covariates; β is the vector of regression coefficients of the biologic covariate; γi is
the additive impact of batch i on the given RF, δi is the multiplicative scanner impact, and
εij represents a normally distributed with zero mean error term. Following the calculation
of the ComBat coefficients, the harmonized RF value is obtained by the formula:

YijComBat = ((Yij − α̂ − β̂Xij − γi∗))/(δi∗) + α + β̂Xij (2)

where α̂ and β̂ equal the impacts calculated in Formula (1) for α and β, respectively; and
γi* and δi* qual the empirical Bayes estimates for the additive and multiplicative batch
impacts γi and δi, respectively.

2.4. Statistical Analyses

Statistical analyses were performed using R language [45] on RStudio (V 3.6.3) [46]. To
assess the impacts of the variation in the contrast enhancement phase of the CECT scans on
the values of renal lesions’ RFs, the concordance correlation coefficient (CCC) was used [47].
The CCC is a measurement of agreement in the value and rank of paired readings, with a
CCC > 0.90 considered a good agreement. Pairwise CCC values were calculated across the
three phases, resulting in 3 different scenarios. Reproducible RFs were defined as the RFs
with CCC > 0.9 in a given scenario.

To assess the ability of ComBat to remove batch effects attributed to the variation
in the CECT phase, shape and RFs with (near) zero variance were removed. The batch
defined for ComBat harmonization formula was the phase of the CECT scans. ComBat has
also been performed in a pairwise manner. RFs with CCC values higher than 0.90 were
considered reproducible following ComBat harmonization. The statistical significance of
the difference in the number of reproducible RFs before and after ComBat harmonization
was assessed using McNemar’s test [48]. p-values below 0.05 were considered significant.

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/features.html
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To assess the difference in the ability of RFs to predict overall survival in RCC patients
based on the CECT phase used to extract the RFs, patients who were not followed up
were removed. The remaining patients were split randomly into 80% training and 20%
validation sets. RFs with high correlations, as defined per Spearman’s correlation (R > 0.85),
were removed from the training RFs set [49]. Univariate feature selection was applied by
modeling Cox regression models using each of the remaining uncorrelated RFs [50]. Cox
regression is used to establish whether a set of variables, or in our case RFs, are predictive
of a particular time event. RFs with a p-value < 0.05 were considered essential and were
further input as the predictors in the final Cox regression model. If no RF was found to
have a p-value < 0.05, the 3 RFs with the least p-values were selected to construct the final
cox regression model. The final Cox regression model was then tested on the validation
dataset. The concordance index (C-index) was used to assess the predictive performance
of the final model on the validation dataset [51]. The C-index estimates how well a model
differentiates between two survival distributions ranging from 0 to 1, with higher values
indicating better predictivity. The process was repeated 1000 times to avoid obtaining a
significant result by chance, and the performance per imaging phase was averaged over all
the repeats. Kruskal–Wallis test was used to assess the difference in the distribution of the
C-index values obtained on the 1000 repeats for each imaging phase [52].

3. Results
3.1. Patient Characteristics

The patients included (N = 69) had a median age of 61 years, 65 (94.2%) of the 69
patients had a malignant lesion, and 41 (59.4%) patients were male. The majority of
investigated lesions were RCC, with different pathologic stages (Table 2).

Table 2. Patient characteristics.

Characteristic N = 69

Gender, male (%) 41 (59.4%)
Age (years), median (range) 61 (27–90)

Malignancy, yes (%) 65 (94.2%)
Pathology

Oncocytoma (benign) 3 (4.3%)
Angiomyolipoma (benign) 1 (1.4%)

Renal cell carcinoma 65 (94.2%)
Median survival time (months) (interquartile ranges) 32.3 (18.8, 47.3)

Censored patients (Total N = 56) (%) 52 (92.9%)

3.2. Extracted RFs

From each of the available ROIs, 107 original RFs were extracted with the Pyradiomics
toolbox. The number of RFs per the different groups were as follows: First order (n = 18),
Gray Level Co-occurrence Matrix (GLCM; n = 24), Gray Level Run Length Matrix (GLRLM;
n = 16), Gray Level Size Zone Matrix (GLSZM, n = 16), Gray Level Dependence Matrix
(GLDM; n = 14), Neighbouring Gray Tone Difference Matrix (NGTDM, n = 5), and Shape
(n = 14).

3.3. The Reproducibility of RFs across the CECT Phases

The reproducibility of RFs was assessed pairwise. Of the 107 extracted RFs, 15 (14.0%)
were reproducible across the non-contrast enhanced and arterial phases. These RFs included
all the shape RFs (n = 14) and a single first-order feature (total energy) (Figure 1). The CCC
values for the remaining RFs ranged between −0.03 and 0.85, with a median of 0.26.
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Figure 1. CCC values for RFs across the different imaging phases before harmonization.

Across the non-contrast enhanced and late phase scans, 24 (22.4%) RFs were repro-
ducible. In this scenario, all shape, two first order (total energy and energy), 2 GLDM
(gray level non-uniformity and dependence non-uniformity), 2 GLRLM (gray level non-
uniformity and run length non-uniformity), 3 GLSZM (gray level non-uniformity, size zone
non-uniformity, and large area high gray level emphasis), and 1 NGTDM (Coarseness)
features were found to be reproducible. The rest of the RFs had CCC values within the
range of 0.0–0.87, with a median of 0.26.
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Lastly, 15 (14.0%) RFs were found to be reproducible across the arterial and late phase
scans. Again, all the shape and one first order (total energy) RFs had CCC values of more
than 0.90. The remaining RFs had CCC values ranging between 0.0 and 0.78, with a median
of 0.34.

3.4. ComBat Harmonization Using the CECT Phase

When the batches used for Combat harmonization were “non-contrast” and “arterial”,
the number of reproducible RFs remained at 14 (13.1%), which was not significantly
different (p-value = 1.0) (Figure 2).

Appl. Sci. 2022, 12, 12599 7 of 12 
 

 

Figure 2. CCC values for RFs across the different imaging phases after ComBat harmonization. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

VoxelVolume

SurfaceArea

MinorAxisLength

Maximum3DDiameter

Maximum2DDiameterRow

MajorAxisLength

Flatness

Strength

Complexity

Busyness

ZonePercentage

SmallAreaLowGrayLevelEmphasis

SmallAreaEmphasis

SizeZoneNonUniformity

LargeAreaLowGrayLevelEmphasis

LargeAreaEmphasis

GrayLevelVariance

GrayLevelNonUniformity

ShortRunHighGrayLevelEmphasis

RunVariance

RunLengthNonUniformityNormalized

RunEntropy

LongRunLowGrayLevelEmphasis

LongRunEmphasis

GrayLevelVariance

GrayLevelNonUniformity

SmallDependenceHighGrayLevelEmphasis

LowGrayLevelEmphasis

LargeDependenceHighGrayLevelEmphasis

HighGrayLevelEmphasis

GrayLevelNonUniformity

DependenceNonUniformityNormalized

DependenceEntropy

SumEntropy

MCC

JointEntropy

JointAverage

Imc2

Idn

Idm

DifferenceVariance

DifferenceAverage

Contrast

ClusterShade

Autocorrelation

Uniformity

Skewness

RobustMeanAbsoluteDeviation

Minimum

MeanAbsoluteDeviation

Maximum

InterquartileRange

Energy

10Percentile

CCC

1-NCE vs. Art

2-NCE vs. Late

3-Art vs. Late

Figure 2. CCC values for RFs across the different imaging phases after ComBat harmonization.
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When the batches for ComBat formula were “non-contrast” and “late” phases, the
same number of RFs had CCC > 0.90 (24 (22.4%); p-value = 1.0). Similarly, the number of
RFs with CCC > 0.90 across the “arterial” and “late” phases increased by a single RF, which
was not statistically significant (from 15 (14%) to 16 (15%); p-value = 1.0).

3.5. The Predictivity of Different CECT Phases-Based RFs

For this experiment, 56 patients who were followed up were used in the analysis,
as described in Section 3.1. RFs extracted from each imaging phase were used to predict
overall survival in these patients a thousand times independently.

Over the 1000 repeats, a different number of successful repetitions were achieved
for each imaging phase. The C-index values ranged between (0.08–1.00), (0.05–1.00), and
(0.07–1.00) for the non-contrast, arterial and late scans RFs, respectively (Figure 3). On
average, predictions based on RFs extracted from the arterial phase scans (average C-index
of 0.59) and the non-contrast enhanced phase (average C-index of 0.56) were found to be
significantly higher than those obtained using the late phase (average C-index of 0.47), with
p-values < 2 × 10−16. There was no significant difference in the distribution of the C-index
values obtained based on RFs extracted from the non-contrast enhanced and arterial phases
(p-value = 0.36).
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4. Discussion

The experiments performed in this study were designed to investigate the reproducibil-
ity of renal lesions’ RFs across the different CECT phases when the remaining scanning
parameters were kept similar. The experiments were further intended to examine the ability
of ComBat harmonization method to remove the variations in renal lesions’ RF values
across the different phases of CECT scans. Differences in the CECT phase used to extract
the RFs affected their reproducibility significantly. Aside from the first order total energy
and shape features, all RFs were significantly impacted between the arterial phase RFs and
the non and late phase RFs. Since the same mask was used to extract the RFs from the
different imaging phases, the shape features were used as a control, indicating that a single
feature is independent of the shape of the ROI.

Nevertheless, some texture features (8, 7.5%) were found to be reproducible between
the non-contrast enhanced phase and late phase RFs. These findings indicate that scans
from different phases must be analyzed separately. Our results are in line with previous
studies that investigated the reproducibility of RFs across different phases [19,20]. In
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addition, ComBat harmonization technique has not statistically significantly increased the
agreement in the values of RFs across the CECT phases. A single (1%) RF was found to
be reproducible following ComBat harmonization across the arterial and late phase scans
compared to before harmonization. The number of reproducible RFs has not changed in
the remaining investigated scenarios. These results also align with previous studies that
reported on the use of ComBat harmonization in radiomics [16–19,41].

Despite having all the other imaging parameters fixed across the different phases,
the variation in the imaging phase significantly impacted almost all of the RFs. This is
expected because of the nature of the renal lesions, their enhancement characteristics,
and the differential regional enhancement of the kidneys across the different imaging
phases. Yet, in the comparison between the non-contrast enhanced and late phases, some
texture RFs remained reproducible, which could also be attributed to the similarity in
lesion enhancement across those phases (or the lack thereof). In contrast, a previous
study investigating the reproducibility of hepatocellular carcinoma-based RFs between
the arterial and portal venous CECT phases reported a slightly higher percentage of
reproducible RFs [19]. The variations in the rate of RFs between the study and our results
could be attributed to several factors: (i) The difference in the anatomic nature of the lesions
investigated; (ii) The previous study analyzed arterial and portal venous scans, which
are taken at shorter time intervals following contrast injection compared to the phases
analyzed in this study; (iii) The differences in imaging parameters across the patients were
less compared to our data. Similar to the HCC study, our results signify the need for careful
curation of the imaging datasets before performing radiomics analyses. Most publicly
available datasets were collected retrospectively and included scans of different phases, as
is the case with the data analyzed in this study. Careful curation of the imaging dataset
is needed to ensure that RF values are meaningful and reproducible across the different
imaging parameters to develop robust and generalizable radiomic signatures.

Some possibilities could justify the lack of statistically significant increments in the
number of reproducible RFs across the CECT phases: (i) ComBat harmonization was de-
signed for variables that were calculated in the same manner (gene arrays), in contrast to the
RFs, which have different definitions and levels of complexity; (ii) ComBat harmonization
assumes that the effect of the batch is the same on all of the RFs to be harmonized [36].
However, our results and previous studies showed that different RFs are variably influ-
enced by the variation in the CECT phase used to extract the RFs, as could be seen from
the range of CCC values obtained; (iii) The dataset includes scans collected with different
hardware and settings, which could also confound the effects of imaging phase on the RFs
and the calculations of ComBat estimates. The lack of significant improvement despite
using ComBat harmonization was also previously reported [17–19]. Our results add to the
current evidence on the limited reproducibility of RFs across different scanning settings
and strengthen the call for harmonization tools designed explicitly for the RFs.

The other principal aim investigated in this study was to assess the impact of the
imaging phase on the predictivity of RFs. For this aim, we investigated the ability to
predict overall survival in RCC patients. Interestingly, there was no statistically significant
difference between the non-contrast phase and arterial phase RF’s predictive performances,
while both significantly outperformed the predictions based on the late phase RFs. Repeat-
ing the analysis one thousand times ensured that we achieved a distribution representing
the actual predictive ability [41]. Performing the analysis a single time could show one of
the extreme end performances and would not represent the actual predictive performance.
It also allows the identification of robust RFs in a given dataset. Predictions based on
different imaging phase RFs were not similar, which indicates the inability to substitute
imaging phases within a single radiomics study. RFs extracted from the arterial phase seem
to have the highest predictive ability of overall survival in RCC lesions.

While meticulous and comprehensive statistical methods were used in this study,
several limitations remain. The number of available scans, especially for the survival
analysis, was limited, which limits the generalizability of the findings. In addition, the
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patients were scanned in different medical centers using different imaging vendors and
parameters, which could significantly affect the predictive performance of RFs. However,
since the three phases for each patient were acquired using the same imaging parameters,
the differences in the predictive performance across the different phases could be assumed
robust. Future studies are recommended to include a more significant number of patients,
with the addition of inter-scanner reproducibility analyses to assess the predictive ability of
RFs in RCC patients accurately.

5. Conclusions

Most RFs were not found to be reproducible across the non-contrast, arterial and late
venous imaging phases of CE-CT scans. Experiments that include retrospectively collected
CE-CT datasets must ensure careful curation before performing radiomics analyses. RFs
extracted from the arterial phase scans are the most predictive of overall survival in RCC
patients. Radiomics-specific harmonization tools are required to advance the quantitative
medical imaging analysis field.
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