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Abstract: Shoulder lines can best depict the morphological characteristics of the Loess Plateau. More-
over, a shoulder line depicts the external appearance of spatial differentiation of loess landforms and
the internal mechanism of loess landform evolution. The efficient and accurate extraction of shoulder
lines can help to deepen the re-understanding of the morphological structure and differentiation of
loess landforms. However, the problem of shoulder line continuity in the extraction process has not
been effectively solved. Therefore, based on high-resolution satellite images and digital elevation
model (DEM) data, this study introduced the regional growing algorithm to further correct edge
detection results, thereby achieving complementary advantages and improving the accuracy and
continuity of shoulder line extraction. First, based on satellite images, the edge detection method
was used to extract the original shoulder lines. Subsequently, by introducing the regional growing
algorithm, the peaks and the outlet point extracted with the DEM were used as the growth points
of the positive and negative (P-N) terrains to grow in four-neighborhood fields until they reached
a P-N terrain boundary or a slope threshold. Finally, the P-N terrains extracted by the regional
growing method were used to correct the edge detection results, and the “burr” was removed using
a morphological image-processing method to obtain the shoulder lines. The experimental results
showed that the method proposed in this paper can accurately and effectively complete the extraction
of shoulder lines. Furthermore, the applicability of this method is better and opens new ideas for
quantitative research on loess landforms.

Keywords: satellite images; shoulder line; edge detection; regional growing algorithm; positive and
negative (P-N) terrain

1. Introduction

One of the most significant recent discussions has been the study of spatial differentia-
tion in the Loess Plateau [1–5]. Shoulder lines are the topographic structural lines that best
depict loess landform characteristics. The shape, grade, spatial distribution, development
trend, and other characteristics of shoulder lines reflect the regional variations in loess
landforms, as shown in Figure 1. However, due to the complexity of the Loess Plateau,
the effective extraction of shoulder lines is influenced by a variety of factors, such as the
accuracy of the source data, the local discontinuity of the lines, and the applicability of the
method [6–10]. Consequently, a more efficient and accurate shoulder line extraction method
is still needed. The traditional method of extracting shoulder lines is to use the contour
lines of topographic maps or aerial images to directly delineate them [11–15]. Although the
precision is excellent, the efficiency of this method is low, and the workload is heavy.
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Figure 1. An illustration of shoulder line of the Loess Plateau.

In recent years, with the support of RS and GIS technologies, the characteristic terrain
elements in a landform can be automatically extracted and analyzed, and the extraction of
shoulder lines has become one of the hot spots for study [16–21]. Researchers have studied
the automatic extraction of shoulder lines. The extraction methods can be classified into
three types: The first method is the geometric morphological method. Terrain parameters,
such as slope, slope aspect, and curvature, are used for regular judgment to obtain shoulder
lines based on the given rule of shoulder lines in the geometric form. For example, Evans
used DEM data as the basis for extracting shoulder lines by combining areas of low differ-
ence between mean elevation and high positive plan curvature [22]. Lei obtained shoulder
lines by comparing the slopes of upstream and downstream grids on the same slopes [23].
Xiao proposed a method for extracting shoulder lines based on slope aspect orientation
according to the slope-turning characteristics of loess landforms [24]. This method is sim-
pler, faster, and easier to implement compared with the traditional approach. However, the
actual effect obtained is not ideal. The second method is the hydro-geomorphologic method.
The constraint and drawing of shoulder lines are achieved as a result of the interaction
between the hydrological process and the landform and are based on the principle of a flow
analysis of the terrain surface. For example, Lv applied a surface-flow digital simulation
method and a contour vertical-line-tracking method to achieve shoulder line extraction
based on the principle of a terrain surface flow analysis [25]. Liu used water flow paths for
distributed water flow computation to extract shoulder lines [26]. Yang used the direction
of confluence to determine the streamline of a slope and drew a shoulder line based on the
inflection point of the streamline [27]. The shoulder lines obtained by this method have a
certain geological significance compared with the geometric morphological method, and
the problem of shoulder line continuity is overcome to a certain extent. However, the
digital simulation of surface water is influenced by several factors, including water flow
direction and catchment threshold, which increase the uncertainty of a slope’s flow path,
making judging points on a characteristic shoulder line difficult, lacking in precision, and
necessitating substantial calculations. The third method is based on an image-processing
method. The edge detection method achieves the purpose of detecting sudden edge change
by comparing the changing characteristics in the image brightness value and detecting
the sudden change point of the image brightness. For example, Vrieling used the super-
vised classification approach for the maximum likelihood classifier to classify gullies and
non-gullies [28]. Yan used image binarization and various edge detection operators to
extract shoulder lines [29]. Wang extracted a shoulder line by combining the P-N opening
of the terrain and the threshold segmentation of a difference image [30]. Compared to the
previous two methods, edge detection operators can quickly and effectively extract such
changing features, and some operators can even extract weak mutation features to better
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reflect details; this provides a method for indistinct shoulder line extraction. However, the
shoulder lines extracted with edge detection methods tend to be less closed, and the line
segments are fragmented and do not match the actual shoulder lines. In conclusion, the
above methods share the same problem in that they require a means to effectively balance
continuity and accuracy. Drawing on the advantages of the good applicability of the edge
detection method, finding ways to further improve the integrity of shoulder lines is an
urgent problem to be solved. The regional growing algorithm, a fundamental feature in
image segmentation research, can produce continuous, closed regions with relatively little
domain information [31,32]. The regional growing method has advantages for solving the
continuity problem of shoulder lines based on DEM data [33]. However, the resolution of
DEM data has a great influence on the extraction results, and it is difficult to obtain high-
precision DEM data, especially in large areas. Hence, a shoulder line extraction method
that combines the edge detection method and regional growing algorithm is proposed here
to comprehensively improve the continuity and accuracy of shoulder lines. Based on high-
resolution satellite images, this study uses the advantages of edge detection in highlighting
details to complete the extraction of an original shoulder line. At the same time, based
on DEM data, the regional growing algorithm is used to realize the determination of P-N
terrain, to overcome the discontinuities of the original shoulder line, and to complete the
accurate extraction of the shoulder line.

2. Materials and Methods
2.1. Study Areas

The study area is one of the key national governance regions for soil and water
conservation and is located in Yijun and Luochuan counties, Shaanxi Province, China, with
latitudes between 35◦25′ N and 34◦42′ N and longitudes between 109◦20′ E and 109◦37′ E,
as shown in Figure 2. The topography of this place is the Loess Plateau. In this area, the
elevation ranges from 85 m to 3719 m. The watershed unit is usually used as the basic
landform analysis unit due to its relative internal homogeneity; hence, in this study, the
extraction of shoulder lines was also presented with small watersheds as the sample area.

Figure 2. Location of the study area: (a,b) location of Loess Plateau; (c,c1–c4) hillshade map of the
study area.
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2.2. Data

In this study, high-resolution satellite images were used to produce higher-density
spectral and textural information. Imagery of 3 m resolution downloaded from Planet Explorer
(https://www.planet.com/explorer/, (accessed on 1 September 2021)) was used. The image
data were mainly captured between June and September 2021. During this period, the images
had less cloud content, and crops were harvested on the land surface; therefore, the boundaries
of objects with loess morphologies were more obvious, which aided image edge detection and
shoulder line extraction. The Advanced Land-Observing Satellite (ALOS) Digital Elevation
Model with a spatial resolution of 12.5 m was used to calculate the peak point and outlet point
of the sample area. The DEM data were downloaded from the National Aeronautics and Space
Administration (NASA, https://search.asf.alaska.edu/#/, (accessed on 1 October 2016)). The
horizontal and vertical accuracies of the elevation data could reach 12.5 m. These were the
most accurate data from open-source DEM data. More details on the data are shown in Table 1.

Table 1. Details of data used in this study.

Data Name Type Resolution Data Resource

Satellite images Raster 3 m https://www.planet.com/explorer/ (accessed on 1 September 2021)
DEM Raster 12.5 m https://search.asf.alaska.edu/#/ (accessed on 1 October 2016)

Vector boundaries data Vector — 1:250,000 national basic geographic database

2.3. Edge Detection

In image-processing technology, commonly used edge detection operators include
the Roberts operator, Sobel operator, Prewitt operator, Laplace operator [34], and Canny
operator [35]. These operators have different edge detection capabilities for images with
different characteristics. In an image, shallow gullies appear as linear features with weak
feature information. The Canny operator has the characteristics of good anti-interference
ability and accurate positioning and can effectively identify and locate edges on slope
data. Compared with other edge detection operators, the Canny operator can seek the best
solutions for anti-noise solutions and precise positioning. Therefore, this study selected
the Canny operator to complete detection of the experimental sample area. To make the
shoulder line features more obvious and to avoid image noise interference, the images
needed to be preprocessed.

2.3.1. Image Grayscale

Performing grayscale operations on images can reduce the amount of computation
needed. The maximum value of three image components is taken as the result of image
grayscale processing, as shown in Formula (1):

Gray(i, j) = max[R(i, j), G(i, j), B(i, j)] (1)

where Gray(i, j) represents the gray value of an image, and R(i, j), G(i, j), B(i, j) represent
the three components of the image.

2.3.2. Binary Image

A target image has a large difference in gray value from its background image, and it
is partitioned according to the gray value. The gray value of a target image is marked as 0,
and the gray value of a background image is marked as 1. If F(x, y) is the gray value of a
pixel in the image, the transformation function of the gray threshold Th is as follows:

F(x, y) =
{

1, F(x, y) > Th
0, F(x, y) ≤ Th

(2)

https://www.planet.com/explorer/
https://search.asf.alaska.edu/#/
https://www.planet.com/explorer/
https://search.asf.alaska.edu/#/
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2.3.3. Canny Edge Detection

To perform edge detection on the preprocessed target images, the Canny edge detec-
tion method included the following four steps: The first step was to smooth the image.
We constructed a filter with a Gaussian function, performed convolution filtering on the
images, removed noise, and obtained smooth images. The second step was to calculate
the gradient magnitude and gradient direction of the images. The gradient magnitude and
gradient direction of the smoothed images were calculated by the finite difference in the
first-order partial derivatives. The third step was to perform non-maximum suppression on
the gradient amplitude. To determine the edge, it was necessary to keep the point with the
largest local gradient and to suppress the non-maximum value, that is, we set the non-local
maximum value point to zero in order to obtain a refined edge. If the gradient value of the
neighborhood center point was larger than the value of the two adjacent points along the
gradient direction, the current neighborhood center point was determined as a possible
edge point. Otherwise, it was assigned a value of zero, and the pixel point was judged as
a non-edge point. The fourth step was double threshold detection. After applying non-
maximal suppression, the remaining edge pixels provided a more accurate representation
of the true edges in the images. However, some edge pixels were still caused by noise and
color variations. To account for these spurious responses, edge pixels must be filtered out
with weak gradient values, as well as edge pixels with high gradient values. This was
achieved by choosing high and low thresholds. If the gradient value of an edge pixel was
higher than the high threshold, it was marked as a strong edge pixel. If the gradient value
of an edge pixel was less than the high threshold and greater than the low threshold, it was
marked as a weak edge pixel. If the gradient value of an edge pixel was less than the low
threshold, it was suppressed.

2.4. Regional Growing Algorithm

The regional growing algorithm is a process of merging pixels or sub-regions into a
larger area according to similarity criteria [36]. This algorithm is based on the theory that
regions start with a group of growing points and that the same or similar adjacent pixels
merge into new growing points. This process is continuously repeated until there are no
more points to merge. The three steps are as follows: (1) choosing the appropriate growing
points, (2) determining the similarity criteria, and (3) establishing the stop rules.

2.4.1. Identifying Growing Points for P-N Terrain

Shoulder lines lie on the boundaries of P-N terrain. Accordingly, extracting the P-N
terrain boundary is considered a premise of shoulder line extraction. Positive terrain is an
area that is higher than the adjacent region or that is located in a tectonic uplift region. The
P-N terrain method can be used to classify positive terrain. Errors in the positive terrain can
be classified into two categories, as follows: (1) depressions, where the condition is caused
by artificial modification or slight topographic relief in small regions, and (2) flatland,
where a small difference can be observed between the original elevation and the elevation
after smoothing when using a filter window slide on a nearly flat DEM. Slight elevation
changes can affect the results. This phenomenon is especially evident in the Loess Plateau
area, which means that peaks located in positive terrain must be correctly classified. Hence,
peaks should be chosen as the growing points of positive terrain and should grow until
there are no more points of the same type to merge. The above-mentioned positive terrain
was extracted using the P-N terrain method. The size of the analysis window depended on
the fragmentation of the landform. If the landform had more fragments, then we tended
to choose a smaller analysis window. Negative terrain is an area that is lower than the
adjacent region or an area that is located at a tectonic down-lift region. The test area was a
complete watershed, and the negative terrain was connected. Accordingly, one growing
point for negative terrain was enough. The outlet was the lowest elevation point and was
located in negative terrain. On this basis, the outlet point was chosen as the growing point
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of the negative terrain and grew until there were no more points of the same type to merge.
The above-mentioned negative terrain was extracted using the P-N terrain method.

2.4.2. Growth Criteria

We assumed that the pixel with a gray value of 8 was the initial growth point, as
shown in Figure 1, where the numbers in the figure indicate the gray levels of pixels. The
growing criterion for the four neighborhoods of 8 was that the calculated result should be in
the range between−1 and 1 when the growing point was less than the neighbor point. If no
difference could be found between the adjacent growing results, then the growing process
stopped. Figure 3 illustrates four stages of the regional growing algorithm. Figure 3a
depicts an original image, and the numbers are gray values. Figure 3b–d represents the
growth process.

Figure 3. Illustration of regional growth: (a–d) represent the four steps of the regional growing
algorithm, respectively.

The regional growing algorithm can avoid most misclassification areas. Still, for those
regions that are connected to the correct area, it remains difficult to accurately identify
them. This problem results in the inaccurate position of the shoulder line, and it is serious
in the Loess Plateau area. To improve this concept, this study introduced slope gradient,
and defined the following rules: if the slope gradient of the negative terrain was smaller
than the given threshold and the negative terrain was adjacent to the positive terrain, then
this negative terrain could be considered as positive terrain, as shown in Figure 4. The
threshold of the slope gradient depended on the type of loess landform. This study tested
different thresholds, compared the test results with the manual visual interpretation results,
and chose 7◦ as the final slope threshold.

Figure 4. Slope’s influence on the positive and negative terrain classification results: (a) represents
the classification map of positive and negative terrain; (b) represents the results after slope correction.

2.5. Burr Removal

The resulting shoulder line had some parasitic components in line corners, as shown
in Figure 5. These parasitic components are called burrs. These burrs can lead to uncertain
positions of the shoulder line. When the shoulder line was transformed from a grid to a
vector, this defect became more prominent.

Figure 5. Contrast between before (a) and after (b) burr removal.
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This study used a morphological image-processing method to remove burrs. The basic
principle of this method was that fixed structure elements were used to detect and thin the
endpoint (Equation (3)). Structure elements were used to detect and remove burrs. The
algorithm was as follows: (1) The threshold of endpoint thinning was determined. We
observed the image; if the length of a burr was less than 3 pixels, the threshold was set to
5 pixels to guarantee the reliability of the experimental results. (2) The structure elements
were determined. The diagonal pixels could be ignored because the growing method only
used four neighbor pixels. This study used the structure elements as shown in Figure 6.
In these elements, “×” represents ignored pixels, “1” depicts shoulder line pixels, and “0”
denotes background pixels. In an analysis window, if the image value agreed with any
structure element in Figure 6, then “0” was set as the center pixel value (Equation (4)). The
whole image was scanned using structure elements that could only remove one endpoint
pixel at once. The above operation was repeated five times to ensure that the burrs were
completely removed. The difference between before and after the above-mentioned steps
is shown in Figure 5. (3) The correct end points were recovered. Given that this method
processed all the end points, the correct end points were also removed, as were the burrs.
The next step was to recover the correct end points. Structure elements were used to scan
the whole image and remove the end points again. The burrs were already removed after
the previous five scans. Accordingly, the pixels removed at this time were the correct end
points. Thereafter, we performed four neighbor expansions and obtained the intersection
with the original shoulder line (Equation (5)). The expansion time was the same as the
thinning time. The complete process of this study method is shown in Figure 7.

X1 = A } {B} (3)

where A is the original shoulder line, B is the structure elements, } is the thinning, and
X1 is the thinning result.

X2 =
8
∪

k=1

(
X1 � Bk

)
(4)

where X2 is the end point, Bk (k = 1, 2, 3, 4) are the structure elements, and � is the hit-miss
transformation.

X3 = (X2 ⊕ H) ∩ A (5)

where X3 is the shoulder line, H is a four-neighborhood structure element, A is the original
shoulder line, and ⊕ is the expansion.

Figure 6. Structure elements.
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Figure 7. The complete process of our experiment.

2.6. Accuracy Assessments

To objectively evaluate and verify the superiority of the method in this paper, the
following indicators were used to evaluate the edge detection method, the regional growing
algorithm, and the method in this paper. Class pixel accuracy (CPA) is the percentage of
correct pixels out of all the extracted result pixels; the closer the value is to 100%, the better.
Pixel accuracy (PA) is the percentage of correctly extracted pixels in an image, that is, the
proportion of correctly extracted pixels out of the total pixels; the larger the value, the better.
The dice similarity coefficient (Dice) is a measure of set similarity, indicating the ratio of the
area where two objects intersect the total area; the value range is (0, 1), and the effect is best
when it is 1. Intersection over union (IOU) is the overlapping area between the extraction
results and the real value divided by the joint area between the extraction results and the
real value; the value is between (0, 1), and the larger the value, the better the effect. The
formulas for each indicator are as follows:

CPA =
TP

(TP + FP)
× 100% (6)

PA =
(TP + TN)

(TP + TN + FP + FN)
× 100% (7)

Dice(A, B) =
2|A ∩ B|
|A|+ |B| (8)

IOU =
|A ∩ B|
|A ∪ B| (9)

where A is the method extraction result; B is the manual visual interpretation result;
TP = (A ∩ B) is the method correctly extracting the region; FN = A− (A ∩ B) is the target
area missed by the method; TN = I − A is the real background area; and I is the set of
image pixels.

3. Results
3.1. Parameter Settings

When using edge detection to detect high-precision remote-sensing images, to identify
the edges of gullies more accurately, it was necessary to set appropriate parameters for the
Canny operator function. The Canny function had two parameters: The first parameter
represented the first threshold, and the calculated boundary points were greater than
this threshold to be the real boundary. The second parameter represented the second
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threshold; the calculated boundary points below this threshold were discarded. Based on
the understanding of the terrain features of the study sample area, the parameters were
adjusted, and the final optimal first and second parameters were 50 and 210, respectively,
when using the regional growing algorithm to generate positive and negative terrain based
on DEM data. Based on the comparison of extraction results that used different window
sizes, the window size of 13× 13 was the best size for shoulder line extraction [37]. Positive
and negative terrain growth points were set as peaks and outlet points, respectively.

3.2. Results Analysis

In this study, the Canny operator was used to complete the detection of the gully range
on high-resolution satellite images, and the extraction results were superimposed on the
image data, as shown in Figure 8. Based on the DEM data, the regional growing algorithm
was used to complete the extraction of positive and negative terrain for each sample area.
This study chose peaks and outlets as P-N terrain growing points, respectively. The peak
and outlet points could be detected through neighborhood analysis and the watershed
boundary method. In the process of growing, the same values of pixels were merged until
there were no points to merge. The generated results were also superimposed on hillshade
data, as shown in Figure 9. Overall, compared with high-resolution satellite images and
hillshade data, the extraction results of edge detection and the regional growing algorithm
were better.

Figure 8. The result of extracting Negative terrain by edge detection method. (a–d) represent 4 sam-
ple areas.

Figure 9. The results of extracting P-N terrain using the regional growing algorithm: (a–d) represent
4 sample areas.

To compare the performance of the regional growing and edge detection methods for
the extraction of the shoulder line, the real shoulder line needed to be defined. In this paper,
manual visual interpretation supported by expert knowledge was employed to extract
the real shoulder line. The shoulder line extracted using the manual visual interpretation
method based on high-resolution satellite images was used as the evaluation criterion. The
extraction results of the regional growing and edge detection methods were evaluated
by comparing the negative terrain areas of these two methods with the real shoulder line
results. It can be seen from Table 2 that, for the four sample areas, the regional growing
algorithm was generally better than the edge detection method when the negative terrain
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areas were used as the evaluation indicator. For example, sample area a, the difference
between the results obtained by the regional growing algorithm and the standard results
was within 12 ha, and the error was within 5%; the difference between the results obtained
by the edge detection method and the standard results was within 41 ha, and the error
was within 13%. These results also showed that the results of shoulder line extraction
are credible when studying the characteristic indicators related to area, such as gully
erosion. However, in the details, we can find that there were still differences between the
two methods. The specific analysis was as follows. It can be found from Figure 10 that
the regional growing algorithm was more advantageous in the detailed expression of the
shoulder line, such as the turning point of the shoulder line. However, it can be found from
Figure 11 that, although the edge detection method could reflect more details, the extraction
results were fragmented, resulting in inaccurate positioning of the shoulder line in some
places, and the generated shoulder line was discontinuous. Although DEM data do not
contain more information than high-resolution satellite images, they become an advantage
for the positive and negative terrain generated by the regional growing method. This is
because the core of the regional growing algorithm is the determination of the growing
point. We could accurately find the lowest point (the outlet) and the highest point (the
peak) as the positive and negative topographic growth points based on the DEM data using
the digital terrain analysis method. Furthermore, for shoulder line continuity obtained
through extraction, the regional growing algorithm had more advantages.

Table 2. Comparison of extracted negative terrain area with standard area differences.

Method Indicator Sample Area a Sample Area b Sample Area c Sample Area d

Manual visual interpretation negative terrain area (ha) 320.912 328.762 347.209 197.833

Regional growing algorithm
negative terrain area (ha) 328.624 317.811 334.249 189.325

percent error 2.403% 3.331% 3.733% 4.301%
absolute error 7.712 10.951 12.960 8.508

Edge detection
negative terrain area (ha) 280.713 290.678 317.581 176.741

percent error 12.526% 11.584% 8.533% 10.662%
absolute error 40.199 38.084 29.628 21.092

Figure 10. Results of edge detection compared to the regional growing algorithm: (a–d) represent
4 sample areas; (a1,b1,c1,d1) represent the results of the edge detection method; (a2,b2,c2,d2) repre-
sent the results of the regional growing algorithm.
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Figure 11. Results of the regional growing algorithm compared to edge detection: (a–d) represent
4 sample areas; (a1,b1,c1,d1) represent the results of the edge detection method; (a2,b2,c2,d2) repre-
sent the results of the regional growing algorithm.

By comparing and analyzing the shoulder line obtained by manual visual interpre-
tation of the shoulder line based on high-resolution satellite images shown in Figure 12,
we can see that the shoulder line extracted by edge detection under positive and negative
terrain constraints was closer to the artificial shoulder line. Therefore, the advantages of
edge detection in detail and the advantages of the regional growing algorithm in continuity
were combined. By using the P-N terrain constrained edge detection results obtained by the
regional growing method and removing the burrs, we could finally obtain better detailed
and continuous shoulder line extraction results, as shown in Figure 13.

Figure 12. Comparison of shoulder lines between edge detection, regional growing algorithm, and
manual visual interpretation. (a) represents the results of edge detection method and regional growing
algorithm; (b) represents the results of manual visual interpretation; (c) represents the overlay of
extraction results from different methods.
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Figure 13. Results of improved shoulder line: (a–d) represent 4 sample areas.

3.3. Precision Evaluation

By comparing the CPA, PA, Dice, and IOU values, it can be seen from Table 3 that the
extraction method in this study was better than edge detection and the regional growing
algorithm. For example, in sample area a, the CPA value of the proposed method was
7.1% and 5.6% higher than those of the edge detection method and the regional growing
algorithm, respectively. The largest PA value obtained was for the method proposed in
this study, which was closer to 1, and the effect was better than those of the other methods.
Similarly, both the Dice and IOU values were closer to 1, which was better than the other
methods. Therefore, the reliability and accuracy of the method proposed in this study
were verified.

Table 3. Comparison of accuracy evaluation index values of different algorithms.

Sample Area Method CPA PA Dice IOU

Edge detection 0.814 0.791 0.818 0.734
a Regional growing algorithm 0.829 0.807 0.820 0.813

Method in this study 0.885 0.864 0.877 0.907
Edge detection 0.837 0.797 0.820 0.828

b Regional growing algorithm 0.831 0.845 0.815 0.836
Method in this study 0.897 0.858 0.871 0.891

Edge detection 0.776 0.801 0.843 0.794
c Regional growing algorithm 0.819 0.836 0.833 0.857

Method in this study 0.867 0.917 0.866 0.897
Edge detection 0.801 0.799 0.791 0.747

d Regional growing algorithm 0.811 0.781 0.831 0.811
Method in this study 0.873 0.911 0.859 0.909

4. Discussion
4.1. Comparison of Different Operators

For edge detection operators for different images, there are differences in edge de-
tection. It is the premise of accurate shoulder line extraction to select an operator that
is suitable for the study sample area from among many operators. Therefore, we chose
sample area a to discuss the effects of common operators on the shoulder line extraction
results, and the experimental results are shown in Figure 14. In this study, the line-related
parameters of the shoulder line were used to further compare the detection results of each
edge detection operator. These parameters were mainly used to describe the fineness of
the line segment extracted by the operator. As shown in Table 4, the overall effect of the
line segment extracted by the Canny operator was better than the other operators. We
found that the Prewitt operator and the Sobel operator both performed differential and
filtering operations on the image and only had some differences in the selection of weights
for smoothing. However, the image was blurred to a certain extent, and some edges could
not be detected. Therefore, the detection accuracy was relatively low, and this type of
operator was deemed more suitable for situations where the gray value of an image edge
is relatively obvious. The detection accuracy of the Roberts operator was relatively high,
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but it was easy to lose part of the edge, which made the detection results incomplete.
At the same time, the image was not smoothed, and the noise could not be suppressed;
thus, this operator had the best response to images with steep, low noise. The Laplace
operator smoothed the image through the Gaussian function and had a relatively obvious
effect on noise suppression. However, the original edge could also be smoothed during
processing, resulting in some edges that could not be detected. In addition, the noise had a
great influence on it; the detected image details were very rich, but at the same time, false
edges could appear. If the false edges were reduced, the detection accuracy could also
be reduced; many true edges could be lost, and different parameters should be selected
for different images. The Canny operator was more accurate than the Laplace operator in
detecting edges. Although some edge information could be lost, this operator had the best
effect among the above-mentioned edge detection operators and could identify small edges
more clearly.

Figure 14. (a) represents sample area a; (b–f) represent the extraction results of the Roberts, Prewitt,
Sobel, Laplace, and Canny operators, respectively.

Table 4. Comparison of evaluation index values of different edge detection operators.

Operator Type Number of Lines Maximum Length (m) Total Length (m)

Prewitt 427 12,116 21,033
Sobel 514 6283 23,877

Robert’s 441 9867 23,196
Laplace 154 17,421 22,966
Canny 87 19,308 22,393.8

4.2. Applications and Future Research

The landform types of the Loess Plateau in northern Shaanxi show significant regional
differences, and the dominant factors of landform influence vary for different landform
types. Loess landform types are mainly divided into tableland, ridges, and hills [38–40],
and there were challenges in realizing the fully automatic extraction of the Loess Plateau
shoulder line. For the Loess Plateau, it can be seen from the previous accuracy evaluation
results that the proposed method had good applicability. To further verify the applicability
of this method in extracting shoulder lines, we selected a loess tableland area with an
area of 35,975.531 ha. The results are shown in Figure 15. By superimposing the extracted
results onto high-precision images, it can be seen that the extracted shoulder lines were



Appl. Sci. 2022, 12, 12662 14 of 17

effective and reasonable, which verified that this method had good universality in Loess
tableland area.

Figure 15. Shoulder lines extracted by applying the method proposed in this study.

In loess ridge and hill regions, the terrain was more complex. As shown in Figure 16,
there were many seriously discontinuous shoulder lines due to occasional gravity erosion
factors, such as landslides and scattering. Some areas were also affected by artificial land-
forms, such as terraced fields, dams, etc., resulting in the existence of multilevel shoulder
lines (Figure 16a). At the same time, in loess ridge and hill regions, due to the influence
of vegetation, the slope of the shoulder line’s up- and down-slopes showed little change,
and there were invisible shoulder lines (Figure 16b,c). Even if there is no interference from
vegetation, in autumn and winter the continuity and visibility of shoulder lines are poor
due to the impact of gravity, such as landslides, strays, and collapses, or even human
factors (Figure 16d). Therefore, the application of this method in loess ridge and hill areas
is also a problem that needs to be discussed and solved in the future. In future research, it
is necessary to further analyze the applicability of this method for different data sources
and different landform types. To better apply the method to different landform types
over a large area, we could try to divide different areas according to the different land use
characteristics (soil erosion characteristics and land use directions) of each landform type.
On this basis, we could establish quantitative models of different shoulder lines to achieve
the high-efficiency and high-precision extraction of shoulder lines.
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Figure 16. Examples of landforms in loess ridge and hill regions. (a–d) show the distribution of
shoulder lines in loess ridge and hill regions, respectively

5. Conclusions

Aiming to improve the poor continuity and inaccuracy of extracted shoulder lines,
this study proposed an extraction method that fused edge detection and the regional
growing algorithm. The experimental results showed that the CPA and PA values of the
edge detection method were in the ranges of 77.6~83.7% and 79.1~80.1%, respectively; the
CPA and PA values of the regional growing algorithm were in the ranges of 81.1~83.1%
and 78.1~84.5%, respectively; the CPA and PA values of the method proposed in this study
were in the ranges of 86.7~89.7% and 85.8~91.7%, respectively. Moreover, the Dice and IOU
values of the method studied in this paper were closer to 1 than those of the edge detection
method and the regional growing algorithm. This method could guarantee shoulder line
continuity and integrity. Meanwhile, burr removal reduced errors when the grid shoulder
line was transformed into a vector.

Shoulder lines have obvious turning points above and below the line, and the terrain
factors (slope, curvature, etc.) also change accordingly. The geomorphic mechanisms of the
P-N terrain above and below the line are significantly different. The positive terrain above
the line basically maintains the original slope state after loess accumulation, and slope
erosion is mainly surface erosion. The negative terrain below the line is dominated by gully
erosion and gravity erosion, and various gravity landforms are widely developed. In sum-
mary, shoulder lines can be used as an important topographic index for regional soil erosion
intensity and landform division. The accurate extraction of shoulder lines can provide a
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new perspective for the quantitative study of loess landforms and is very important for the
study of Loess Plateau landforms, soil erosion characteristics, and ecological environments.
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