Prediction of Suzhou’s Industrial Power Consumption Based on Grey Model with Seasonal Index Adjustment
Abstract
:1. Introduction
2. Characteristic Analysis of Industrial Power Consumption
3. Grey Model with Seasonal Index Adjustment
3.1. Seasonal Index Model
3.2. Grey Model
3.3. Prediction Steps of Grey Model with Seasonal Index Adjustment
3.4. Model Accuracy Inspection
- (1)
- Errors test
- (2)
- Correlation test
- (3)
- Posterior error test
4. Empirical Analysis
4.1. Data Source
4.2. Solving Seasonal Index
4.3. Data Preprocessing
4.4. Grey Modeling Calculation
4.5. Data Recovery
4.6. Results and Discussion
- (1)
- Comparison of simulation results
- (2)
- Errors test
- (3)
- Correlation test
- (4)
- Posterior error test
- (5)
- Comparison of forecast results
- (6)
- Model application expansion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Zhang, L.; Li, J.; Zhang, C.; Tan, X.; Zhang, K.; Guo, W. Study on the trend of China’s electricity consumption during the “14th Five Year Plan”. Electr. Power 2022, 55, 214–219. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, B.; Gu, Z. Mid-and-long term load forecasting based on integrated power consumption data. Electric Power 2021, 54, 211–216. [Google Scholar] [CrossRef]
- Yun, Z.; Quan, Z.; Caixin, S.; Shaolan, L.; Yuming, L.; Yang, S. RBF Neural Network and ANFIS-Based Short-Term Load Forecasting Approach in Real-Time Price Environment. IEEE Trans. Power Syst. 2008, 23, 853–858. [Google Scholar] [CrossRef]
- Yang, Z. Fast prediction of power system load curve using least square filtering principle. Heilongjiang Electr. Power 1981, 4, 1–9. [Google Scholar] [CrossRef]
- Ding, Q.; Lu, J.; Qian, Y.; Zhang, J.; Liao, H. A practical method for Ultra-short term load forecasting. Autom. Electr. Power Syst. 2004, 28, 83–85. [Google Scholar]
- Pan, F.; Cheng, H.; Yang, J.; Zhang, C.; Pan, Z. Power system short-term load forecasting based on support vector machines. Power Syst. Technol. 2004, 28, 39–42. [Google Scholar] [CrossRef]
- Kandil, N.; Wamkeue, R.; Saad, M.; Georges, S. An efficient approach for short term load forecasting using artificial neural networks. Int. J. Electr. Power Energy Syst. 2006, 28, 525–530. [Google Scholar] [CrossRef]
- Fan, S.; Chen, L. Short-Term Load Forecasting Based on an Adaptive Hybrid Method. IEEE Trans. Power Syst. 2006, 21, 392–401. [Google Scholar] [CrossRef]
- Xiang, Z.; Wang, X. Forecasting approach to short-time load using wavelet decomposition and artificial neural network. J. Syst. Simul. 2008, 20, 5018–5020. [Google Scholar] [CrossRef]
- Qin, H.; Liu, Y.; Xiao, H.; Zheng, D.; Yang, S.; Wang, H. Forecast of medium and long-term power demand and distribution in Chongqing. Electr. Power Constr. 2015, 36, 115–122. [Google Scholar] [CrossRef]
- Shi, X.; Ge, F.; Xiao, X. Forecasting Industrial Electricity Consumption of Anhui province based on K-L information method. Power Syst. Clean Energy 2015, 31, 58–62. [Google Scholar]
- Cui, H.; Peng, X. Summer short-term load forecasting based on ARIMAX model. Power Syst. Prot. Control. 2015, 43, 108–114. [Google Scholar]
- Shi, W.; Wu, K.; Wang, D.; Wang, D. Eclectic power system short-term load forecasting model based on time series analysis and Kalman filter algorithm. Tech. Autom. Appl. 2018, 37, 9–12+23. [Google Scholar]
- Zhang, D.; Ren, Z.; Bi, Y.; Zhou, D.; Bi, Y. Power load forecasting based on grey neural network. In Proceedings of the IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 1885–1889. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.; Guo, K.; Guo, S.; Han, J.; Chen, Y. Research on electrical load prediction based on random forest algorithm. Comput. Eng. Appl. 2016, 52, 236–243. [Google Scholar] [CrossRef]
- Alani, A.Y.; Osunmakinde, I.O. Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes. Sustainability 2017, 9, 1972. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Lv, H. A Study on the prediction of industrial electricity consumption in Nanjing based on discrete grey model. J. Nanjing Inst. Technol. 2018, 18, 50–54. [Google Scholar] [CrossRef]
- Lv, X.; Pan, D.; Wang, K.; Bi, J. Markov modified grey-time series electric load forecasting method. Tech. Autom. Appl. 2022, 41, 132–136+176. [Google Scholar]
- Li, S.; Liu, L.; Liu, Y. Application of trends extrapolation on the power load forecast. J. Shenyang Inst. Eng. 2005, 1, 64–65. [Google Scholar] [CrossRef]
- Meng, X. Research on Power Load Forecasting and Grid Planning in Qitaihe Area. Master’s Thesis, Harbin University of Science and Technology, Harbin, China, 2020. [Google Scholar] [CrossRef]
- Mir, A.A.; Ullah, K.; Khan, Z.A.; Bashir, F.; Khan, T.U.R.; Altamimi, A. Short Term Load Forecasting for Electric Power Utilities: A Generalized Regression Approach Using Polynomials and Cross-Terms. Eng. Proc. 2021, 12, 21. [Google Scholar] [CrossRef]
- Neto, N.F.S.; Stefenon, S.F.; Meyer, L.H.; Ovejero, R.G.; Leithardt, V.R.Q. Fault Prediction Based on Leakage Current in Contaminated Insulators Using Enhanced Time Series Forecasting Models. Sensors 2022, 22, 6121. [Google Scholar] [CrossRef]
- Dawood, N. Short-Term Prediction of Energy Consumption in Demand Response for Blocks of Buildings: DR-BoB Approach. Buildings 2019, 9, 221. [Google Scholar] [CrossRef] [Green Version]
- Yan, S. Research on Short-Term Forecasting Method of Power Load Based on Grey Theory Combined with Cluster Analysis. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2022. [Google Scholar] [CrossRef]
- Moradzadeh, A.; Zakeri, S.; Shoaran, M.; Mohammadi-Ivatloo, B.; Mohammadi, F. Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms. Sustainability 2020, 12, 7076. [Google Scholar] [CrossRef]
- Arvanitidis, A.I.; Bargiotas, D.; Daskalopulu, A.; Laitsos, V.M.; Tsoukalas, L.H. Enhanced Short-Term Load Forecasting Using Artificial Neural Networks. Energies 2021, 14, 7788. [Google Scholar] [CrossRef]
- Branco, N.W.; Cavalca, M.S.M.; Stefenon, S.F.; Leithardt, V.R.Q. Wavelet LSTM for Fault Forecasting in Electrical Power Grids. Sensors 2022, 22, 8323. [Google Scholar] [CrossRef]
- Dudek, G. A Comprehensive Study of Random Forest for Short-Term Load Forecasting. Energies 2022, 15, 7547. [Google Scholar] [CrossRef]
- Ding, Q. Long-term load forecast using decision tree method. In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition (PSCE’06), Atlanta, GA, USA, 29 October 2006; pp. 1541–1543. [Google Scholar]
- Suzhou Bureau of Statistics. Available online: http://tjj.suzhou.gov.cn/sztjj/tjyx/nav_list_4.shtml (accessed on 1 October 2022).
- Cao, J.; Xiao, L.; Cheng, T. Mathematical Modeling and Mathematical Experiment, 2nd ed.; Xi’an University of Electronic Science and Technology Press: Xi’an, China, 2018. [Google Scholar]
Index | ARE | GCD | MVR | SEP | |
---|---|---|---|---|---|
Grade | |||||
I | 0.01 | 0.90 | 0.35 | 0.95 | |
II | 0.05 | 0.80 | 0.50 | 0.80 | |
III | 0.10 | 0.70 | 0.65 | 0.70 | |
IV | 0.20 | 0.60 | 0.80 | 0.60 |
Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2003 | 22.17 | 17.80 | 23.90 | 22.87 | 23.20 | 24.64 | 29.38 | 29.06 | 26.71 | 25.97 | 28.19 | 30.25 |
2004 | 22.65 | 27.81 | 31.05 | 30.36 | 31.18 | 32.95 | 36.41 | 35.30 | 33.02 | 33.72 | 35.97 | 36.42 |
2005 | 36.21 | 27.38 | 35.96 | 37.09 | 39.17 | 43.06 | 46.85 | 44.87 | 42.27 | 40.53 | 42.69 | 47.49 |
Time | SI | Time | SI |
---|---|---|---|
Jan | 0.8878 | Jul | 1.1327 |
Feb | 0.8374 | Aug | 1.0912 |
Mar | 0.9883 | Sep | 0.9947 |
Apr | 0.9738 | Oct | 0.9730 |
May | 0.9962 | Nov | 1.0257 |
Jun | 1.0543 | Dec | 1.0449 |
Index | ARE | GCD | MVR | SEP |
---|---|---|---|---|
Model 1 | 0.096 | 0.5827 | 0.4466 | 0.8333 |
Model 2 | 0.038 | 0.7728 | 0.2748 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Sun, X.; Li, M. Prediction of Suzhou’s Industrial Power Consumption Based on Grey Model with Seasonal Index Adjustment. Appl. Sci. 2022, 12, 12669. https://doi.org/10.3390/app122412669
Chen H, Sun X, Li M. Prediction of Suzhou’s Industrial Power Consumption Based on Grey Model with Seasonal Index Adjustment. Applied Sciences. 2022; 12(24):12669. https://doi.org/10.3390/app122412669
Chicago/Turabian StyleChen, Huimin, Xiaoyan Sun, and Mei Li. 2022. "Prediction of Suzhou’s Industrial Power Consumption Based on Grey Model with Seasonal Index Adjustment" Applied Sciences 12, no. 24: 12669. https://doi.org/10.3390/app122412669
APA StyleChen, H., Sun, X., & Li, M. (2022). Prediction of Suzhou’s Industrial Power Consumption Based on Grey Model with Seasonal Index Adjustment. Applied Sciences, 12(24), 12669. https://doi.org/10.3390/app122412669