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Abstract: A control method combining Backpropagation (BP) neural network and Adaptive Linear
Active Disturbance Rejection Control (ALADRC) is proposed for the attitude control problem of
quadrotor aircraft. The proposed controller can observe and compensate the total disturbance in the
working process of the quadrotor system. At the same time, it has a good ability to suppress the
disturbance of the quadrotor load mass change. In addition, adaptive control and BP neural network
are used to adjust the controller parameters in real time to solve the problem of difficult parameter
tuning. Finally, the stability of the system is proved based on Lyapunov theory. The simulation results
show that the quadrotor system can still track the altitude and attitude angle commands stably in the
presence of disturbances, and has strong adaptability to load mass changes, so that the quadrotor can
still complete the given tasks in the presence of multi-source disturbances.

Keywords: Backpropagation neural network; attitude control; total disturbance; adaptive control;
parameter tuning

1. Introduction

Today, quadrotors have become popular in many application scenarios due to their
high flexibility and high degrees of freedom, such as power inspection, data collection,
surveillance and reconnaissance missions, forest fire rescue, and precision agriculture [1–3].

The quadrotor system is a typical underactuated system, which has the characteristics
of nonlinearity, strong coupling, and susceptibility to interference, so it is difficult to
establish an accurate mathematical model. A way to design a controller with high stability
and strong robustness is a difficult research point. Due to the advantages of simple structure
and easy implementation, linear controllers are widely used in quadrotor control systems.
Research by Shakeel et al. [4] presented that the Linear Quadratic Regulator (LQR) controller
has a good control effect by analyzing and evaluating several different control schemes of
the quadrotor. However, many scholars still try to use modern control methods to improve
the control performance of quadrotor controllers, such as predictive control [5,6], sliding
film control [7], LQR [8,9] and so on. Based on backstepping control and Lyapunov theory,
research by Rodríguez et al. [10] presented a robust control algorithm in order to increase
the endurance time of the quadrotor and reduce unnecessary energy dissipation. Research
by Nigro et al. [11] presented a new type of quadrotor aircraft by adding a driving gimbal
mechanism to provide multi-directional thrust. At the same time, a double closed-loop
motion control scheme was proposed to enhance the robustness of the system. However,
the above studies are all based on the nominal conditions of the quadrotor, that is, the
influence of disturbance is ignored. This leads to the poor control effect of the controller
designed in some scenes with large disturbances.

The quadrotors are usually affected by external unknown wind disturbances and
unmodeled dynamics within the system, which will lead to poor stability of the quadrotor
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system. Designing a robust controller to overcome the influence of disturbances to ensure
the stability of the quadrotor system has always been a key topic for some scholars. For
example, considering the uncertainty of system parameters, research by Fan et al. [12]
presented a control scheme combining neural network and adaptive control, and provided
the simulation results. Based on the backstepping control theory, research by Chen et al. [13]
presented a nonlinear adaptive integral backstepping control algorithm. The simulation
results prove that the controller still has strong robustness in the presence of wind dis-
turbance. However, these studies did not address specific mathematical models of wind
disturbance, nor did they explain how wind disturbance acts on the system.

Nowadays, in order to solve the problem of unknown disturbance of the quadrotor
system, many scholars have carried out in-depth research on the quadrotor control system
based on the Active Disturbance Rejection Control (ADRC) theory. The ADRC does
not require an accurate mathematical model of the controlled object, and its structure is
simple, so it can be used in the controller design of a quadrotor system [14]. Aiming at
the problem that the ADRC controller has many parameters, it is difficult to tune these
parameters. Research by Zhang et al. [15] applied the fractional fuzzy particle swarm
optimization (FOFPSO) algorithm to optimize the ADRC controller parameters, and it was
compared with several other optimization algorithms to optimize the ADRC parameters.
Finally, the authors propose a novel wind field model; this model is employed to prove
the effectiveness of the controller under the action of wind disturbance. Research by Yuan
and Zhao et al. [16,17], aiming at the problem of grid voltage fluctuation in power grid
systems such as wind power grid-connected inverters, proposed an improved LADRC
controller to improve the disturbance observation accuracy of the system by reducing the
phase lag of the observer. The results showed that the improved method has better rapidity
and immunity.

Linear Active Disturbance Rejection (LADRC) is widely used because of the small
number of controller parameters and convenient adjustment [18–21]. Although the number
of controller parameters that need to be adjusted by LADRC is much smaller than that of
ADRC, it is still a difficult task to readjust the controller parameters for different systems or
the same system in different working scenarios. At the same time, Linear Extension State
Observer (LESO) in LADRC often has the problem of limited bandwidth, which may cause
poor control effect in practical applications [22].

For the problem of quadrotor attitude control, this paper designs a quadrotor attitude
control strategy based on LADRC. The control strategy not only considers the internal
and external disturbances of the system, but also has a strong adaptability to load quality
changes. In order to solve the problem of LADRC controller having too many parameters
and being difficult to adjust manually, BP neural network and adaptive control algorithm
are proposed in this paper. The BP neural network is used to dynamically optimize and
adjust the bandwidth value of LESO in real time, so that the controller can still maintain
good control effect in the complex and changeable working environment. By adjusting the
values of kp and kd in the PD controller in real time, adaptive control reduces the parameter
error caused by manual parameter adjustment, and compensates the observation error
caused by bandwidth selection, which improves the control accuracy of LADRC and the
dynamic performance of the system. Finally, in order to verify the effectiveness of the
control scheme, a simulation experiment is designed to verify the attitude tracking ability
of the controller.

2. Dynamic Model of Quadrotor Aircrafts

The coordinate system and structure of the quadrotor are shown in Figure 1. We use
six variables to describe the motion of the quadrotor, namely the quadrotor position x, y, z,
the attitude angle φ, θ and ψ [23]. The centroid of quadrotor moves upward continuously
from below the origin of the fuselage mount when the load is gradually reduced. Referring
to the body coordinate system B and the ground fixed coordinate system E, the dynamic
model of the variable mass quadrotor aircraft is established [24].
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As shown in Figure 1, the rotation matrix from coordinate system B to E is RB→E [25,26].
The positional motion of the quadrotor satisfies Newton’s second law,

.
X

E
= VE

(M− ∆m)
.

V
E
= LE + GE

M + GE
∆m + f E

1

, (1)

where XE = [x y z]T ; VE is the linear velocity; M is the mass of the quadrotor; LE is the

total lift; GE
∆m =

[
0 0 ∆mg

]T ; GE
M =

[
0 0 −Mg

]T ; f E
1 = [−k

.
x −k

.
y −k

.
z]T is the

matrix of air resistance.
The lift force of the quadrotor is expressed as

LB = [Lx Ly Lz]
T
= [0 0 L]T , (2)

where L =
4
∑

i=1
Li = L1 + L2 + L3 + L4; from RB→E, we can obtain LE:

LE = RB→ELB = L

 sin ψ sin φ + cos φ cos ψ sin θ

− sin φ cos ψ + cos φ sin ψ sin θ

cos φ cos θ

. (3)

In summary, we can obtain the positional dynamics equation of the quadrotor.
..
x =

−k f
.
x

(M − ∆m)
+ L(sin ψ sin φ + cos ψ cos φ sin θ)

(M − ∆m)

..
y =

−k f
.
y

(M − ∆m)
+ L(− cos ψ sin φ + sin ψ cos φ sin θ)

(M − ∆m)

..
z =

−k f
.
z

(M − ∆m)
+ L cos φ cos θ

(M − ∆m)
− g

. (4)

As the load mass decreases, the centroid of quadrotor gradually moves upward,
thereby affecting the attitude angle of the quadrotor. Because the quadrotor is loaded by
the mounting platform, the two can be considered as a whole. The initial coordinates of the
centroid of quadrotor are (x1, y1, z1), the coordinates of the centroid of the part of the load
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that is reduced during operation are (x2, y2, z2). When the load mass decreases, the change
in the coordinates of the centroid of quadrotor is shown in the following formula:

xa = (x1M− x2∆m)/(M− ∆m)

ya = (y1M− y2∆m)/(M− ∆m)

za = (z1M− z2∆m)/(M− ∆m)

, (5)

where the coordinates of the centroid of the quadrotor are (xa, ya, za). According to Figure 1,
initial coordinate of the centroid of the quadrotor is (0, 0, 0), the coordinate of the centroid
of the reduced load mass during the working process is (0, 0, zc). Substituting it into
Formula (6), the coordinate of the centroid of the quadrotor can be obtained as (0, 0, za).

za = zcm/(M− ∆m). (6)

According to the Newton–Euler equation, the attitude dynamics equation can be
expressed as [27].

The attitude angle motion of the quadrotor satisfies the Newton–Euler equation, and
its attitude dynamic model can be expressed as [28,29]{

I3×3
.
τ

B
+ τB × I3×3τB = ςB

ςB = QB + f B
2 + PB

, (7)

where I3×3 = diag(Ix, Iy, Iz) is the inertia matrix; τB = [
.
φ

.
θ

.
ψ]

T
is the angular velocity;

ςB is the resultant moment; PB and QB are the pulling torque and reaction torque of

the four-wheel drive motor, respectively; f B
2 = [−lk f

.
φ −lk f

.
θ −k f

.
ψ]

T
is the matrix of

air resistance.

PB =

b1
√

l2 − z2
a(−L1 + L2 + L3 − L4)

b1
√

l2 − z2
a(−L1 − L2 + L3 + L4)

0

, (8)

QB =

 0

0

b2(L1 − L2 + L3 − L4)

. (9)

In summary, we can obtain attitude dynamics equation of the quadrotor.
..
φ = −lk f

.
φ/Ix + b1

√
l2 − z2

a(−L1 + L2 + L3 − L4)/Ix + (Iy − Iz)
.
ψ

.
θ/Ix

..
ψ = −k f

.
ψ/Iz + b2(L1 − L2 + L3 − L4)/Iz + (Ix − Iy)

.
φ

.
θ/Iz

..
θ = −lk f

.
θ/Iy + b1

√
l2 − z2

a(−L1 − L2 + L3 + L4)/Iy + (Iz − Ix)
.
φ

.
ψ/Iy

, (10)

where ψ, φ, and θ are the yaw angle, roll angle and pitch angle, respectively.
To simplify the quadrotor dynamic equation, (U1,U2,U3,U4) is used to represent the

relevant parameters.


U1

U2

U3

U4

 =


1

(M−∆M)
1

(M−∆M)
1

(M−∆M)
1

(M−∆M)

− b1
Ix

b1
Ix

b1
Ix

− b1
Ix

− b1
Iy

− b1
Iy

b1
Iy

b1
Iy

b2
Iz

− b2
Iz

b2
Iz

− b2
Iz




L1

L2

L3

L4

. (11)
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In summary, we can obtain the dynamic equation of the quadrotor.

..
x = −k f

.
x/(M− ∆m) + U1(sin φ sin ψ + cos ψ cos φ sin θ)

..
y = −k f

.
y/(M− ∆m) + U1(− sin φ cos ψ + sin ψ cos φ sin θ)

..
z = −k f

.
z/(M− ∆m)− g + U1 cos φ cos θ

..
θ = U3

√
l2 − z2

a + (Iz − Ix)
.
φ

.
ψ/Iy − lk f

.
θ/Iy

..
φ = U2

√
l2 − z2

a + (Iy − Iz)
.
θ

.
ψ/Ix − lk f

.
φ/Ix

..
ψ = U4 + (Ix − Iy)

.
φ

.
θ/Iz − k f

.
ψ/Iz

. (12)

Equation (13) can also be written as [30]{ .
x1 = x2
.
x2 = Au(n) + B + c

, (13)

where x1 =
[
z φ θ ψ

]T , u(n) =
[
U1 U2 U3 U4

]T ;

A =


cos θ cos φ 0 0 0

0
√

l2 − z2
a 0 0

0 0
√

l2 − z2
a 0

0 0 0 1

B =


−g− k f

.
z/(M− ∆M)

−lk f
.
φ/Ix + (Iy − Iz)

.
ψ

.
θ/Ix

−lk f
.
θ/Iy + (Iz − Ix)

.
ψ

.
φ/Iy

−k f
.
ψ/Iz + (Ix − Iy)

.
φ

.
θ/Iz

.

3. Control Scheme Design

Aiming at the problems of strong coupling, nonlinearity and mass change of the
quadrotor system, we proposed a control scheme combining BP neural network, adaptive
controller and LADRC. The BP-ALDRC control system of quadrotor under the condition of
continuous time-varying wind field disturbance and changing load quality is established.
Figure 2 is a block diagram of the control scheme.
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In this Figure, xd is the given signal,
[
z1 z2 z3

]
is the observation vector of LESO to

the system state variable,
[
β1 β2 β3

]
is the bandwidth gain vector of LESO,

[
γ1 γ2

]
is

the approximate value of the given signal and its differential, up is a nonlinear state error
feedback control law with PD controller output, u is the control law of the system, σ is
the error combination, k̂p, k̂d are the estimated values of PD controller parameters kp, kd,
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respectively, M̂c is the estimated value of load mass change Mc, x is the state variable of
the system, b0 is the compensation factor.

The advantage of using LADRC to control the quadrotor is that there is no need to
decouple the channels. LADRC directly estimates system internal disturbances such as
system coupling and environmental external disturbances in the working process as the
total disturbance for observation and compensation. Aiming at the difficulty of setting
LADRC parameters and avoiding errors caused by manual parameter adjustment, we use
adaptive control to adjust the PD controller parameters in real time.

4. Control Methodology
4.1. Design of LADRC Controller

The dynamic Equation (12) can be transformed into
.
ϑ1 = ϑ2
.
ϑ2 = q(t) + d(t) + Gu(x)

y = ϑ1

, (14)

where ϑ = [ϑ1 ϑ2]
T are measurable state variables; y is the output signal; f (t) is an unknown

nonlinear function of the system; d(t) is the external disturbance. G a is partially known,
and the known part is denoted as G0.

All uncertainties in the system and all disturbances received by the system are regarded
as the total disturbance, which is defined as

F(ϑ, u(ϑ)) = f (t) + [g(t)− b0]u(ϑ) + d(t). (15)

To observe the total disturbance, the extended state space is defined ζ = [ζ1 ζ2 ζ3],
where ζ1 = ϑ1, ζ2 =

.
ϑ1 and ζ3 = F(ϑ, u(ϑ)).

The nonlinear system (12) can be transformed into{ .
ζ = Mζ + Nu + Th

y = Uζ
, (16)

where M =

0 1 0
0 0 1
0 0 0

, N =

 0
b0
0

, T =

 0
0
1

, D =

 1
0
0

.

According to (16), LESO is designed as follows:{ .
z = Mẑ + Nu + γ(y− ŷ)

ŷ = Uz
, (17)

where z =
[
z1 z2 z3

]
is the state vector of the observer, which is used to observe the

state of system ζ = [ζ1 ζ2 ζ3]; γ = [γ1 γ2 γ3]
T is the observation gain vector of LESO.

The gain value of LESO is obtained from its characteristic equation:

λ(s) = s3 + ω1s2 + ω2s + ω3 = (s + ω0)
3, (18)

where ω0 is the bandwidth of LESO, denoted as ω = [3ω0 3ω2
0 ω3

0 ]
T .

Remark 1. The high bandwidth gain of LESO helps to improve the control accuracy of LADRC,
but it will cause the output of the controller to increase, and the actuator will consume more energy,
which is not conducive to the long-term flight of the quadrotor. This study introduces BP neural
network to improve the overall performance of the controller to solve this problem.
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The extended state space observation value of LESO is defined as ẑ1 = x̂1, ẑ2 = x̂2,
ẑ3 = F̂(x, u(n)). The control law can be written in the following form:

u = (up − ẑ3)/b0, (19)

where up = kp(xd − ẑ1) + kd(
.
xd − ẑ2) +

..
xd is the output of the PD controller.

4.2. Parameter Tuning Adaptive Law Design

By applying APC to dynamically adjust the kp and kd values in the PD controller, the
observation error caused by bandwidth selection is compensated. It can not only simplify
the controller parameter tuning process, but also improve the control precision of LADRC
and the dynamic performance of the system.

Remark 2. In order to simplify the adjustment of parameter kp, kd and avoid errors caused by
manual parameter adjustment, we introduce an adaptive law which can adjust kp, kd timely.
Formulas (36) and (37) provide the adaptive law of kp, kd.

Assumption 1: Assume that a given signal xd(t) is smooth and bounded such that
‖xd(t)‖ ≤ Xd is true. Here Xd is a known constant.

Define tracking error:
e1 = xd − z1. (20)

Derivation can be obtained as follows:

.
e1 =

.
xd −

.
z1 =

.
xd − z2. (21)

Define the filter tracking error:

σ =
[
ξT 1

][ e1.
e1

]
, (22)

where ξT = a1 is a suitable gain vector such that when σ→ 0 , e1 → 0 is satisfied.
Derivation of σ can be obtained:

.
σ =

..
xd −

.
z2 +

[
0 ξT][ e1.

e1

]
. (23)

From the output of LESO, we can obtain

.
x2 = q(t) + Nu(x) + d(t) = F(x, u(x)). (24)

The input of the control is as follows:

δ = −µσ + up −
[
0 ξT][ e1.

e1

]
, (25)

where µ is any positive number.
In summary, we can obtain

.
σ = −µσ + kp(xd − ẑ1) + kd(

.
xd − ẑ2). (26)

4.3. BP Neural Network Design

The continuous time-varying wind field disturbance and the continuous reduction of
the load mass will cause the control effect of the controller to deteriorate. LESO observes
the system status and the total disturbance. However, in the face of continuous time-
varying wind field disturbance and changing load quality, the fixed observer bandwidth
will lead to larger observation errors and worse control effects. To solve this problem, this
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research employs BP neural network (BP) to adjust the bandwidth gain value of LESO
online, enhance the observation performance of LESO, and compensate for adverse effects
of wind disturbances and changes in load mass.

Remark 3. LESO can observe each state variable and total disturbance of the quadrotor system
according to the input and output of the system. However, due to the discretization of the observer,
the bandwidth value of the LESO cannot exceed the sampling period of the system, otherwise it
will lead to the divergence of the LESO observations. If the bandwidth value is small, the LESO
observation accuracy will be low. Therefore, we introduce APC to compensate the observation error
caused by bandwidth selection by dynamically adjusting the kp and kd values in the PD controller,
so as to improve the control accuracy of LADRC and the dynamic performance of the system. This
approach will make LADRC more adaptable and extensive.

The structure of BP is shown in Figure 3.
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The output error is defined as

e2 = xd − x1, (27)

where xd is a given signal, x1 is the state variable of the system; derivation of e2 can be
obtained in the following way:

.
e2 =

.
xd −

.
x1 =

.
xd − x2. (28)

The input of BP neural network can be expressed as

IN =
[
e2

.
e2
]T . (29)

The input and output of the hidden layer are Hin
a =

6
∑

a=1
jina · IN

Hout
a = tan sig

(
Hin

a
) a = 1, 2, 3, 4, 5, 6. (30)
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The hidden unit is 6, and the excitation function adopts the tangent sigmoid
transfer function:

tan sig(k) =
2

e−2k + 1
− 1. (31)

Remark 4. BP neural network adjusts the bandwidth gain vector
[
β1 β2 β3

]
of LESO in real

time according to the error information of the system. When the system produces output error, the
BP neural network will output and adjust

[
β1 β2 β3

]
according to the system error information

to reduce the observation error of LESO, thereby reducing the system output error and improving
the control accuracy of the system.

The BP neural network that adjusts the LESO bandwidth gain value is divided into
three layers of network structure; the input signal of the BP is output error e2, the differential
signal

.
e2 of the output error and the bias value k. The number of neurons in the hidden

layer is 6 to ensure the strong ability of BP neural network to approximate the error. The
output layer contains three neurons, corresponding to the gain vector of LESO. The output
of BP neural network can be expressed by the following Formula (34):

y(k) = f

(
l

∑
i=1

ωikg

(
M

∑
m=1

ωmivm

))
. (32)

Since the BP neural network will normalize the input signal
[
e2

.
e2
]
, its output signal

will also be mapped to the range
(
−1 1

)
, so the output of the BP cannot be directly used

as the bandwidth gain value of LESO. To make the BP−ALADRC controller converge, the
output is denormalized to meet the requirement of the gain vector

[
β1 β2 β3

]
of LESO

in the BP−ALADRC controller. The gain vector of LESO can be obtained as

βk = β′k + f

(
l

∑
i=1

ωik f

(
M

∑
m=1

ωmivm

))
·k. (33)

4.4. Mass Change Adaptive Law Design

The mass of the load carried by the quadrotor may change continuously during the
actual working process, which is not conducive to the stability of the system. Therefore, we
establish a mass adaptive law based on the height channel to reduce the adverse effects of
mass changes on system stability.

According to Formula (12), we can obtain

.
χz = U1 cos θ cos φ− g− k f

.
z/(M− ∆m)− ..

zd +
[
0 ξT][ e1.

e1

]
. (34)

According to the equivalent deterministic principle, we can obtain

U1 =

−αχz −
[
0 ξT][ e1.

e1

]
+

..
zd + g + k f

.
z/(M− ∆m̂)

cos φ cos θ
, (35)

where α > 0 is an adjustable parameter. Bringing (37) into (36) can obtain

.
χz =

k f
.
z

M− ∆M̂
− αχz −

k f
.
z

M− ∆M
. (36)

Then, M̂g = 1
M − ∆m̂ , Mg = 1

M − ∆m are defined, then the estimation error can be
expressed as

M̃g = M̂g −Mg. (37)
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Substituting Formula (39) into Formula (38) can obtain

.
χz = −αχz + k f

.
zM̂g − k f

.
zMg. (38)

5. Stability Analysis

To ensure that the system tracking error converges to the zero neighborhood, we
design the following adaptive law:

.
k̂p = [δkp(xd − ẑ1)ϕ]/k̃p, (39)

.
k̂d = [δkd(

.
xd − ẑ2)ζ]/k̃d, (40)

.
M̂g = κ

.
χzk f

.
z. (41)

Remark 5. To avoid k̃p and k̃d being zero,
.
k̂p and

.
k̂d are integrated. The above formula can be

rewritten as

k̂p =
∫ t

0
[δkp(xd − ẑ1)ϕ]/k̃pdτ + kp0, (42)

k̂d =
∫ t

0
[δkd(

.
xd − ẑ2)ζ]/k̃ddτ + kd0. (43)

Appropriate constants kp0 and kd0 are chosen to make k̃p = kp − k̂p and k̃d = kd − k̂d
non-zero.

Proof of Theorem 1. A positive definite Lyapunov function is designed as follows.

V =
1
2

σ2 +
1
2

χ2
z +

1
2

k̃p ϕk̃p +
1
2

k̃dζ k̃d +
1
2

M̃gκM̃g. (44)

Taking the derivative of Equation (46),

.
V = σ

.
σ + χz

.
χz + k̃p ϕ−1

.

k̃p + k̃dζ−1
.

k̃d + M̃gκ−1
.

M̃g. (45)

Bringing (31) and (40) into (47) can obtain

.
V = σ

[
−µσ + k̂p(νd − ẑ1) + k̂d(

.
νd − ẑ2)

]
+ χz

[
−αχz + k f

.
zM̂g − k f

.
zMg

]
+k̃p ϕ−1

.

k̃p + k̃dζ−1
.

k̃d + M̃gκ−1
.

M̃g

= −µσ2 + k̂p(νd − ẑ1)σ− αχ2
z + k f

.
zM̂gχz + k̂d(

.
νd − ẑ2)σ− k f

.
zMgχz

+k̃p ϕ−1
.

k̃p + k̃dζ−1
.

k̃d + M̃gκ−1
.

M̃g

≤ −µσ2 + k̂p(νd − ẑ1)σ− αχ2
z + k f

.
zM̂gχz + k̂d(

.
νd − ẑ2)σ− k f

.
zMgχz

−k̃p ϕ−1
.

k̃p + k̃dζ−1
.

k̃d + M̃gκ−1
.

M̃g

(46)

Bringing (41), (42) and (43) into (48) can obtain

.
V ≤ −µσ2 + k̂p(νd − ẑ1)σ− αχ2

z + k f
.
zM̂gχz + k̂d(

.
νd − ẑ2)σ− k f

.
zMgχz

−k̃p ϕ−1[δk̂p(νd − ẑ1)ϕ]/k̃p + k̃dζ−1[δkd(
.
νd − ẑ2)ζ]/k̃d + M̃gκ−1κ

.
χzk f

.
z

(47)
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Formula (49) is simplified to obtain

.
V ≤ −µσ2 − αχ2

z , (48)

where µ and α are positive parameters. Simplifying Equation (49) can obtain

.
V ≤ 0. (49)

Through the above analysis, according to the Lyapunov stability theory, it can be
proved that the system is uniformly stable.

According to Barbalat theorem, we can obtain

lim
t→∞

χz(t) = 0, lim
t→∞

δ(t) = 0. (50)

Therefore, when t→ ∞ , δ(t)→ 0 ; this can prove that the quadrotor system is asymp-
totically stable.

6. Simulation Results and Discussion

The designed controller is tested through numerical simulation in MATLAB. The
following three control methods are employed to carry out comparative simulation experi-
ments on the loaded quadrotor. The initial state selected during simulation is

[
0 0 0

]
rad,[

0 0 0
]
m. The quadrotor model parameters are shown in Table 1.

Table 1. Parameters of the quadrotor model.

Symbol Value

k 0.21 Ns2/rad2

M 5 kg
Ix 0.8 kg ·m2

Iy 0.8 kg ·m2

Iz 1.5 kg ·m2

g 9.8 m/s2

l 0.15 m

Case Study 1. Quadrotor mass M = 5 kg, load mass m = 3 kg; given input signal:
Zd = 6 m, θd = 35 ◦, φd = 45 ◦, ψd = 55 ◦. The simulation results of BP−ALADRC
are compared with LADRC and DSADRC. Figure 4 is the output curves, and Figure 5
is the output curves and error curves. In the altitude channel, BP−ALADRC has the
fastest tracking speed, BP−ALADRC and DSADRC can reach stability within 1 s and
1.2 s, respectively, while LADRC needs 2.3 s to achieve stable tracking. In the channels of
pitch and row angle, while maintaining fast track speed, BP−ALADRC has significantly
less overshoot than DSADRC and LADRC. In the yaw angle channel, BP−ALADRC
was significantly faster to respond. In summary, the BP−ALADRC controller has the
fastest tracking speed and smallest overshoot compared to DSADRC and LADRC, and
can quickly and stably reach system stabilization, which proves the effectiveness of the
BP−ALADRC controller.
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Case Study 2. In this test, we use BP−LADRC without PD adaptive law as a comparison.
To simulate the external interference received by the quadrotor during the working process,
we use Gaussian white noise with a variance of 2.5 and a mean value of 0 to represent the
external interference. As shown in Figure 6.
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According to Figures 7 and 8, when the quadrotor is disturbed, the tracking curve
fluctuation of BP−ALADRC to the reference input is the smallest; BP−ALADRC has the
fastest tracking speed, while LADRC has the slowest tracking speed; the overshoot of
BP−ALADRC is significantly smaller than that of BP−LADRC without PD adaptive law; to
sum up, the introduction of BP can reduce the overshoot and speed up the system response
speed. At the same time, the addition of the PD adaptive law further increases the stability
of the system, eliminates the adverse effects of parameter deviations on the system, further
reduces the system overshoot. Meanwhile, system response speed is further accelerated in
the height channel, and the control effect of the controller is improved.
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From Figure 9, when the quadrotor is affected by external disturbances, the parameters
kp and kd of the PD controller will be adjusted timely on the basis of the system state, which
can eliminate the parameter deviation.
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Figure 9. kp and kd adaptive values: (a) kp adaptive value; (b) kd adaptive value.

Case Study 3. The load mass carried by the quadrotor will change in real time; in this
test, we make the load mass decrease continuously, and the system input signal remains
unchanged. The BP−ALADRC controller is compared with mass adaptive control law and
the BP−ALADRC controller without mass adaptive control law. Figure 10 is a load mass
change diagram.
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Figures 11 and 12 show that the BP−ALADRC with the mass adaptive law can
effectively reduce the error caused by the load mass change, and the BP−ALADRC without
the mass adaptive law has significantly larger overshoots in the pitch angle and roll angle
channels. At the same time, the response speed of the system is not as good as that of the
BP−ALADRC controller with the quality adaptive law.
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Figure 11. System output: (a) Altitude and Roll angle output; (b) Pitch and Yaw angle output.
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output errors.

In Case Study 1, the control scheme designed in this paper and the control methods of
LADRC [30] and DSADRC are applied to the attitude control of the quadrotor system. It
can be seen that the controller designed in this paper has less overshoot and faster response
speed in the dynamic response process. In Case Study 2, we conducted interference
experiments. By adding white noise interference to the system, we verified that the
controller has a strong ability to suppress interference. Finally, Case Study 3 shows that the
controller has strong adaptability to the change of load mass. All the above case studies
show that the designed controller can track the given signal quickly and stably, effectively
reducing the adverse effects of interference on the quadrotor system. It is proved that the
controller designed in this paper has more significant signal tracking ability, interference
suppression ability and better system adjustment ability. In addition, the introduction
of adaptive control effectively compensates the observation error of LESO, making the
controller more robust. Finally, when the load mass of the quadrotor changes, the designed
mass adaptive law can effectively overcome the adverse effects of mass changes on the
system and enhance the stability of the system.

7. Conclusions

In order to improve the attitude control performance of the quadrotor, this paper
considers the change of the load mass of the quadrotor, establishes a dynamic model
of the quadrotor with variable mass, and designs a composite control scheme based on
LADRC. For the problems of many parameters of LADRC controller, difficult adjustment
and large error of manual parameter adjustment, this paper proposes BP neural network
and adaptive control to optimize and adjust LADRC parameters. The BP neural network
is used to dynamically optimize and adjust the bandwidth value of LESO in real time,
which improves the disturbance observation accuracy of the system. At the same time, the
introduction of adaptive control reduces the observation error of LESO and the parameter
deviation of PD controller. These ensure the stability of the quadrotor system in the
complex and changeable working environment. Finally, all the case studies show that for
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the same given attitude angle and altitude, the designed control system has the advantages
of small overshoot, fast system response and strong robustness compared with LADRC
and DSADRC controllers. In addition, the designed mass adaptive law can also effectively
reduce the adverse effects of load mass changes on the system and further enhance the
stability of the system. At present, due to the limitations of experimental conditions,
this paper only carried out theoretical research. In the future work, we will verify the
effectiveness of the control scheme in practical applications.
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