Sicard, D.; Briois, P.; Billard, A.; Thevenot, J.; Boichut, E.; Chapellier, J.; Bernard, F.
Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization. Appl. Sci. 2022, 12, 12606.
https://doi.org/10.3390/app122412606
AMA Style
Sicard D, Briois P, Billard A, Thevenot J, Boichut E, Chapellier J, Bernard F.
Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization. Applied Sciences. 2022; 12(24):12606.
https://doi.org/10.3390/app122412606
Chicago/Turabian Style
Sicard, Damien, Pascal Briois, Alain Billard, Jérôme Thevenot, Eric Boichut, Julien Chapellier, and Frédéric Bernard.
2022. "Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization" Applied Sciences 12, no. 24: 12606.
https://doi.org/10.3390/app122412606
APA Style
Sicard, D., Briois, P., Billard, A., Thevenot, J., Boichut, E., Chapellier, J., & Bernard, F.
(2022). Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization. Applied Sciences, 12(24), 12606.
https://doi.org/10.3390/app122412606