Practice Promotes Learning: Analyzing Students’ Acceptance of a Learning-by-Doing Online Programming Learning Tool
Abstract
:1. Introduction
2. Theoretical Background
3. Research Methodology
3.1. The Study Context
3.2. Research Model and Hypothesis Development
3.3. Procedure for Data Collection
3.4. Sample
3.5. Data Filtering Software and Techniques
4. Results
4.1. Variance of the Endogenous Variable: R2 and Indicator Loadings
4.2. Indicator Reliability
4.3. Convergent and Discriminant Validity
4.4. Hypothesis Testing
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodyear, P.; Retalis, S. Technology-Enhanced Learning; Sense Publishers: Rotterdam, The Netherlands, 2010; Volume 6. [Google Scholar]
- Appana, S. A review of benefits and limitations of online learning in the context of the student, the instructor and the tenured faculty. Int. J. E-Learn. 2008, 7, 5–22. [Google Scholar]
- Rapanta, C.; Botturi, L.; Goodyear, P.; Guàrdia, L.; Koole, M. Online university teaching during and after the Covid-19 crisis: Refocusing teacher presence and learning activity. Postdigit. Sci. Educ. 2020, 2, 923–945. [Google Scholar] [CrossRef]
- Verawardina, U.; Asnur, L.; Lubis, A.L.; Hendriyani, Y.; Ramadhani, D.; Dewi, I.P.; Darni, R.; Betri, T.J.; Susanti, W.; Sriwahyuni, T. Reviewing online learning facing the COVID-19 outbreak. Talent. Dev. Excell. 2020, 12, 385–392. [Google Scholar]
- Rostaminezhad, M.A.; Mozayani, N.; Norozi, D.; Iziy, M. Factors Related to E-learner Dropout: Case Study of IUST Elearning Center. Procedia Soc. Behav. Sci. 2013, 83, 522–527. [Google Scholar] [CrossRef] [Green Version]
- Williams, M. John Dewey in the 21st Century. J. Inq. Action Educ. 2017, 9, 91–102. [Google Scholar]
- Reese, H.W. The learning-by-doing principle. Behav. Dev. Bull. 2011, 17, 1. [Google Scholar] [CrossRef]
- Niiranen, S.; Rissanen, T. Learning by Doing and Creating Things with Hands: Supporting Students in Craft and Technology Education. PATT Proc. 2017, 34, 150–155. Available online: https://www.iteea.org/File.aspx?id=115739&v=21dfd7a (accessed on 4 December 2022).
- Kanakana-Katumba, M.G.; Maladzhi, R. Online Learning Approaches for Science, Engineering and Technology in Distance Education. In Proceedings of the 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Macao, China, 15–18 December 2019; pp. 930–934. [Google Scholar]
- Frache, G. A Constructively aligned Learning-by-Doing Pedagogical Model for 21st Century Education. Adv. Sci. Technol. Eng. Syst. J. 2017, 3, 1119–1124. [Google Scholar]
- Hettiarachchi, E.; Huertas, M.A. Introducing a Formative E-Assessment System to Improve Online Learning Experience and Performance. J. Univers. Comput. Sci. 2015, 21, 1001–1021. [Google Scholar]
- Olasina, G. Human and social factors affecting the decision of students to accept e-learning. Interact. Learn. Environ. 2019, 27, 363–376. [Google Scholar] [CrossRef]
- Fathema, N.; Shannon, D.; Ross, M. Expanding the Technology Acceptance Model (TAM) to examine faculty use of Learning Management Systems (LMSs) in higher education institutions. J. Online Learn. Teach. 2015, 11. Available online: https://jolt.merlot.org/Vol11no2/Fathema_0615.pdf (accessed on 4 December 2022).
- Persada, S.F.; Miraja, B.A.; Nadlifatin, R. Understanding the Generation Z Behavior on D-Learning: A Unified Theory of Acceptance and Use of Technology (UTAUT) Approach. Int. J. Emerg. Technol. Learn. 2019, 14, 20–33. [Google Scholar] [CrossRef]
- Dindar, M.; Suorsa, A.; Hermes, J.; Karppinen, P.; Näykki, P. Comparing technology acceptance of K-12 teachers with and without prior experience of learning management systems: A Covid-19 pandemic study. J. Comput. Assist. Learn. 2021, 37, 1553–1565. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Calder, B.J.; Brendl, C.M.; Tybout, A.M.; Sternthal, B. Distinguishing constructs from variables in designing research. J. Consum. Psychol. 2021, 31, 188–208. [Google Scholar] [CrossRef]
- Xie, X.; Siau, K.; Nah, F.F.-H. COVID-19 pandemic–online education in the new normal and the next normal. J. Inf. Technol. Case Appl. Res. 2020, 22, 175–187. [Google Scholar] [CrossRef]
- Arghode, V.; Brieger, E.W.; McLean, G.N. Adult learning theories: Implications for online instruction. Eur. J. Train. Dev. 2017, 41, 593–609. [Google Scholar] [CrossRef]
- Hill, J.R.; Song, L.; West, R.E. Social learning theory and web-based learning environments: A review of research and discussion of implications. Am. J. Distance Educ. 2009, 23, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Boyer, N.R.; Maher, P.A.; Kirkman, S. Transformative Learning in Online Settings: The Use of Self-Direction, Metacognition, and Collaborative Learning. J. Transform. Educ. 2006, 4, 335–361. [Google Scholar] [CrossRef]
- Pllana, D. Creativity in Modern Education. World J. Educ. 2019, 9, 136–140. [Google Scholar] [CrossRef]
- Zhang, G.X.; Sheese, R. 100 years of John Dewey and education in China. J. Gilded Age Progress. Era 2017, 16, 400. [Google Scholar] [CrossRef]
- Gutiérrez-Carreón, G.; Daradoumis, T.; Jorba, J. Integrating learning services in the cloud: An approach that benefits both systems and learning. Educ. Technol. Soc. 2015, 18, 145–157. [Google Scholar]
- Bot, L.; Gossiaux, P.-B.; Rauch, C.-P.; Tabiou, S. ‘Learning by doing’: A teaching method for active learning in scientific graduate education. Eur. J. Eng. Educ. 2005, 30, 105–119. [Google Scholar] [CrossRef]
- Ekici, D.I. The Use of Edmodo in Creating an Online Learning Community of Practice for Learning to Teach Science. Malays. Online J. Educ. Sci. 2017, 5, 91–106. [Google Scholar]
- Samani, M.; Putra, B.A.W.; Rahmadian, R.; Rohman, J.N. Learning Strategy to Develop Critical Thinking, Creativity, and Problem-Solving Skills for Vocational School Students. J. Pendidik. Teknol. Dan Kejuru. 2019, 25, 36–42. [Google Scholar] [CrossRef]
- Bareiss, R.; Griss, M. A story-centered, learn-by-doing approach to software engineering education. In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education, Portland, OR, USA, 12–15 March 2008; pp. 221–225. [Google Scholar]
- Nantsou, T.; Frache, G.; Kapotis, E.C.; Nistazakis, H.E.; Tombras, G.S. Learning-by-Doing as an Educational Method of Conducting Experiments in Electronic Physics. In Proceedings of the 2020 IEEE Global Engineering Education Conference (EDUCON), Porto, Portugal, 27–30 April 2020; pp. 236–241. [Google Scholar] [CrossRef]
- Sangpikul, A. Challenging graduate students through experiential learning projects: The case of a marketing course in Thailand. J. Teach. Travel Tour. 2020, 20, 59–73. [Google Scholar] [CrossRef]
- George, M.; Lim, H.; Lucas, S.; Meadows, R. Learning by doing: Experiential learning in criminal justice. J. Crim. Justice Educ. 2015, 26, 471–492. [Google Scholar] [CrossRef]
- Niiranen, S. Supporting the development of students’ technological understanding in craft and technology education via the learning-by-doing approach. Int. J. Technol. Des. Educ. 2021, 31, 81–93. [Google Scholar] [CrossRef]
- Adkins, D.; Bossaller, J.; Brendler, B.; Buchanan, S.; Sandy, H.M. Learning by Doing: Using Field Experience to Promote Online Students’ Diversity Engagement and Professional Development. Expand. LIS Educ. Universe 2018, 17, 123–127. Available online: http://hdl.handle.net/2142/99018 (accessed on 4 December 2022).
- Gunawan, G.; Harjono, A.; Sahidu, H.; Herayanti, L. Virtual laboratory to improve students’ problem-solving skills on electricity concept. J. Pendidik. IPA Indones. 2017, 6, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Hasibuan, A.M.; Saragih, S.; Amry, Z. Development of Learning Materials Based on Realistic Mathematics Education to Improve Problem Solving Ability and Student Learning Independence. Int. Electron. J. Math. Educ. 2019, 14, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hettiarachchi, E. Technology-Enhanced Assessment for Skill and Knowledge Acquisition in Online Education; Universitat Oberta de Catalunya: Barcelona, Spain, 2014. [Google Scholar]
- Sim, T.Y.; Lau, S.L. Online Tools to Support Novice Programming: A Systematic Review. In Proceedings of the 2018 IEEE Conference on e-Learning, e-Management and e-Services (IC3e), Langkawi, Malaysia, 21–22 November 2018; pp. 91–96. [Google Scholar]
- Salleh, S.M.; Shukur, Z.; Judi, H.M. Analysis of Research in Programming Teaching Tools: An Initial Review. Procedia-Soc. Behav. Sci. 2013, 103, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Rossano, V.; Roselli, T.; Quercia, G. Coding and Computational Thinking: Using Arduino to Acquire Problem-Solving Skills. In Technology Supported Innovations in School Education; Springer: Cham, Switzerland, 2020; pp. 91–114. [Google Scholar] [CrossRef]
- Hosseini, R.; Akhuseyinoglu, K.; Brusilovsky, P.; Malmi, L.; Pollari-Malmi, K.; Schunn, C.; Sirkiä, T. Improving Engagement in Program Construction Examples for Learning Python Programming. Int. J. Artif. Intell. Educ. 2020, 30, 299–336. [Google Scholar] [CrossRef]
- de Andrade, B.; Poplin, A.; de Sena, Í.S. Minecraft as a Tool for Engaging Children in Urban Planning: A Case Study in Tirol Town, Brazil. ISPRS Int. J. Geo-Inf. 2020, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Syntax, J. 2012. Available online: https://www.w3schools.com/js/js_json_syntax.asp (accessed on 4 December 2022).
- Code.org. Available online: https://code.org/ (accessed on 4 December 2022).
- Code Academy. Available online: https://www.codecademy.com/catalog (accessed on 4 December 2022).
- Williams, M.D.; Rana, N.P.; Dwivedi, Y.K. The unified theory of acceptance and use of technology (UTAUT): A literature review. J. Enterp. Inf. Manag. 2015, 28, 443–488. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Hale, J.L.; Householder, B.J.; Greene, K.L. The theory of reasoned action. Persuas. Handb. Dev. Theory Pract. 2002, 14, 259–286. [Google Scholar]
- Tolman, E.C. A cognition motivation model. Psychol. Rev. 1952, 59, 389. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Unified theory of acceptance and use of technology: A synthesis and the road ahead. J. Assoc. Inf. Syst. 2016, 17, 328–376. [Google Scholar] [CrossRef]
- Altalhi, M.M. Towards understanding the students’ acceptance of MOOCs: A unified theory of acceptance and use of technology (UTAUT). Int. J. Emerg. Technol. Learn. (IJET) 2021, 16, 237–253. [Google Scholar] [CrossRef]
- Guggemos, J.; Seufert, S.; Sonderegger, S. Humanoid robots in higher education: Evaluating the acceptance of Pepper in the context of an academic writing course using the UTAUT. Br. J. Educ. Technol. 2020, 51, 1864–1883. [Google Scholar] [CrossRef]
- Khechine, H.; Raymond, B.; Augier, M. The adoption of a social learning system: Intrinsic value in the UTAUT model. Br. J. Educ. Technol. 2020, 51, 2306–2325. [Google Scholar] [CrossRef]
- Ma, M.; Chen, J.; Zheng, P.; Wu, Y. Factors affecting EFL teachers’ affordance transfer of ICT resources in China. Interact. Learn. Environ. 2019, 27, 1–16. [Google Scholar] [CrossRef]
- Veiga, F.J.M.; de Andrade, A.M.V. Critical success factors in accepting technology in the classroom. Int. J. Emerg. Technol. Learn. 2021, 16, 4–22. [Google Scholar] [CrossRef]
- Morais, E.; Morais, C.; Paiva, J.C. Computer Programming Acceptance by Students in Higher Arts and Design Education. In Proceedings of the ICERI2018, Seville, Spain, 12–14 November 2018; pp. 2058–2065. [Google Scholar]
- Garcia-Lopez, C.; Mor, E.; Tesconi, S. Code. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2021; pp. 437–455. [Google Scholar]
- Hevner, A.; Chatterjee, S. Design science research in information systems. In Design Research in Information Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 9–22. [Google Scholar]
- Rahmi, B.; Birgoren, B.; Aktepe, A. A meta analysis of factors affecting perceived usefulness and perceived ease of use in the adoption of e-learning systems. Turk. Online J. Distance Educ. 2018, 19, 4–42. [Google Scholar]
- Wrycza, S.; Marcinkowski, B.; Gajda, D. The enriched UTAUT model for the acceptance of software engineering tools in academic education. Inf. Syst. Manag. 2017, 34, 38–49. [Google Scholar] [CrossRef]
- Casey, T.; Wilson-Evered, E. Predicting uptake of technology innovations in online family dispute resolution services: An application and extension of the UTAUT. Comput. Hum. Behav. 2012, 28, 2034–2045. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Alamri, M.M.; Al-Rahmi, W. Applying the UTAUT model to explain the students’ acceptance of mobile learning system in higher education. IEEE Access 2019, 7, 174673–174686. [Google Scholar] [CrossRef]
- Han, J.; Conti, D. The use of UTAUT and post acceptance models to investigate the attitude towards a telepresence robot in an educational setting. Robotics 2020, 9, 34. [Google Scholar] [CrossRef]
- Kahn, P.; Everington, L.; Kelm, K.; Reid, L.; Watkins, F. Understanding student engagement in online learning environments: The role of reflexivity. Educ. Technol. Res. Dev. 2017, 65, 203–218. [Google Scholar] [CrossRef]
- Mandernach, B.J. Assessment of student engagement in higher education: A synthesis of literature and assessment tools. Int. J. Learn. Teach. Educ. Res. 2015, 12, 1–14. [Google Scholar]
- Qualtrics. Available online: https://www.qualtrics.com/ (accessed on 4 December 2022).
- Latan, H.; Noonan, R.; Matthews, L. Partial least squares path modeling. In Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Haenlein, M.; Kaplan, A.M. A Beginner’s Guide to Partial Least Squares Analysis. Underst. Stat. 2004, 3, 283–297. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Henseler, J. Consistent partial least squares path modeling. MIS Q. 2015, 39, 297–316. [Google Scholar] [CrossRef]
- Hock, M.; Ringle, C.M. Local strategic networks in the software industry: An empirical analysis of the value continuum. Int. J. Knowl. Manag. Stud. 2010, 4, 132–151. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R. Multivariate Data Analysis Uppersaddle River; Pearson Prentice Hall: Hoboken, NJ, USA, 2006. [Google Scholar]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics; Sage Publications Sage CA: Los Angeles, CA, USA, 1981. [Google Scholar]
Variables | Indicators | Loadings | Indicator Reliability | Composite Reliability | AVE | rho_A |
---|---|---|---|---|---|---|
PE | PE_1 | 0.889 | 0.790 | 0.964 | 0.899 | 0.964 |
PE_2 | 0.930 | 0.865 | ||||
PE_3 | 1.021 | 1.042 | ||||
EE | EE_1 | 0.677 | 0.458 | 0.759 | 0.517 | 0.777 |
EE_2 | 0.671 | 0.450 | ||||
EE_3 | 0.843 | 0.711 | ||||
SI | SI_1 | 1.041 | 1.083 | 0.935 | 0.829 | 0.954 |
SI_2 | 0.910 | 0.828 | ||||
SI_3 | 0.795 | 0.632 | ||||
FCs | FC_1 | 0.791 | 0.625 | 0.872 | 0.694 | 0.873 |
FC_2 | 0.869 | 0.755 | ||||
FC_3 | 0.836 | 0.698 | ||||
TC | T_1 | 0.867 | 0.751 | 0.889 | 0.728 | 0.891 |
T_2 | 0.884 | 0.781 | ||||
T_3 | 0.807 | 0.651 | ||||
M | M_1 | 1.067 | 1.138 | 0.893 | 0.813 | 0.966 |
M_2 | 0.698 | 0.487 | ||||
BI | BI_1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
EE | FC | BI | M | PE | SI | TC | |
---|---|---|---|---|---|---|---|
EE | 0.179 | ||||||
FC | 0.788 | 0.833 | |||||
BI | 0.592 | 0.528 | 1.000 | ||||
M | 0.738 | 0.641 | 0.586 | 0.901 | |||
PE | 0.695 | 0.633 | 0.453 | 0.812 | 0.948 | ||
SI | 0.582 | 0.491 | 0.390 | 0.627 | 0.648 | 0.911 | |
TC | 0.840 | 0.776 | 0.558 | 0.836 | 0.771 | 0.648 | 0.853 |
Path | t-Statistics | p-Values |
---|---|---|
EE-BI | 1.243 | 0.107 |
FC-BI | 1.000 | 0.159 |
M-FC | 6.965 | 0.000 |
M-BI | 1.715 | 0.043 |
PE-BI | 0.593 | 0.277 |
SI-BI | 0.121 | 0.452 |
TC-EE | 12.616 | 0.000 |
T-BI | 0.176 | 0.430 |
TC-SI | 8.247 | 0.000 |
Statement | Measurement Model (Preliminary Significance) | Structural Model (Statistical Significance) | |
---|---|---|---|
H1 | Performance expectancy (PE) | Reject (negative relationship) | Reject |
H2 | Effort expectancy (EE) | Accept | Reject |
H3 | Facilitating conditions (FCs) | Accept | Reject |
H4 | Social influence (SI) | Reject | Reject |
H5 | Trust in CodeLab (TC) | Reject (negative relationship) | Reject |
H5.a | TC, EE, and SI | Accept | Accept |
H6 | Motivation | Accept | Accept |
H6.a | M and FCs | Accept | Accept |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iftikhar, S.; Guerrero-Roldán, A.-E.; Mor, E. Practice Promotes Learning: Analyzing Students’ Acceptance of a Learning-by-Doing Online Programming Learning Tool. Appl. Sci. 2022, 12, 12613. https://doi.org/10.3390/app122412613
Iftikhar S, Guerrero-Roldán A-E, Mor E. Practice Promotes Learning: Analyzing Students’ Acceptance of a Learning-by-Doing Online Programming Learning Tool. Applied Sciences. 2022; 12(24):12613. https://doi.org/10.3390/app122412613
Chicago/Turabian StyleIftikhar, Sidra, Ana-Elena Guerrero-Roldán, and Enric Mor. 2022. "Practice Promotes Learning: Analyzing Students’ Acceptance of a Learning-by-Doing Online Programming Learning Tool" Applied Sciences 12, no. 24: 12613. https://doi.org/10.3390/app122412613
APA StyleIftikhar, S., Guerrero-Roldán, A. -E., & Mor, E. (2022). Practice Promotes Learning: Analyzing Students’ Acceptance of a Learning-by-Doing Online Programming Learning Tool. Applied Sciences, 12(24), 12613. https://doi.org/10.3390/app122412613