Review of Target Geo-Location Algorithms for Aerial Remote Sensing Cameras without Control Points
Abstract
:1. Introduction
2. Bibliometric Study and Typical Aerial Camera-to-Ground Target Localization Algorithm
2.1. Bibliometric Study Based on Web of Science Database
2.2. Basic Coordinate Transformation of Target Positioning Algorithm
2.3. Target Positioning Algorithm Based on Earth Ellipsoid Model
2.4. Target Location Algorithm Based on Digital Elevation Model
- (1)
- Estimate the geographical location of the target and extract the digital elevation information of the target area from DEM data;
- (2)
- Initialize the number of iterations and calculate the maximum height of the target area;
- (3)
- The localization method based on the earth ellipsoid model initializes the localization of the target, and the localization result is ;
- (4)
- Find the geodetic height information with longitude and latitude through DEM data and record it as ;
- (5)
- Compare and , if , continue the iteration and let , if , output the target positioning result .
2.5. Active Positioning Algorithm Based on Laser Ranging Sensor
2.6. Target Location Algorithm Based on Single-Machine Two-Point Measurement or Double-Machine Intersection Measurement
2.7. Filter Positioning Algorithm Based on Single-Machine Multiple Measurements
3. Error Analysis Model and Influencing Factors of Positioning Algorithm
3.1. Simulation Analysis Method and Evaluation Index of Positioning Algorithm
3.1.1. Total Differential Method
3.1.2. Monte Carlo Method
3.1.3. Evaluation Indicators for Target Positioning Algorithms
3.2. Influencing Factors of Positioning Algorithm Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Jia, H.; Wang, L.; Xu, F.; Liu, J. Systematic Error Correction for Geo-Location of Airborne Optoelectronic Platforms. Appl. Sci. 2021, 11, 11067. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ichii, K.; Higuchi, A.; Takenaka, H. Geolocation Accuracy Assessment of Himawari-8/AHI Imagery for Application to Terrestrial Monitoring. Remote Sens. 2020, 12, 1372. [Google Scholar] [CrossRef]
- Wyatt, S. Dual spectral band reconnaissance systems for multiple platform. Proc. SPIE 2002, 4824, 36–46. [Google Scholar]
- Riehl, K. RAPTOR (DB-110) reconnaissance system: In operation. Proc. SPIE 2002, 4824, 1–12. [Google Scholar]
- Yuan, D.; Ding, Y.; Yuan, G.; Li, F.; Zhang, J.; Wang, Y.; Zhang, L. Two-step calibration method for extrinsic parameters of an airborne camera. Appl. Opt. 2021, 60, 1387–1398. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Li, G.; Zhao, T.; Song, X.; Zhang, S.; Li, A.; Bian, H.; Li, J.; Zhang, M. Camera Calibration for Long-Distance Photogrammetry Using Unmanned Aerial Vehicles. J. Sens. 2022, 2022, 8573315. [Google Scholar] [CrossRef]
- Morgan, G.R.; Hodgson, M.E.; Wang, C.; Schill, S.R. Unmanned aerial remote sensing of coastal vegetation: A review. Ann. GIS 2022, 28, 385–399. [Google Scholar] [CrossRef]
- He, F.; Zhou, T.; Xiong, W.; Hasheminnasab, S.M.; Habib, A. Automated Aerial Triangulation for UAV-Based Mapping. Remote Sens. 2018, 10, 1952. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.; Lee, B.; Kim, J.; Kee, C. Vision-based real-time target localization for single-antenna GPS-guided UAV. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1391–1401. [Google Scholar] [CrossRef]
- Cheng, X.; Daqiang, H.; Wei, H. High Precision Passive Target Localization Based on Airborne Electro-optical Payload. In Proceedings of the 14th International Conference on Optical Communications and Networks(ICOCN), Nanjing, China, 3–5 July 2015; pp. 1–3. [Google Scholar]
- Yuan, X.; Gao, Y.; Zou, X. Application of GPS-supported aerotriangulation in large scale. Wuhan Daxue Xuebao Xinxi Kexue Ban Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 1289–1293. [Google Scholar]
- Stich, E.J. Geo-pointing and threat location techniques for airborne border surveillance. In Proceedings of the IEEE International Conference on Technologies for Homeland Security, Waltham, MA, USA, 12–14 November 2013. [Google Scholar]
- Held, K.J.; Robinson, B.H. TIER II Plus airborne EO sensor LOS control and image geolocation. In Proceedings of the 1997 IEEE Aerospace Conference, Snowmass, CO, USA, 13 February 1997; pp. 377–405. [Google Scholar]
- Cai, M.B.; Liu, J.H.; Xu, F. Multi-targets real-time location technology for UAV reconnaissance. Chin. Opt. 2018, 11, 812–821. [Google Scholar]
- Wang, X.; Liu, J.; Zhou, Q. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles. Sensors 2017, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.T.; Zhang, G.D.; Shi, K.; Zhao, R.H.; Gao, B.; Zhang, G.D. Aerial Camera Geo-location Method Based on POS System. Acta Photonica Sin. 2018, 47, 0412001. [Google Scholar] [CrossRef]
- Du, Y.L.; Ding, Y.L.; Xu, Y.S.; Liu, Z.; Xiu, J. Geo-Location Al-grithm for TDI-CCD Aerial Panoramic Camera. Acta Opt. Sin. 2017, 37, 355–365. [Google Scholar]
- Danqi, C.; Guodong, J.; Lining, T.; Libin, L.; Wenle, W. Target positioning of UAV airborne optoelectronic platform based on nonlinear least squares. Opto-Electron. Eng. 2019, 46, 190056. [Google Scholar] [CrossRef]
- Liu, X.; Teng, X.; Li, Z.; Yu, Q.; Bian, Y. A Fast Algorithm for High Accuracy Airborne SAR Geolocation Based on Local Linear Approximation. IEEE Trans. Instrum. Meas. 2022, 71, 5501612. [Google Scholar] [CrossRef]
- Jin, G.; Dong, Z.; He, F.; Yu, A. Background-Free Ground Moving Target Imaging for Multi-PRF Airborne SAR. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1949–1962. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, X.; Shi, J.; Wei, S.; Pu, L. Ground slowly moving target detection and velocity estimation via high-speed platform dual-beam synthetic aperture radar. J. Appl. Remote Sens. 2019, 13, 026516. [Google Scholar] [CrossRef]
- Xu, C.; Huang, D.Q. Multiple-target localization based on electro-optical measurement platform. J. Cent. South Univ. Sci. Technol. 2015, 46, 157–163. [Google Scholar]
- Jin, M.; Bai, Y.; Devys, E.; Di, L. Toward a Standardized Encoding of Remote Sensing Geo-Positioning Sensor Models. Remote Sens. 2020, 12, 1530. [Google Scholar] [CrossRef]
- Hao, R.X. Research on the Method of Localization Of Target Based on Laser Ranging Technology. Master’s Thesis, Xi’an Technological University, Xi’an, China, 2014. [Google Scholar]
- Zhang, H.; Qiao, C.; Kuang, H.P. Target geo-location based on laser range finder for Airborne electro-optical imaging systems. Opt. Precis. Eng.-Ing 2019, 27, 13–21. [Google Scholar]
- Tan, L.G. Research of Target Automatic Positioning Technology in Airborne Photo-electricity Survey Equipment. Ph.D. Thesis, Changchun Institute Of Optics, Fine Mehcanics and Physics: Changchun, China; Chinese Academy of Sciences: Beijing, China, 2012. [Google Scholar]
- Merkle, N.; Luo, W.; Auer, S.; Müller, R.; Urtasun, R. Exploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images. Remote Sens. 2017, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, J.; Rawat, A.; Deb, D. Multiple Drone Navigation and Formation Using Selective Target Tracking-Based Computer Vision. Electronics 2021, 10, 2125. [Google Scholar] [CrossRef]
- Luo, M.; Tan, L. Method of passive location based on multi-platform collaborative detection by airborne infrared equipment. J. Appl. Opt. 2021, 42, 392–397. [Google Scholar] [CrossRef]
- Cheng, X.; He, C.; Huang, D. Geo-location for Ground Target with Multiple Observations Using Unmanned Aerial Vehicle. Trans. Nanjing Univ. Aeronaut. Astronaut. 2018, 35, 95–103. [Google Scholar]
- Liu, D.; Bao, W.; Zhu, X.; Fei, B.; Xiao, Z.; Men, T. Vision-aware air-ground cooperative target localization for UAV and UGV. Aerosp. Sci. Technol. 2022, 124, 107525. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.T.; Meng, D.; Dong, M.; Ota, K.; Wang, H. Multi-UAV Cooperative Localization for Marine Targets Based on Weighted Subspace Fitting in SAGIN Environment. IEEE Internet Things J. 2022, 9, 5708–5718. [Google Scholar] [CrossRef]
- Qu, Y.H.; Zhang, F.; Gu, R.N. Multi-UAV cooper ative target positioning method based on distance meas-urement. J. Northwestern Polytech. Univ. 2019, 37, 266–272. [Google Scholar] [CrossRef]
- Qu, Y.; Wu, J.; Zhang, Y. Cooperative localization based on the azimuth angles among multiple UAVs. In International Conference on Unmanned Aircraft Systems; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Bai, G.; Liu, J.; Song, Y.; Zuo, Y. Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform. Sensors 2017, 17, 98. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Huang, D.; Xu, C. An Improved Method for Two-UAV Trajectory Planning for Cooperative Target Locating Based on Airborne Visual Tracking Platform. IEICE Trans. Inf. Syst. 2021, E104.D, 1049–1053. [Google Scholar] [CrossRef]
- Lee, W.; Bang, H.; Leeghim, H. Cooperative localization between small UAVs using a combination of heterogeneous sensors. Aerosp. Sci. Technol. 2013, 27, 105–111. [Google Scholar] [CrossRef]
- Xiang, H.T. Double UAV cooperative localization and remote location error analysis. In 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME); Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 76–81. [Google Scholar]
- Xu, C.; Huang, D.; Liu, J. Target location of unmanned aerial vehicles based on the electro-optical stabilization and tracking platform. Measurement 2019, 147, 106848. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Kuang, H.; Li, Q.; Qiao, C. Target Location Based on Stereo Imaging of Airborne Electro-Optical Camera. Acta Opt. Sin. 2019, 39, 1112003. [Google Scholar]
- Wang, S.; Jiang, F.; Zhang, B.; Ma, R.; Hao, Q. Development of UAV-Based Target Tracking and Recognition Systems. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3409–3422. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Y.; Liu, Y.; Hu, J. A Novel Sensor Fusion Method Based on Invariant Extended Kalman Filter for Unmanned Aerial Vehicle. In Proceedings of the 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 27–31 December 2021; pp. 1111–1116. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, G.; Zhang, H.; Qiao, C.; Liu, Z.; Ding, Y.; Liu, C. Precise Target Geo-Location of Long-Range Oblique Reconnaissance System for UAVs. Sensors 2022, 22, 1903. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Liu, X.; Deng, D. Small Un manned Aerial Vehicle Target Location Method Based on Iterative Unscented Kalman Filtering. Command. Control. Simul. 2019, 41, 110–114. [Google Scholar]
- Gao, F.; Ma, X.; Gu, J. An active target localization with monocular vision. In Proceedings of the IEEE International Conference on Control & Automation, Gwangju, Republic of Korea, 2–5 December 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Hosseinpoor, H.R.; Samadzadegan, F.; Dadras Javan, F. Pricise target geolocation based on integeration of thermal video imagery and rtk GPS in UAVS. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, 40, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Hosseinpoor, H.R.; Samadzadegan, F.; Dadras Javan, F. Pricise target geolocation and tracking based on UAV video imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Barber, D.B.; Redding, J.D.; McLain, T.W.; Beard, R.W.; Taylor, C.N. Vision-based Target Geo-location using a Fixed-wing Miniature Air Vehicle. J. Intell. Robot. Syst. 2006, 47, 361–382. [Google Scholar] [CrossRef]
- Helgesen, H.H.; Leira, F.S.; Johansen, T.A.; Fossen, T.I. Detection and Tracking of Floating Objects Using a UAV with Thermal Camera; Springer International Publishing AG 2017: Berlin/Heidelberg, Germany, 2017; pp. 289–316. [Google Scholar]
- Wang, J.; Yang, L.B.; Gao, L.M. Target orientation meas uring of airborne EO platform. J. Chang. Univ. Sci. Technol. Natu-Ral Sci. Ed. 2009, 32, 531–534. [Google Scholar]
- Tan, L.G.; Dai, M.; Liu, J.H. Error analysis Of tar-get automatic positioning for airborne photoelectric Meas-uring device. Opt. Precis. Eng. 2013, 21, 3133–3140. [Google Scholar]
- Liu, C.; Liu, J.; Song, Y.; Liang, H.A. Novel Sys-tem for Correction of Relative Angular Displacement be-tween Airborne Platform and UAV in Target Localization. Sensors 2017, 17, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H. Target localization and error analysis of air borne electro-optical platform. Chin. Opt. 2013, 6, 912–918. [Google Scholar]
- Wu, J.; Xu, Y.; Zhong, X.; Sun, Z.; Yang, J. A Three-Dimensional Localization Method for Multistatic SAR Based on Numerical Range-Doppler Algorithm and Entropy Minimization. Remote Sens. 2017, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.X.; Fu, J.H.; Zuo, Z.L. Accuracy Analysis of Di rect Georeferencing by Airborne Position and Ori-entation System in Aerial Photogrammetry. Geomat. Inf. Sci. Wuhan Univers 2006, 31, 847–850. [Google Scholar]
- Song, D.; Tharmarasa, R.; Wang, W.; Rao, B.; Brown, D.; Kirubarajan, T. Efficient Bias Estimation in Airborne Video Georegistration for Ground Target Tracking. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3198–3208. [Google Scholar] [CrossRef]
- Taghavi, E.; Song, D.; Tharmarasa, R.; Kirubarajan, T.; McDonald, M.; Balaji, B.; Brown, D. Geo-registration and Geo-location Using Two Airborne Video Sensors. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 2910–2921. [Google Scholar] [CrossRef]
- Ma, Z.; Gong, Q.; Chen, Y.; Wang, H. Analysis and study on influence factors of target geo-locating accuracy for electro-optical reconnaissance system. J. Appl. Opt. 2018, 39, 1–6. [Google Scholar] [CrossRef]
- Xiu, J.; Huang, P.; Li, J.; Zhang, H.; Li, Y. Line of Sight and Image Motion Compensation for Step and Stare Imaging System. Appl. Sci. 2020, 10, 7119. [Google Scholar] [CrossRef]
- Wang, D.; Shu, H. Accuracy Analysis of Three-Dimensional Modeling of a Multi-Level UAV without Control Points. Buildings 2022, 12, 592. [Google Scholar] [CrossRef]
- Liu, X.; Lian, X.; Yang, W.; Wang, F.; Han, Y.; Zhang, Y. Accuracy Assessment of a UAV Direct Georeferencing Method and Impact of the Configuration of Ground Control Points. Drones 2022, 6, 30. [Google Scholar] [CrossRef]
- Xiao, S. Positioning Accuracy Analysis of Aerial Triangulation of UAV Images without Ground Control Points. J. Chongqing Jiaotong Univ. Nat. Sci. 2021, 40, 117–123. [Google Scholar]
- Qiao, C.; Ding, Y.L.; Xu, Y.S. Ground target geo-location based on digital elevation model for airborne wide-area reconnaissance system. J. Appl. Remote Sens. 2018, 12, 016004. [Google Scholar] [CrossRef]
- Qiao, C.; Ding, Y.L.; Xu, Y. Ground target geo-location using imaging aerial camera With large inclined angle. Opt. Precision Eng. 2017, 25, 1714–1726. [Google Scholar]
- Bai, G.; Song, Y.; Zuo, Y.; Song, M.; Wang, X. Multitarget location capable of adapting to complex geomorphic environment for the airborne photoelectric reconnaissance system. J. Appl. Remote Sens. 2020, 14, 036510. [Google Scholar] [CrossRef]
- El Habchi, A.; Moumen, Y.; Zerrouk, I.; Khiati, W.; Berrich, J.; Bouchentouf, T. CGA: A New Approach to Estimate the Geolocation of a Ground Target from Drone Aerial Imagery. In Proceedings of the 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 21–23 October 2020. [Google Scholar]
- Huang, C.; Zhang, H.; Zhao, J. High-Efficiency Determination of Coastline by Combination of Tidal Level and Coastal Zone DEM from UAV Tilt Photogrammetry. Remote Sens. 2020, 12, 2189. [Google Scholar] [CrossRef]
- Cheng, B.T. A simulation of wide area surveillance (WAS) systems and algorithm for digital elevation model (DEM) extraction. In Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications VII; SPIE: Bellingham, WA, USA, 2010; Volume 7668. [Google Scholar] [CrossRef]
- Yang, A.; Li, X.; Xie, J.; Wei, Y. Three-dimensional panoramic terrain reconstruction from aerial imagery. J. Appl. Remote Sens. 2013, 7, 073497. [Google Scholar] [CrossRef]
- Belkhouche, Y.; Duraisamy, P.; Buckles, B. Graph-connected components for filtering urban LiDAR data. J. Appl. Remote Sens. 2015, 9, 096075. [Google Scholar] [CrossRef]
- Athmania, D.; Achour, H. External Validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 Free Access Digital Elevation Models (DEMs) in Tunisia and Algeria. Remote Sens. 2014, 6, 4600–4620. [Google Scholar] [CrossRef] [Green Version]
- Han, K.M.; Desouza, G.N. Geolocation Of Multiple Tatgets From Airborne Video Without Terrain Data. Joutnal Intell. Robot. Syst. 2011, 62, 159–183. [Google Scholar] [CrossRef]
- Jain, K. How Photogrammetric Software Works: A Perspective Based on UAV’s Exterior Orientation Parameters. J. Indian Soc. Remote Sens. 2021, 49, 641–649. [Google Scholar] [CrossRef]
- Qureshi, S.; Soomro, A.; Hincal, E.; Lee, J.R.; Park, C.; Osman, M.S. An efficient variable stepsize rational method for stiff, singular and singularly perturbed problems. Alex. Eng. J. 2022, 61, 10953–10963. [Google Scholar] [CrossRef]
- Croci, M.; de Souza, G.R. Mixed-precision explicit stabilized Runge–Kutta methods for single- and multi-scale differential equations. J. Comput. Phys. 2022, 464, 111349. [Google Scholar] [CrossRef]
- Arshad, M.; Jabeen, R.; Khan, S. A multiscale domain decomposition approach for parabolic equations using expanded mixed method. Math. Comput. Simul. 2022, 198, 127–150. [Google Scholar] [CrossRef]
- Xu, W.; Wang, B.; Xiang, M.; Song, C.; Wang, Z. A Novel Autofocus Framework for UAV SAR Imagery: Motion Error Extraction From Symmetric Triangular FMCW Differential Signal. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5218915. [Google Scholar] [CrossRef]
- Zeybek, M. Accuracy assessment of direct georeferencing UAV images with onboard global navigation satellite system and comparison of CORS/RTK surveying methods. Meas. Sci. Technol. 2021, 32, 065402. [Google Scholar] [CrossRef]
- Li, X.; Qi, G.; Guo, X.; Ma, S. Trajectory Tracking of a Quadrotor UAV based on High-Order Differential Feedback Control. In Proceedings of the 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS), Liuzhou, China, 20–22 November 2020; pp. 201–206. [Google Scholar] [CrossRef]
- Ma, S.; Liu, J.; Yang, Z.; Zhang, Y.; Hu, J. A pseudo-random sequence generation scheme based on RNS and permutation polynomials. Sci. China Inf. Sci. 2018, 61, 082304. [Google Scholar] [CrossRef] [Green Version]
- Long, Z.; Xiang, Y.; Lei, X.; Li, Y.; Hu, Z.; Dai, X. Integrated Indoor Positioning System of Greenhouse Robot Based on UWB/IMU/ODOM/LIDAR. Sensors 2022, 22, 4819. [Google Scholar] [CrossRef]
- Alandihallaj, M.A.; Emami, M.R. Satellite replacement and task reallocation for multiple-payload fractionated Earth observation mission. Acta Astronaut. 2022, 196, 157–175. [Google Scholar] [CrossRef]
- Ma, H.; Xu, K.; Sun, S.; Zhang, W.; Xi, T. Research on real-time reachability evaluation for reentry vehicles based on fuzzy learning. Open Astron. 2022, 31, 205–216. [Google Scholar] [CrossRef]
- Valentini, F.; Silva, O.M.; Torii, A.J.; Cardoso, E.L. Local averaged stratified sampling method. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 294. [Google Scholar] [CrossRef]
- Vermaak, J.I.; Morel, J.E. Transport error estimation using residual Monte Carlo. J. Comput. Phys. 2022, 464, 111306. [Google Scholar] [CrossRef]
- Qian, Y.; Sheng, K.; Ma, C.; Li, J.; Ding, M.; Hassan, M. Path Planning for the Dynamic UAV-Aided Wireless Systems Using Monte Carlo Tree Search. IEEE Trans. Veh. Technol. 2022, 71, 6716–6721. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, O. Automating Aircraft Scanning for Inspection or 3D Model Creation with a UAV and Optimal Path Planning. Drones 2022, 6, 87. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.; Ju, Y. Evaluation method of positioning accuracy based on circular probability error. Command. Control. Simul. 2013, 35, 111–114. [Google Scholar]
- Wang, Y.; Yang, G.; Yan, D. Comprehensive assessment algorithm for calculating CEP of positioning accuracy. Measurement 2014, 47, 255–263. [Google Scholar] [CrossRef]
- Moon, G.B.; Jee, G.I.; Lee, J.G. Position determination using the DTV segment sync signal. Int. J. Control Autom. Syst. 2011, 9, 574–580. [Google Scholar] [CrossRef]
- Chen, M.; Xiong, Z.; Xiong, J.; Wang, R. A hybrid cooperative navigation method for UAV swarm based on factor graph and Kalman filter. Int. J. Distrib. Sens. Netw. 2022, 18, 15501477211064758. [Google Scholar] [CrossRef]
- Safi, H.; Dargahi, A.; Cheng, J. Beam Tracking for UAV-Assisted FSO Links With a Four-Quadrant Detector. IEEE Commun. Lett. 2021, 25, 3908–3912. [Google Scholar] [CrossRef]
- Jenssen, R.O.R.; Jacobsen, S.K. Measurement of Snow Water Equivalent Using Drone-Mounted Ultra-Wide-Band Radar. Remote Sens. 2021, 13, 2610. [Google Scholar] [CrossRef]
- Deng, L.; Chen, Y.; Zhao, Y.; Zhu, L.; Gong, H.L.; Guo, L.J.; Zou, H.Y. An approach for reflectance anisotropy retrieval from UAV-based oblique photogrammetry hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102442. [Google Scholar] [CrossRef]
- Akin, E.; Demir, K.; Yetgin, H. Multiagent Q-learning based UAV trajectory planning for effective situationalawareness. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 20. [Google Scholar] [CrossRef]
- Cai, Y.; Ding, Y.; Xiu, J.; Zhang, H.; Qiao, C.; Li, Q. Distortion measurement and geolocation error correction for high altitude oblique imaging using airborne cameras. J. Appl. Remote Sens. 2020, 14, 014510. [Google Scholar] [CrossRef]
- Cai, Y.; Ding, Y.; Zhang, H.; Xiu, J.; Liu, Z. Geo-Location Algorithm for Building Targets in Oblique Remote Sensing Images Based on Deep Learning and Height Estimation. Remote Sens. 2020, 12, 2427. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, T.; Bai, Y.; Ning, Y.; Li, Y.; Fan, J.; Li, D. Online Ground Multitarget Geolocation Based on 3-D Map Construction Using a UAV Platform. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5621817. [Google Scholar] [CrossRef]
- Zhao, X.; Pu, F.; Wang, Z.; Chen, H.; Xu, Z. Detection, Tracking, and Geolocation of Moving Vehicle From UAV Using Monocular Camera. IEEE Access 2019, 7, 101160–101170. [Google Scholar] [CrossRef]
- Xing, L.; Fan, X.; Dong, Y.; Xiong, Z.; Xing, L.; Yang, Y.; Bai, H.; Zhou, C. Multi-UAV cooperative system for search and rescue based on YOLOv5. Int. J. Disaster Risk Reduct. 2022, 76, 102972. [Google Scholar] [CrossRef]
- Bertin, S.; Stéphan, P.; Ammann, J. Assessment of RTK Quadcopter and Structure-from-Motion Photogrammetry for Fine-Scale Monitoring of Coastal Topographic Complexity. Remote Sens. 2022, 14, 1679. [Google Scholar] [CrossRef]
- Yang, B.; Ali, F.; Zhou, B.; Li, S.; Yu, Y.; Yang, T.; Liu, X.; Liang, Z.; Zhang, K. A novel approach of efficient 3D reconstruction for real scene using unmanned aerial vehicle oblique photogrammetry with five cameras. Comput. Electr. Eng. 2022, 99, 107804. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, G.; Wu, J. Air-Ground Multi-Source Image Matching Based on High-Precision Reference Image. Remote Sens. 2022, 14, 588. [Google Scholar] [CrossRef]
- Zhuang, J.; Chen, X.; Dai, M.; Lan, W.; Cai, Y.; Zheng, E. A Semantic Guidance and Transformer-Based Matching Method for UAVs and Satellite Images for UAV Geo-Localization. IEEE Access 2022, 10, 34277–34287. [Google Scholar] [CrossRef]
- Bi, R.; Gan, S.; Yuan, X.; Li, R.; Gao, S.; Luo, W.; Hu, L. Studies on Three-Dimensional (3D) Accuracy Optimization and Repeatability of UAV in Complex Pit-Rim Landforms As Assisted by Oblique Imaging and RTK Positioning. Sensors 2021, 21, 8109. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Dai, M.; Chen, X.; Zheng, E. A Faster and More Effective Cross-View Matching Method of UAV and Satellite Images for UAV Geolocalization. Remote Sens. 2021, 13, 3979. [Google Scholar] [CrossRef]
Positioning Algorithm Basics | Algorithm Advantages | Algorithmic Disadvantages |
---|---|---|
Earth Ellipsoid Model | Single image long-distance positioning Real-time processing capabilities Well extensible and easy to modify | Elevation information required Too many error factors |
Digital elevation model | Ability to calculate target elevation | Too large of DEM data Unstable calculation results |
LRF or SAR | High positioning accuracy Influence of angle error is small | Limited working distance of LRF Increase the load of the carrier |
Multipoint intersection measurement | Reduce terrain error High theoretical positioning accuracy | Low positioning efficiency complex calculation Too high requirement for time accuracy |
wFiltering algorithm | long-distance positioning High positioning accuracy | High time cost and low positioning efficiency Only applicable to target tracking |
Error Classification | Error Distribution Form |
---|---|
Camera Latitude | normal distribution |
Camera Longitude | normal distribution |
Camera elevation | normal distribution |
Aerial carrier pitch angle | normal distribution |
Aerial carrier roll angle | normal distribution |
Aircraft yaw angle | normal distribution |
Three-axis vibration error of shock absorber | uniform distribution |
Image point position measurement error | normal distribution |
Laser ranging error | normal distribution |
Frame angle measurement error | normal distribution |
Error Classification | Error Influence |
---|---|
Atmospheric scattering | Visual axis pointing deviation |
Atmospheric turbulence | Visual axis stability deviation |
Image distortion | Target projection deviation |
Height of target | Real position deviation |
Visual axis control accuracy | Reprojection pointing deviation |
Target detection accuracy | Pixel deviation of target to be located |
Accuracy of imaging register | Homonymous point pixel deviation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Zhou, Y.; Zhang, H.; Xia, Y.; Qiao, P.; Zhao, J. Review of Target Geo-Location Algorithms for Aerial Remote Sensing Cameras without Control Points. Appl. Sci. 2022, 12, 12689. https://doi.org/10.3390/app122412689
Cai Y, Zhou Y, Zhang H, Xia Y, Qiao P, Zhao J. Review of Target Geo-Location Algorithms for Aerial Remote Sensing Cameras without Control Points. Applied Sciences. 2022; 12(24):12689. https://doi.org/10.3390/app122412689
Chicago/Turabian StyleCai, Yiming, Yao Zhou, Hongwen Zhang, Yuli Xia, Peng Qiao, and Junsuo Zhao. 2022. "Review of Target Geo-Location Algorithms for Aerial Remote Sensing Cameras without Control Points" Applied Sciences 12, no. 24: 12689. https://doi.org/10.3390/app122412689
APA StyleCai, Y., Zhou, Y., Zhang, H., Xia, Y., Qiao, P., & Zhao, J. (2022). Review of Target Geo-Location Algorithms for Aerial Remote Sensing Cameras without Control Points. Applied Sciences, 12(24), 12689. https://doi.org/10.3390/app122412689