
Citation: Wang, Y.; Ma, Z.; Yang, Z.

Sequential Characteristics Based

Operators Disassembly Quantization

Method for LSTM Layers. Appl. Sci.

2022, 12, 12744. https://doi.org/

10.3390/app122412744

Academic Editor: Luis Javier Garcia

Villalba

Received: 1 November 2022

Accepted: 7 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Sequential Characteristics Based Operators Disassembly
Quantization Method for LSTM Layers
Yuejiao Wang , Zhong Ma * and Zunming Yang

Xi’an Microelectronics Technology Institute, Xi’an 710065, China
* Correspondence: mazhong@mail.com; Tel.: +86-187-1089-0519

Abstract: Embedded computing platforms such as neural network accelerators deploying neural
network models need to quantize the values into low-bit integers through quantization operations.
However, most current embedded computing platforms with a fixed-point architecture do not directly
support performing the quantization operation for the LSTM layer. Meanwhile, the influence of
sequential input data for LSTM has not been taken into account by quantization algorithms. Aiming
at these two technical bottlenecks, a new sequential-characteristics-based operators disassembly quan-
tization method for LSTM layers is proposed. Specifically, the calculation process of the LSTM layer
is split into multiple regular layers supported by the neural network accelerator. The quantization-
parameter-generation process is designed as a sequential-characteristics-based combination strategy
for sequential and diverse image groups. Therefore, LSTM is converted into multiple mature op-
erators for single-layer quantization and deployed on the neural network accelerator. Comparison
experiments with the state of the art show that the proposed quantization method has comparable
or even better performance than the full-precision baseline in the field of character-/word-level lan-
guage prediction and image classification applications. The proposed method has strong application
potential in the subsequent addition of novel operators for future neural network accelerators.

Keywords: embedded neural network accelerator; operators disassembly quantization method;
quantization parameter generation process; sequential characteristics based combination strategy

1. Introduction

In order to realize high-speed and low-power operations, embedded neural network
accelerators generally only support low-precision numerical operations, such as 8-bit or
4-bit low-bit integer operations. In contrast, the original numerical precision of neural net-
work models is generally 32-bit floating-point numbers. Therefore, quantization algorithms
need to be employed to compress the original network by reducing the number of bits
of precision required to represent weights or activations [1]. In the calculation process of
the neural network accelerator deployed with the quantization algorithm, the number of
data transfers can be effectively reduced, the bottleneck of transmission bandwidth can
be reduced, and the calculation speed can be improved [2]. Quantization converts the
floating-point value of the neural network into a fixed-point integer value with a set of scale
factors. These scale factors, sometimes also called quantization parameters, are calculated
according to the dynamic range threshold and quantization bit width of the floating-point
data during the conversion process. When the upper and lower boundaries of the data
dynamic range threshold are symmetrical, it is called a symmetric quantization, and when
they are asymmetrical, it is called asymmetric quantization. The goal of a quantization
algorithm is to determine the quantization parameters of a neural network model.

This paper is an extended version of a conference paper [3]. Unlike the conference
paper, the method proposed here determines a quantization parameter generation method
for the LSTM layer for processing sequential features. Multi-bit quantization retraining is
added to be supported on CPU/GPU. This method is universal, the corresponding classical

Appl. Sci. 2022, 12, 12744. https://doi.org/10.3390/app122412744 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412744
https://doi.org/10.3390/app122412744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5910-9439
https://doi.org/10.3390/app122412744
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412744?type=check_update&version=2

Appl. Sci. 2022, 12, 12744 2 of 22

benchmark datasets are selected for evaluating different applications such as character-level
language prediction, word-level language prediction, and image classification.

Many of the most widely used AI applications are now based on Long Short-Term
Memory (LSTM) recurrent neural networks (RNNs), which learn from experience to solve
all kinds of previously unsolvable problems. The LSTM principle has become a foundation
of what is now called deep learning, especially for sequential data. LSTM-based systems
can learn to translate languages; control robots; analyze images; summarize documents;
recognize speech, videos, and handwriting; run chatbots; predict diseases, click rates, and
stock markets; compose music; and much more [4].

LSTM is mainly used to perform tasks in sequential data processing. It can effec-
tively solve the problem of gradient explosion in RNN and can effectively capture the
dependencies between contexts. In these real-time machine learning applications with
sequential features, LSTM is severely limited by latency, energy, and size. In order to
improve hardware efficiency, many researchers have proposed the use of the quantization
technology of intelligent algorithms to relieve the technical pressure of platform computing
power and improve computing efficiency.

However, there are two technical bottlenecks regarding LSTM quantization: one is the
embedded computing platform, and the other is the quantization algorithm itself. We will
start with a general overview from these two perspectives.

Technical Bottleneck 1: Most of the current embedded computing platforms do not
directly support performing the quantization operation for the LSTM layer. There are two
difficulties: (1) such hardware interfaces rely too much on neural network models; (2) there
is a lack of quantization tools to support LSTM calculation.

Technical Bottleneck 2: The influence of sequential input properties of LSTM has not
been taken into account by quantization algorithms. There are two problems: (1) ordinary
quantization calibration images, which are used for regular layers, do not have sequential
characteristics; (2) quantization calibration images adapted to LSTM do not ensure the
diversity of quantization.

Aiming at these two technical bottlenecks in both the embedded computing platform
and the quantization algorithm, this paper proposes a sequential-characteristics-based
operators-disassembly-quantization method for LSTM layers. There are two innovations in
this proposed method to improve the technical bottlenecks described above:

(1) We design an operators disassembly quantization process for the LSTM layer, so
that the neural network accelerator can support the LSTM layer on the embedded
platform.

(2) The quantization parameter generation process is designed as a sequential-characteristics-
based combination strategy for LSTM quantization calibration. The advantages of this
design are that sequential characteristics are added to the quantization algorithms.
It breaks through the limitations of existing quantization methods that rely on the
quantization calibration sets to be still images and can only support model structure
with traditional layer types.

2. Related Works

The main acceleration targets of the current neural network accelerators on the em-
bedded Field Programming Gate Arrays (FPGA) platform [5] are typical neural network
operators, such as convolution, full connection, pooling, etc. However, with the increasing
complexity of the problems solved by deep learning technology, some new types of complex
operators have gradually emerged, which are mainly represented by variant form models
of RNN [6], such as LSTM [7] and GRU [8]. The RNN neural network model is widely used
in the field of natural language processing, but it has problems with vanishing or exploding
gradients when processing large amounts of text.

The improved form of RNN is LSTM, which introduces three gated structures, the
forget gate, the input gate, and the output gate, in the unit, which can effectively solve this
problem. The forget gate is responsible for the selective deletion of the input information

Appl. Sci. 2022, 12, 12744 3 of 22

and the hidden state information output by the previous unit, the input gate is responsible
for selectively storing the retained new information into the unit state, and the output gate
is responsible for selectively outputting the information in the unit state to the hidden layer.

LSTM removes or adds information to the cell state, called gates: input gate (it), forget
gate (ft), output gate (ot), cell input vector (gt), cell state vector (ct), and hidden state vector
(ht) can be defined as follows:

it = sigmoid(Whi ∗ ht−1 + Wxi ∗ xt + bi) (1)

ft = sigmoid(Wh f ∗ ht−1 + Wx f ∗ xt + b f) (2)

ot = sigmoid(Who ∗ ht−1 + Wxo ∗ xt + bo) (3)

gt = tanh(Whg ∗ ht−1 + Wxg ∗ xt + bg) (4)

ct = (ft. ∗ ct−1) + (it. ∗ gt) (5)

ht = ot. ∗ tanh(ct) (6)

where Wxi, Wx f , Wxo, Wxg is the weight matrix of the input node; Whi, Wh f , Who, Whg is the
weight matrix of the hidden state; and bi, b f , bo, bg is the bias term.

LSTM has been widely used in various sequential data predictions [9]. In the field
of text processing, LSTM can perform text classification, text sequence annotation, text
translation, image generation text, text-generated speech, speech recognition [10], etc. In the
field of computer vision, LSTM is primarily used for video classification, image annotation,
video annotation [11], and recently popular visual Q&A. In the field of engineering practice,
computation offloading in mobile edge computing can also be predicted by LSTM [12].

The quantization for LSTM compresses the original LSTM network by reducing the
numerical bit width of the model and reducing the calculation and inference time, and it
has a direct relationship with the hardware. The specific quantization process for most
quantization algorithms is as follows. It uses the layers as the basic processing unit.
First, the distribution and range of weight and output data of each layer of the neural
network model are analyzed in advance. Then, each floating-point value is represented by
a low-bit integer based on the uniform-symmetric [13] quantization strategy. Finally, the
quantization-calibrated weights and activation thresholds, namely quantization parameters,
are calculated to generate a guide file for the neural network accelerator to map floating-
point data into integer data.

The quantization strategy of mapping floating-point data to integer data is to select
a reasonable threshold based on the dynamic range of the data to ensure that the loss of
information is minimized. Therefore, the original information is truncated before mapping
through the threshold, and it is mapped to a low bit-precision range. This avoids the
problem of wasted dynamic range resources. There are many quantization strategies for
selecting thresholds, such as the minimum–maximum (MIN–MAX) quantization strategy
used by Tengine, which makes the absolute maximum value the threshold value. Taking
8-bit quantization as an example, we can see that it is proportionally mapped to the
range of plus or minus 127. This simple MIN–MAX clipping only works for uniform
distributions. When the data are non-uniformly distributed, the loss of dynamic range
can cause a considerable loss of accuracy. Most users, such as NVIDIA, have proposed
using the KL-divergence (KLD)-based method [14] to measure the degree of difference in
the distributions before and after the quantization to find the optimal threshold value. KL
divergence has some disadvantages, such as being unbounded asymmetric, and the results
obtained are meaningless if the two distributions do not overlap. There are also some other
quantization strategies that use the average–maximum (AVG–MAX), Easy Quant [15], etc.,
to determine the optimal threshold value. AVG–MAX takes the average value according to
the change in value, taking into account the principles of simplicity and balance. EasyQuant
achieves close to Int8 and Float32 performance even at Int7 or lower bits. However, its
accuracy and performance advantages over KLD are mainly reflected in the int7 type, and

Appl. Sci. 2022, 12, 12744 4 of 22

the accuracy of int8 seems similar to KLD. Google’s TensorFlow [16] applies exponential
moving averages (EMA) for the activation quantization, which calculates the bounds of
activations on the fly. It modifies the bounds after each iteration, which is too frequent to be
suitable for quantization parameter learning. The comparison table of key characteristics
and limitations of different quantization strategies is shown in Table 1.

Table 1. Comparison table of key characteristics and limitations of quantization strategies.

Quantization
Strategy

Presenter/
Researcher Characteristics Limitations

MIN-MAX Tengine

The principle is simple, the
operation is fast and efficient,
and it is suitable for uniform

distribution.

Non-uniform distribution of
data results in a significant

loss of accuracy.

KLD NVIDIA

Measure the degree of
difference in the distributions

before and after the
quantization to find the
optimal threshold value.

Unbounded, asymmetric,
and the results obtained are

meaningless if the two
distributions do not overlap.

Easy Quant /
Achieves close to Int8 and

Float32 performance even at
Int7 or lower bits.

The accuracy of int8 seems to
be similar to KLD.

AVG-MAX /
Taking into account the

principle of simplicity and
balance.

Same as MIN-MAX.

EMA TensorFlow Calculates the bounds of
activations on the fly.

Frequently modifying
boundaries is not suitable for

quantization parameter
learning.

Ours /

It is a general quantization
method that can use many of

the quantization strategies
described earlier.

Offline quantization training
is complex and

time-consuming.

We want to achieve LSTM quantization that performs as well as quantization on the
regular layers. For this purpose, we analyze previous quantization methods and observe
that, at present, the quantization of the LSTM layer still has the following two problems:

(1) LSTM has not only high-density computation such as matrix-vector multiplication [17]
but also has complex control flow, which will significantly affect the execution speed
of LSTM [18]. It is implemented on a specific FPGA platform [19]. However, such
hardware interfaces rely too much on neural network models and hardware platforms
and lack generality [20].

(2) Most of the current general-purpose neural network accelerators cannot directly
support the quantization calculation of LSTM. Firstly, the LSTM layer cannot be
directly executed by the neural network accelerator on the embedded FPGA platform.
Secondly, there is a lack of quantization tools to support LSTM calculation [21]. Even if
the LSTM layer is converted into an existing regular layer, the traditional quantization
calibration methods are still applied; i.e., sequential characteristics are not taken into
account. That is, all quantization calibration sets are repeatedly fed into each time
step of the LSTM as input. The activation quantization threshold is selected according
to the distribution of layer-by-layer output data, regardless of the size of the time
step [22]. It is very easy to cause the quantization dataset of the LSTM layer not to
have diversity and sequential consistency, which in turn leads to a considerable loss
of quantization accuracy.

Appl. Sci. 2022, 12, 12744 5 of 22

Therefore, aiming at the neural network model fused with LSTM layers based on
sequential data, it is necessary to design a quantization method for neural network models
that integrates the LSTM layer.

That is, on the one hand, the LSTM layer is split from the software level into multiple
basic operators supported by the neural network accelerator, so that the neural network
accelerator can support the LSTM layer on the embedded platform, and it can be combined
with the traditional model quantization algorithm to broaden the scope of application of
the quantization algorithm.

On the other hand, the combination strategy using quantization calibration sets takes
into account the sequential characteristics of the LSTM layer. The combined images are
designed for the quantization calibration of regular layers. When encountering the LSTM
layer, according to the time step of LSTM, the diverse image groups are gradually sent to
each time step, where each diverse image group has sequential characteristics. It solves
the hardware deployment problem of the sequential forecasting model and improves the
accuracy of the quantization algorithm. This not only ensures the diversity and scientificity
of quantization but also improves the quantization accuracy of models with LSTM layers.

3. Proposed Methodology
3.1. Problem Definition

The quantization method for LSTM layers deployed on neural network accelerators
discussed in this paper is as follows.

(1) The embedded computing platforms such as the neural network accelerator deploy-
ing the neural network models need to quantize the values into low-bit integers
through quantization operations. However, most of the current embedded comput-
ing platforms with a fixed-point architecture do not directly support performing the
quantization operation for the LSTM layer. The original structure of LSTM consists
of 6 types of mapping as shown in Equations (1)–(6), named {it, ft, ot, gt, ct, ht}, re-
spectively. However, embedded computing platform (such as NPU) can only handle
mapping cases with linear or nonlinear relationships such as Y = A + B, Y = A · B or
Y = f (A). Therefore, we divide the LSTM layer into a set of regular layers, and its
computation process is a combination of the fully connected layer (FC), the Eltwise
layer (Eltwise Add, Eltwise Prod), and the nonlinear layer (Sigmoid, Tanh). That is, as
shown in Equation (7), we strive to find a correspondence ϕ between the LSTM and
the NPU in this paper, and split and map the LSTM into a certain type of Y supported
by NPU.

ϕ(LSTM) =



ϕ(it)
ϕ(ft)
ϕ(ot)
ϕ(gt)
ϕ(ct)
ϕ(ht)

 =


A + B
A · B
f (A)

 = Y (7)

(2) LSTM is mainly used to perform tasks in sequential data processing. However,
the influence of sequential input data of LSTM has not been taken into account
by quantization algorithms. Aiming at this bottleneck, the goal of the proposed
quantization algorithm is to determine the quantization parameters of neural network
models with the LSTM layer and deploy them on the NPU. The original numerical
precision of neural network models is generally 32-bit floating-point numbers. The
core computation of a 32-bit floating-point model can be expressed as Y = W · X.
Since NPU only supports integer matrix multiplication, quantization converts the
floating-point weight W and activation X of the neural network into a fixed-point
integer value Wq and Xq by φ(x), as shown in (8), where a and b are called quantization
parameters.

Appl. Sci. 2022, 12, 12744 6 of 22

φ(x) = φ(round(ax + b)) =
(

φ(W)
φ(X)

)
=

{
Wq
Xq

}
(8)

Therefore, the calculation of Yq = Wq · Xq can be performed on the NPU. However,
it will cause Yq 6= Y. Therefore, Yq needs to be inversely quantized to Y by Y = φ−1(Yq).
Then, finding the reasonable values of the quantization parameters a and b becomes the
problem that needs to be solved in this paper.

3.2. Overall Method Design

The proposed quantization method combines the quantization operation with the
neural network accelerator hardware. It is described in detail below. First of all, the
operators’ disassembly is designed so that the calculation process of LSTM is split into
layer-by-layer calculation sequences. Then, the quantization calibration process is designed
as a sequential-characteristics-based combination strategy for sequential and diverse image
groups. The input and output vectors of the separated LSTM are reasonably connected to
the existing traditional type layer. Finally, the quantization parameters are generated and
deployed on the embedded computing platform (such as NPU) for accuracy calculation
testing.

In this section, we begin specific hardware and software deployment design processes.
In order to design a quantization deployment scheme for LSTM layers and verify the
effectiveness of the scheme, it is necessary to deploy models on different platforms for
specific data sets, including PC and NPU. Quantization is carried out for the hardware
platform. Finally, the model inference outputs on different platforms are classified and
predicted, and the accuracy evaluation is given. The overall design process is shown in
Figure 1.

The overall method design consists of four parts; dataset configuration, model deploy-
ment for different platforms, LSTM sequential quantization, and classification prediction.
The specific breakdown is as follows:

• Part I: Firstly, configure a reasonable dataset set for different platforms. Secondly,
set up a certain number of quantization calibration sets for the hardware platform.
Thirdly, design the quantization calibration process as a sequential-characteristics-
based combination strategy for sequential and diverse image groups. See Section 3.4
for details.

• Part II: On the PC side, the model is pushed forward based on the Caffe deep learning
software framework. On the NPU side, the quantization deployment of the hardware
platform is carried out. For a neural network model with both regular and LSTM
layers, the existing uniform-symmetric quantization is performed on the regular and
LSTM layers.

• Part III: The detailed process of LSTM layer quantization on the hardware platform is
as follows: the LSTM layer is divided into a set of regular layers, and its computation
process is a combination of the fully connected layer (FC), the Eltwise layer (Eltwise
Add, Eltwise Prod), and the nonlinear layer (Sigmoid, Tanh). It is reasonably connected
with other regular layers of the model to generate quantization parameters and deploy
them on the neural network accelerator. See Section 3.3 for details.

• Part IV: Finally, the quantized output of the NPU side is inverse-quantized to a floating-
point representation type. The model outputs on the PC and NPU side are separately
classified and predicted, and the accuracy evaluation results are given.

The proposed method determines a quantization-parameter-generation method for
the LSTM layer for processing sequential features. Multi-bit quantization retraining is
supported on CPU/GPU. This method is implemented entirely on a hardware with a fixed-
point architecture. Once complex quantization training is completed offline, the quantized
LSTM model can be directly deployed on the embedded neural network accelerator. It not
only quickly implements the support of the embedded computing platform for the LSTM
but also effectively improves the quantization accuracy of the model.

Appl. Sci. 2022, 12, 12744 7 of 22Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 23

FC

Benchmark Dataset

Deployment on
different platforms

FC Eltwise
Add

Eltwise
Prod Sigmoid Tanh

Quan
tiza
tion

Quan
tiza
tion

Quan
tiza

tion

Quan
tiza

tion

Quan
tiza

tion

Final Forecast

Caffe
Forward

Regular layer
quantization

Quantize LSTM layers in units
of split layer types

LSTM
sequentia

l
quant

ization

Preprocessing

Group Configuration

Softmax
Layer

Accuracy
Evaluation

Model
output

LSTM layer
quantization

NPU NPU

Inverse quantize the
output to floating point

Datas
et

C
onfig

uration
model

 deployme
nt for

diffe
rent plat

forms
Class

ification

P
redic

tion

PC
infer

ence

NPU
infer

ence

Figure 1. Overall method design process.

The overall method design consists of four parts; dataset configuration, model de-
ployment for different platforms, LSTM sequential quantization, and classification pre-
diction. The specific breakdown is as follows:
• Part I: Firstly, configure a reasonable dataset set for different platforms. Secondly, set

up a certain number of quantization calibration sets for the hardware platform.
Thirdly, design the quantization calibration process as a sequential-characteristics-
based combination strategy for sequential and diverse image groups. See Section 3.4
for details.

• Part II: On the PC side, the model is pushed forward based on the Caffe deep learning
software framework. On the NPU side, the quantization deployment of the hardware
platform is carried out. For a neural network model with both regular and LSTM
layers, the existing uniform-symmetric quantization is performed on the regular and
LSTM layers.

• Part III: The detailed process of LSTM layer quantization on the hardware platform
is as follows: the LSTM layer is divided into a set of regular layers, and its computa-
tion process is a combination of the fully connected layer (FC), the Eltwise layer (Elt-
wise Add, Eltwise Prod), and the nonlinear layer (Sigmoid, Tanh). It is reasonably

Figure 1. Overall method design process.

3.3. LSTM Operators Disassembly Design

The LSTM is a specific network layer in the neural network model, but the compu-
tational logic of this layer is more complex than the typical layer. The input of the LSTM
layer is x and Cont, and the output is h. x is a tensor of (T, I), where T is the time step and
I is the input feature dimension. Cont is a continuity identifier, consisting of 0, 1, where
0 means start and 1 means continuous, and the dimension is T. h is a tensor of (T, O), where
O is the output feature dimension.

LSTM first divides the calculation into T small computing units and then divides x into
T (1, I) tensors equally according to the size of the time step T, named {x0, x1 · · · xt, · · · xT−1},
respectively. These T divided inputs will be used as the input xt of each computational unit
in the LSTM. It is worth noting here that h0 and c0 are all-zero tensor sequences (1,O), and
ht and ct are the result of the previous ht−1 and ct−1. Finally, the sequence of T tensors (1,
O) from h0 to hT−1 are combined into one output h (T, O) as the output of the LSTM layer.

In the specific Caffe implementation process, the input of LSTM can be expressed as
Wh ∗ h+Wx ∗ x+ b, so we use two fully connected layers to replace the matrix multiplication
operations in Equations (1)–(4). The first is Wx × x + b, and the second is Wh × h, where
Wx = [Wxi, Wx f , Wxo, Wxg], Wh = [Whi, Wh f , Who, Whg], b = [bxi, bx f , bxo, bxg].

Appl. Sci. 2022, 12, 12744 8 of 22

In terms of layer type, Equations (1)–(6) are divided into the LSTM layer operation
processes calculated in the following 9-layer order:

Layer 1—FC layer:
data_ f c1 = Wx ∗ xt + b (9)

Layer 2—FC layer:
data_ f c2 = Wh ∗ ht (10)

Layer 3—Eltwise Add layer:

data_sum = data_ f c1 + data_ f c2 (11)

Layer 4—Non-linear layer:

data_it = sigmoid(data_sum[0 : O])
data_ f t = sigmoid(data_sum[O : 2 ∗O])

data_ot = sigmoid(data_sum[2 ∗O : 3 ∗O])
data_gt = tanh(data_sum[3 ∗O : 4 ∗O])

(12)

Layer 5—Eltwise Prod layer:

eltwise1 = data_it ∗ data_gt (13)

Layer 6—Eltwise Prod layer:

eltwise2 = data_ f t ∗ data_ct (14)

Layer 7—Eltwise Add layer:

data_ct = eltwise1 + eltwise2 (15)

Layer 8—Non-linear layer:

data_ct_tanh = tanh(data_ct) (16)

Layer 9—Eltwise Prod layer:

data_ht = data_ot ∗ data_ct_tanh (17)

Because hardware accelerators can only process integer data, when we perform non-
linear function operations, there are two steps in total. The first step is to build a nonlinear
lookup table in the quantization software. If there are two nonlinear functions, two lookup
tables are created. The specific operation is to first dequantize all integer values in the bit
width range to a floating point according to the inverse of Equation (8). The dequantized
floating-point values are then mapped according to the nonlinear functions sigmoid and
tanh, respectively. Finally, the mapped value is quantized to an integer again according
to Equation (8). The sequence of input integers and output integers form a lookup table.
The second step is to feed the lookup table into the neural network accelerator. The corre-
sponding rules between the source register and the destination register are used to map
one-by-one to complete the calculation of the nonlinear layer.

3.4. LSTM Sequential Quantization Design

The LSTM layer is disassembled and becomes a collection of many regular layers, and
the quantization calibration method of the regular layers can also be applied. That is, all
quantization calibration sets are first fed into the regular layers in front of the LSTM, and the
activation quantization threshold is selected according to the distribution of layer-by-layer
output data. When encountering an LSTM layer, regardless of the size of the time step,
the input quantization calibration set is repeatedly fed into each time step of the LSTM

Appl. Sci. 2022, 12, 12744 9 of 22

as input to each computational unit in the LSTM. Finally, each output tensor sequence is
combined into a single output as the output of the LSTM layer. However, since the LSTM
layer processes datasets that have sequential characteristics, once processed according to
the basic methods as shown in Figure 2, it is very easy to cause a large loss of quantization
accuracy.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 23

quantization calibration set of the network model built only for regular layers is relatively
simple. Many diverse image groups with different categories, backgrounds, angles, and
lightings are selected. The data processed by LSTM are generally sequential; that is, the
data collected at different times for the described phenomenon over time. Therefore, this
paper designs the sequential-characteristics-based combination strategy of sequential and
diverse image groups.

Assuming that the time step of the LSTM layer is T, the model input size is C × H ×
W. Thus, N diverse image datasets groups of different categories, different backgrounds,
different angles, and different lightings are selected. Each group contains T groups of se-
quential datasets with training consistency; that is, the dimension of the quantized cali-
bration set is N T× . On the one hand, the combined N T× images are used for the
quantization calibration of regular layers. On the other hand, when encountering the
LSTM layer, according to the time step of LSTM, N diverse image groups are gradually
sent to each time step, where each diverse image group has sequential characteristics. The
specific quantization calibration process is shown in Figure 3.

Figure 2. Overall flow chart of the quantization algorithm.

Conv/Fc

floating
point

Weight

Calculate the
weight threshold
c according to
the value range

Calculate the
activation
threshold t
according to
KL divergence

Quantization

integer
floating
point

Inverse
Quantization

Pseudo-quantization operation

Step4:Pseudo
-quantified by c

Quantization
param

eters

Input

Step6:Pseudo
-quantified by t

Quantization
calibration sets

Step3

Step2:Pseudo
-quantified by t

Output

Figure 2. Overall flow chart of the quantization algorithm.

Our basic quantization algorithm is described in detail as follows. When the quanti-
zation algorithm generates quantization parameters of regular layers and LSTM layers, a
pseudo-quantization operation is inserted into the weight and output of each layer. That is,
the floating-point value is first quantized to a low-bit integer and then inversely quantized
back to a floating-point value. Each time, the pseudo-quantized values are used to perform
operator calculations, such as convolution, pooling, upsampling, etc. After the calculation
is completed, pseudo-quantization is performed again, and the quantization parameters
are counted and sent to the next layer. The output of the current layer is used as the input of
the next layer and so on. Note that the first layer requires additional pseudo-quantization
operations on the input. The overall flow chart of the quantization algorithm for neural
network models that integrates the LSTM layer is shown in Figure 2.

In this section, the quantization calibration process is designed as a
sequential-characteristics-based combination strategy for LSTM quantization calibration.
The neural network model integrating LSTM layers has both regular layers and LSTM
layers. The quantization calibration set of the network model built only for regular layers is
relatively simple. Many diverse image groups with different categories, backgrounds, an-
gles, and lightings are selected. The data processed by LSTM are generally sequential; that
is, the data collected at different times for the described phenomenon over time. Therefore,
this paper designs the sequential-characteristics-based combination strategy of sequential
and diverse image groups.

Assuming that the time step of the LSTM layer is T, the model input size is C × H ×
W. Thus, N diverse image datasets groups of different categories, different backgrounds,
different angles, and different lightings are selected. Each group contains T groups of
sequential datasets with training consistency; that is, the dimension of the quantized
calibration set is N × T. On the one hand, the combined N × T images are used for the
quantization calibration of regular layers. On the other hand, when encountering the LSTM
layer, according to the time step of LSTM, N diverse image groups are gradually sent to

Appl. Sci. 2022, 12, 12744 10 of 22

each time step, where each diverse image group has sequential characteristics. The specific
quantization calibration process is shown in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 23

Sequential and

diverse image

groups

C H W 

Input of the

neural network

model

Quantization of
typical layers

Quantization
calibration set

N T

t=0,1, <T

G
ro

u
p
 1

G
ro

u
p

 2

G
ro

u
p
 T

Fully connected

operations:

wx(O*4,I)*xt(1,I)+b

Cont==1？

Fully connected layer

operations:

wh(O*4,O)*ht-1(1,O)

Eltwise add layer

(1,O*4): wx*xt+wh*ht-1

Four nonlinear layers(1,O*4):

it, ft, ot, gt (Perform individual

computations one by one)

Cont==1？

Two eltwise prod and

eltwise add layers(1,O*4):

ct=it*gt+ft*ct-1

Nonlinear and eltwise prod

layers(1,O*4):

ht=ot*tanh(ct)

Is the t-th
calculation done?

C onca t h t

yes

yes

nono

yes

no

l l lN T C H W   

l l lN C H W  

The input quantization
calibration set is equally divided

into T-dimensional tensors,
which are used as the input of T

computing units in LSTM,
respectively.

Q
u
an

tizatio
n
 o

f L
S

T
M

 la
y
ers

a sequential
characteristics

based
combination

strategy

Figure 3. Quantization calibration process of LSTM layers.

More precisely, when generating the quantization parameters, firstly all the N T

groups data are sent to the regular layer, the activation quantization threshold is selected

according to the output data distribution of this layer, and the data dimension of each

layer l is N × T × Cl × Hl × Wl. When the LSTM layer is encountered, according to the size of

the time step T, the input quantization calibration set is equally divided into T tensors of

dimension, which are, respectively, used as the input of the T computing units in the

LSTM. Weights and activation quantization thresholds are selected layer by layer accord-

ing to the weights and activation output distribution ranges for N sets of input data.

Finally, the T output tensor sequences are combined into one output as the output of the

LSTM layer. At this time, if there is still a regular layer after the LSTM layer, we continue

to calibrate the N T sets of output data to the subsequent layers.

Figure 3. Quantization calibration process of LSTM layers.

More precisely, when generating the quantization parameters, firstly all the N × T
groups data are sent to the regular layer, the activation quantization threshold is selected
according to the output data distribution of this layer, and the data dimension of each layer
l is N × T × Cl × Hl ×Wl. When the LSTM layer is encountered, according to the size of
the time step T, the input quantization calibration set is equally divided into T tensors of
dimension, which are, respectively, used as the input of the T computing units in the LSTM.
Weights and activation quantization thresholds are selected layer by layer according to the
weights and activation output distribution ranges for N sets of input data. Finally, the T
output tensor sequences are combined into one output as the output of the LSTM layer. At
this time, if there is still a regular layer after the LSTM layer, we continue to calibrate the
N × T sets of output data to the subsequent layers.

Appl. Sci. 2022, 12, 12744 11 of 22

4. Experiments

In this section, quantization experiments are carried out to verify the proposed quanti-
zation method’s effectiveness.

First, we describe the implementation details of the proposed quantization method
in Section 4.1. Then, most importantly, we compare the experimental results in the rele-
vant literature with the methods proposed in this article from character-level language
prediction, word-level language prediction, and image classification in Section 4.2. Then,
in Section 4.3, we perform the ablation experiment of the algorithm itself from the per-
spectives of sequential quantization calibration and activation quantization clipping. In
addition, considering the acceleration requirements of the actual hardware architecture
implementation, performance analysis is conducted in Section 4.4 for the quantization
deployment of CPU, GPU, and NPU, respectively.

4.1. Implementation Details

This section first gives the experimental settings for the following three types of
experiments. Then, the principles of quantization implementation and the basic software
that the experiment relies on are described in detail.

4.1.1. Experiment Settings

The experimental settings and evaluation metrics are shown in Table 2. In comparison
experiments with the state of the art, character-level language prediction application
is performed on two datasets: (i) Leo Tolstoy’s War and Peace and (ii) Penn Treebank
Corpus [23]. Performance Evaluation metrics are bits per character (BPC), variation in
BPC, and size of LSTM parameters. In a word-level language-prediction application, Penn
Treebank dataset was selected and evaluated by the perplexity per word (PPW), variation
in PPW, and relative MSE. The UCF101 dataset is used in image classification applications.
Both ablation experiments were performed on the UCF101 dataset and evaluated by the Acc
Loss (Top1). Performance experiments are conducted by running speed for the quantization
deployment platforms of CPU, GPU, and NPU, respectively.

Table 2. Experimental settings and evaluation metric.

Experiment Type Application/Platform Benchmark
Datasets Evaluation Metric

Comparison
experiments

Character-level language
prediction

Penn Treebank/War
and Peace BPC/Variation/Size

Word-level language
prediction Penn Treebank PPW/Variation/

Relative MSE

Image classification UCF101 Acc Loss (Top1)

Ablation
experiments

W/ and W/O sequential
quantization calibration UCF101 Acc Loss (Top1)

Comparison between
clipping methods UCF101 Acc Loss (Top1)

Performance
experiments

PC(CPU/GPU) / Running speed

NPU / Running speed

4.1.2. Experimental Details

The methodology described in Section 3 was implemented as two software tools
based on the Caffe. These tools are quantization and simulation software, which are
designed to complete the generation of quantization parameters and the NPU calculation
simulation [24]. The quantization software pre-analyzes the distribution and range of
data at each layer of the network model, calculates the quantization parameters, and
generates a guide file for the NPU to map floating-point data to low-precision data. Then,

Appl. Sci. 2022, 12, 12744 12 of 22

the simulation software simulates the runtime and NPU calculation process to verify the
correctness of the hardware calculation results.

The inputs of the quantization software shown in Figure 4 include the structure file
(prototxt) and the parameter file (caffemodel) of the model, and the quantization calibration
images. The output is the structure file with the quantization parameters added. The
quantization parameters are used to guide the NPU to map floating-point data into integer
data. Therefore, the structure file with the quantization parameters added, the parameter
file, and the test image dataset make up the inputs to the simulation software. Its output is
the accuracy calculation results.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 23

simulation software simulates the runtime and NPU calculation process to verify the cor-
rectness of the hardware calculation results.

The inputs of the quantization software shown in Figure 4 include the structure file
(prototxt) and the parameter file (caffemodel) of the model, and the quantization calibra-
tion images. The output is the structure file with the quantization parameters added. The
quantization parameters are used to guide the NPU to map floating-point data into inte-
ger data. Therefore, the structure file with the quantization parameters added, the param-
eter file, and the test image dataset make up the inputs to the simulation software. Its
output is the accuracy calculation results.

Figure 4. Inputs and outputs of quantization and simulation software.

In detail, this is accomplished by taking two steps for each layer: one for the weights
and one for the activations. For the weight, count the weight threshold c of the current
layer according to the value range, truncate the weight of the current layer to the [−c, c]
interval, and then use the uniform-symmetric quantization method to quantize the
weight, as shown in the following equation:

(, ,) ((,) /)quantize w n c round clamp w c s s= × (18)

where the scaling factor s is obtained by the weight threshold c and the quantization
bit width n :

1/ (2 1)ns c −= − (19)

For activation values, the quantization method is similar, except for one point, where
the activation threshold t is chosen by finding the optimal value x that minimizes the
KL divergence in the original activation value distribution and the quantized activation
value distribution:

arg min (|| (, ,))KL
x

t D a quantize a n x= (20)

Therefore, the quantization algorithm is deployed on the embedded neural network
accelerator according to the weights and activation thresholds generated above, namely
quantization parameters. According to the quantization parameter threshold and bit
width of the current layer, the quantization coefficient is calculated according to Equation
(19). Then, the signed integer weight is calculated according to Equation (18) and the ac-
tivation thresholds are generated according to Equation (20). Finally, the output of the last
layer of NPU calculation is inverse-quantized into floating-point values.

Quantization
calibration

images

Q uantization

S oftw are

Structure file with the
quantization parameters

input

Structure file
（prototxt）

Parameter
file(caffemodel)

output

input S im ulation

S oftw are

input

Test images
dataset

input

Accuracy
Calculation

output

Figure 4. Inputs and outputs of quantization and simulation software.

In detail, this is accomplished by taking two steps for each layer: one for the weights
and one for the activations. For the weight, count the weight threshold c of the current
layer according to the value range, truncate the weight of the current layer to the [−c, c]
interval, and then use the uniform-symmetric quantization method to quantize the weight,
as shown in the following equation:

quantize(w, n, c) = round(clamp(w, c)/s)× s (18)

where the scaling factor s is obtained by the weight threshold c and the quantization bit
width n:

s = c/(2n−1 − 1) (19)

For activation values, the quantization method is similar, except for one point, where
the activation threshold t is chosen by finding the optimal value x that minimizes the KL
divergence in the original activation value distribution and the quantized activation value
distribution:

t = argmin
x

DKL(a
∣∣∣∣∣∣∣∣quantize(a, n, x)) (20)

Therefore, the quantization algorithm is deployed on the embedded neural network
accelerator according to the weights and activation thresholds generated above, namely
quantization parameters. According to the quantization parameter threshold and bit width
of the current layer, the quantization coefficient is calculated according to Equation (19).
Then, the signed integer weight is calculated according to Equation (18) and the activation
thresholds are generated according to Equation (20). Finally, the output of the last layer of
NPU calculation is inverse-quantized into floating-point values.

Appl. Sci. 2022, 12, 12744 13 of 22

4.2. Comparison with the State of the Art

In order to verify the effectiveness of the improved LSTM quantization method,
comparison experiments with related works are carried out.

Experiments are performed on character-/word-level language modeling. We compare
the full-precision LSTM and popular state-of-the-art quantized LSTMs, including (i) 1-bit
LSTMs, binarized using BinaryConnect (BCN) [25], binary weight network (BWN) [26],
and loss-aware binarization (LAB) [27]; (ii) 2-bit LSTMs, ternarized using ternary weight
networks (TWN) [28] and loss-aware ternarization with approximate solutions (LAT) [29].
Analogous to BinaryConnect, we also include a baseline called TerConnect1, which ternar-
izes weights to {−1, 0, +1} using the same threshold as TWN but does not scale the ternary
weights. (iii) Multi-bit LSTMs: For simplicity of notation, we denote all the compared
multi-bit quantization methods, including uniform [30], balanced [31], greedy [32], refined
greedy [32], and alternating LSTM [33] quantization as Uniform, Balanced, Greedy, Refined,
and Alternating, respectively. Above all, we apply these methods to quantize the full
precision pre-trained weight (activation is not quantified) of the single LSTM layer.

4.2.1. Character-Level Language Prediction

The LSTM takes as input a character sequence and predicts the next character at
each time step. The training objective is the cross-entropy loss over target sequences, and
performance is evaluated by bits per character (BPC). Experiments were performed on two
benchmark datasets: (i) Leo Tolstoy’s War and Peace and (ii) Penn Treebank Corpus. On
War and Peace and Penn Treebank, we used a one-layer LSTM with 512 hidden units as
in [34]. Adam is used as the optimizer.

Table 3 shows the testing BPC values and size of LSTM parameters. The method with
the lowest BPC in each group is highlighted.

Table 3. Test BPC and size (in KB) of LSTM on character-level language modeling.

Precision Quantization
Method

Penn Treebank War and Peace

Units = 512 Units = 512

BPC Variation Size BPC Variation Size

32-bit [35] - 1.45 / 4504 1.72 / 4800

1-bit

[26] BWN 1.600 0.15 149 1.822 0.102 158
[27] LAB 1.601 0.151 149 1.887 0.167 158
[25] BCN 5.840 4.39 149 6.633 4.913 158

/ Ours 2.133 0.683 149 2.357 0.637 158

2-bit

[28] TWN 1.517 0.067 289 1.754 0.034 308
[29] LAT 1.536 0.086 289 1.828 0.108 308

/ TCN 5.840 4.39 289 3.493 1.773 308
/ Ours 1.446 0.004 289 1.723 0.063 308

4-bit / Ours 1.572 0.122 548 1.778 0.058 556

8-bit / Ours 1.471 0.021 1036 1.783 0.063 1073

Comparison with Full-Precision LSTM: On both the Penn Treebank and the War and
Peace datasets, the 2-bit, 4-bit, and 8-bit quantized LSTM performs similarly to the full-
precision baseline. Moreover, compared with the full-precision LSTM, the 1-bit quantized
LSTM has competitive performance but requires much less storage.

Comparison of Different Quantization Methods: For the quantized 1-bit LSTM,
BWN and LAB perform significantly better than BCN. They have an additional scaling
parameter, which is empirically smaller than 1, and can thus alleviate the exploding-
gradient problem. Regardless of the dataset, compared to other comparison methods,
our quantization method achieves the lowest BPC values by 1.446 and 1.723 in the 2-bit

Appl. Sci. 2022, 12, 12744 14 of 22

precision, respectively. The 4-bit and 8-bit quantized LSTMs also achieved relatively small
quantization errors and have certain competitive performance advantages.

The loss function and BPC iteration curves for quantization retraining at different
quantization precisions are shown in Figures 5 and 6. As can be seen from Figure 5, the loss
and BPC of our method drops faster than the BCN in the 1-bit quantization precision, which
is the same as other methods. As shown in Figure 6, our loss and BPC values converge the
fastest of all the comparison methods in the 2-bit quantization precision.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 23

precision, respectively. The 4-bit and 8-bit quantized LSTMs also achieved relatively small
quantization errors and have certain competitive performance advantages.

The loss function and BPC iteration curves for quantization retraining at different
quantization precisions are shown in Figures 5 and 6. As can be seen from Figure 5, the
loss and BPC of our method drops faster than the BCN in the 1-bit quantization precision,
which is the same as other methods. As shown in Figure 6, our loss and BPC values con-
verge the fastest of all the comparison methods in the 2-bit quantization precision.

(a) (b)

Figure 5. Comparison of the loss and BPC in the 1-bit quantization precision. (a) The 1-bit iteration
curves of the loss. (b) The 1-bit iteration curves of the BPC.

(a) (b)

Figure 6. Comparison of the loss and BPC in the 2-bit quantization precision. (a) The 2-bit iteration
curves of the loss. (b) The 2-bit iteration curves of the BPC.

Comparison with Different Bits: To provide a comprehensive view of the BPC value
of our quantization method in different quantization precisions, we conducted experi-
ments by directly quantizing the trained full precision weight. The results on War and
Peace and Penn Treebank datasets are shown in Figure 7. Among all the compared multi-
bit quantization processes, we can see that our proposed method is still a competitive
presence across all varying bits. As the number of bits increases, our method gradually
makes more accurate predictions on Character-level language modeling.

Figure 5. Comparison of the loss and BPC in the 1-bit quantization precision. (a) The 1-bit iteration
curves of the loss. (b) The 1-bit iteration curves of the BPC.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 23

precision, respectively. The 4-bit and 8-bit quantized LSTMs also achieved relatively small
quantization errors and have certain competitive performance advantages.

The loss function and BPC iteration curves for quantization retraining at different
quantization precisions are shown in Figures 5 and 6. As can be seen from Figure 5, the
loss and BPC of our method drops faster than the BCN in the 1-bit quantization precision,
which is the same as other methods. As shown in Figure 6, our loss and BPC values con-
verge the fastest of all the comparison methods in the 2-bit quantization precision.

(a) (b)

Figure 5. Comparison of the loss and BPC in the 1-bit quantization precision. (a) The 1-bit iteration
curves of the loss. (b) The 1-bit iteration curves of the BPC.

(a) (b)

Figure 6. Comparison of the loss and BPC in the 2-bit quantization precision. (a) The 2-bit iteration
curves of the loss. (b) The 2-bit iteration curves of the BPC.

Comparison with Different Bits: To provide a comprehensive view of the BPC value
of our quantization method in different quantization precisions, we conducted experi-
ments by directly quantizing the trained full precision weight. The results on War and
Peace and Penn Treebank datasets are shown in Figure 7. Among all the compared multi-
bit quantization processes, we can see that our proposed method is still a competitive
presence across all varying bits. As the number of bits increases, our method gradually
makes more accurate predictions on Character-level language modeling.

Figure 6. Comparison of the loss and BPC in the 2-bit quantization precision. (a) The 2-bit iteration
curves of the loss. (b) The 2-bit iteration curves of the BPC.

Comparison with Different Bits: To provide a comprehensive view of the BPC value
of our quantization method in different quantization precisions, we conducted experiments
by directly quantizing the trained full precision weight. The results on War and Peace
and Penn Treebank datasets are shown in Figure 7. Among all the compared multi-bit
quantization processes, we can see that our proposed method is still a competitive presence
across all varying bits. As the number of bits increases, our method gradually makes more
accurate predictions on Character-level language modeling.

Appl. Sci. 2022, 12, 12744 15 of 22Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 23

Figure 7. The BPC of our quantization method on different datasets across all varying bits.

4.2.2. Word-Level Language Prediction
In this section, we perform experiments to predict the next word on the Penn Tree-

bank dataset. A one-layer LSTM is verified with d = 300 as in [33], and d = 650 as in [34].
We use the same data preparation and training procedures as in [34]. The optimizer is
SGD. The quantization methods are retrained considering the perplexity per word (PPW)
metric, which is an index of how “confused” the language model is when predicting the
next word. For the 2-bit alternating LSTM, only units = 300 are reported in [33].

We proposed a benchmark between our results and other works from the literature.
To make the benchmark as fair as possible, we consider that other manuscripts working
with LSTM-based models are all based on quantization-aware training (QAT). The focus
of our comparison is not on the original floating-point accuracy, but rather on the varia-
tion in the metric when applying quantization.

Table 4 shows the testing PPW results and size of LSTM parameters with different
units. For the 1-bit quantized LSTM, our method and BCN do not achieve comparable
performance to the full-precision counterpart. However, in the case of 2-bit quantized
LSTM, our method achieves minimum quantization variations of 3.31 and 4.64 compared
to the full-precision baseline at the two hidden element counts, respectively, compared to
all other methods. Again, in Table 4, we notice that our method leads to the lowest PPW
values, 94.81 and 92.24 lower than all comparison methods shown.

Table 4. Test PPW and variation of LSTM for word-level language modeling on Penn Treebank.

Precision Quantization
Method

Penn Treebank
Units = 300 Units = 650

PPW Variation PPW Variation
32-bit [34] - 91.5 / 87.6 /

1-bit
[26] BWN 97.17 5.67 85.07 2.53
[25] BCN 4330.24 4238.74 2626.91 2539.31

/ Ours 157.43 65.93 135.64 48.04

2-bit

[28] TWN 95.9 4.4 92.47 4.87
/ TCN 121.79 30.29 117.35 29.75

[33] Alternating 103.1 11.6 - -
/ Ours 94.81 3.31 92.24 4.64

Notice that the comparison is made in terms of bit widths rather than fixed-point
arithmetic because other works do not actually consider the hardware application of the
obtained quantized models. Our method, instead, is described considering the subsequent

Figure 7. The BPC of our quantization method on different datasets across all varying bits.

4.2.2. Word-Level Language Prediction

In this section, we perform experiments to predict the next word on the Penn Treebank
dataset. A one-layer LSTM is verified with d = 300 as in [33], and d = 650 as in [34]. We
use the same data preparation and training procedures as in [34]. The optimizer is SGD.
The quantization methods are retrained considering the perplexity per word (PPW) metric,
which is an index of how “confused” the language model is when predicting the next word.
For the 2-bit alternating LSTM, only units = 300 are reported in [33].

We proposed a benchmark between our results and other works from the literature.
To make the benchmark as fair as possible, we consider that other manuscripts working
with LSTM-based models are all based on quantization-aware training (QAT). The focus of
our comparison is not on the original floating-point accuracy, but rather on the variation in
the metric when applying quantization.

Table 4 shows the testing PPW results and size of LSTM parameters with different
units. For the 1-bit quantized LSTM, our method and BCN do not achieve comparable
performance to the full-precision counterpart. However, in the case of 2-bit quantized
LSTM, our method achieves minimum quantization variations of 3.31 and 4.64 compared
to the full-precision baseline at the two hidden element counts, respectively, compared to
all other methods. Again, in Table 4, we notice that our method leads to the lowest PPW
values, 94.81 and 92.24 lower than all comparison methods shown.

Table 4. Test PPW and variation of LSTM for word-level language modeling on Penn Treebank.

Precision Quantization
Method

Penn Treebank

Units = 300 Units = 650

PPW Variation PPW Variation

32-bit [34] - 91.5 / 87.6 /

1-bit
[26] BWN 97.17 5.67 85.07 2.53
[25] BCN 4330.24 4238.74 2626.91 2539.31

/ Ours 157.43 65.93 135.64 48.04

2-bit

[28] TWN 95.9 4.4 92.47 4.87
/ TCN 121.79 30.29 117.35 29.75

[33] Alternating 103.1 11.6 - -
/ Ours 94.81 3.31 92.24 4.64

Notice that the comparison is made in terms of bit widths rather than fixed-point
arithmetic because other works do not actually consider the hardware application of the
obtained quantized models. Our method, instead, is described considering the subsequent

Appl. Sci. 2022, 12, 12744 16 of 22

hardware implementation of our models on architectures completely based on uniform-
symmetric quantization strategy.

To further assess the effects of the other different quantization methods on the single
LSTM Layer, we also make a comparison between the results obtained with the proposed
quantization method and the results from other works in the literature by the PPW and
relative mean squared error (MSE) metric. In LSTM architectures, we have considered
hidden units 300.

Table 5 records the PPW and relative MSE of quantized weight matrices with the
full-precision. The lowest PPW and relative MSE values are shown in bold. As shown
in Table 5, we can see that our proposed method can achieve the lowest metric across all
quantization methods.

Table 5. Test PPW and Relative MSE of larger bits on Penn Treebank.

Precision Quantization
Method

Penn Treebank

Units = 300

PPW Variation Relative MSE

32-bit [34] - 89.8 / /

3-bit

[30] Uniform 227.3 137.5 0.404
[31] Balanced 9106.4 9016.6 0.745
[32] Greedy 99.4 9.6 0.071
[32] Refined 95.4 5.6 0.060
[33] Alternating 93.8 4 0.043

/ Ours 91.67 1.87 0.025

4-bit

[30] Uniform 216.3 126.5 0.302
[31] Balanced 8539.8 8450 0.702
[32] Greedy 95.0 5.2 0.042
[32] Refined 93.1 3.3 0.030
[33] Alternating 91.4 1.6 0.019

/ Ours 89.52 −0.28 0.005

Since quantized models usually have comparable or even better performance than
the full-precision baseline, it is worth mentioning that our method is lower than the PPW
value of the full-precision model at 4-bit precision. This is by no means uncommon in
the contrasting method. In other words, the quantization method proposed by the paper
not only surpasses the existing classical quantization algorithm under different bit widths
on different datasets but also has comparable or even better performance than the full
precision baseline.

4.2.3. Image Classification

Deep neural networks (NN) can be categorized into convolution-based NN (ConvNet),
fully connected NN (FCNet), and recurrent NN (RNN) [36]. ConvNet is composed of con-
volutional and pooling layers and is good at visual feature extraction. FCNet is composed
of multiple fully connected layers and is usually used for classification. RNN is composed
of fully connected layers with feedback paths and gating operations and performs well in
sequential data processing. ConvNet uses Alexnet or Vgg16, etc., to extract spatial features
from video frames, and RNN uses LSTM or GRU, etc., to extract sequential features.

In order to verify the advantages of the improved algorithm, this experiment adopted
four test models combined with ConvNet + FCNet + RNN for the accuracy test of the
classification task. CLDNN [37], LRCN [11], AlexNet-LSTM [38], and Vgg16-LSTM [11]
were selected for comparison. Operators covered by the Vgg16-LSTM classification model
architecture are very comprehensive. They include both regular operators such as convolu-
tion and emerging complex operators such as LSTM. The sequential images are successively
extracted from the image and sequence features, and finally, the classification prediction
result of Golf Swing is obtained. All the above contrast test models are trained in the

Appl. Sci. 2022, 12, 12744 17 of 22

Caffe framework. In this paper, sequential feature-based LSTM quantization algorithm
improvements are made to the latter two models. The results are shown in Table 6, where

“

1

 ” indicates that an improved sequential quantization calibration method has been
added. It is evaluates the accuracy loss (Acc loss) after quantization.

Table 6. Quantization accuracy loss on LSTM-based models.

Model Sequential
Quantization Bit-Width Origin ConvNet

Proportion
FCNet

Proportion
RNN

Proportion Acc Loss

[37] CLDNN none All 8 All 16 20% 60% 20% <2.0%

[11] LRCN none 9/8/8/8/9/8/8/8/8/8 All 16 50% 30% 20% <1.8%

[38] AlexNet-
LSTM

none AlexNet:9/8/8/6/6/8/8/8,
others:12 All 16 50% 30% 20% <1.8%

/

1

All 8 All 32 50% 30% 20% <0.8%

[11] Vgg16-
LSTM

none Vgg16:8,others:12 All 16 76.19% 14.29% 9.52% <2.0%

/

1

All 8 All 32 76.19% 14.29% 9.52% <1.7%

In general, since the model applied by our method is based on the accuracy of a
floating-point model of 32-bit, our technique improves quantization accuracy on average
over the fixed 16-bit mode at baseline. In Vgg16-LSTM, RNN takes up a small proportion
(9.52%) of total computations, which means acceleration on RNN is not very noticeable
compared to ConvNet and FCNet.

4.3. Ablation Experiments

In this section, ablation experiments with the algorithm are conducted on the UCF101
dataset with a sequential quantization calibration design and the activation quantization
clipping methods, respectively. UCF101 dataset described by Soomro et al. in [39] is a
video-action recognition classification dataset with 101 categories. A total of 2083 video
samples in the first 55 categories were selected as the test dataset on PC and FPGA.

4.3.1. W/ and W/O Sequential Quantization Calibration

To further analyze the effectiveness of the improvements made in sequential quantiza-
tion calibration design for LSTM, an ablation experiment was performed on the UCF101
dataset.

Different quantization calibration methods are used for AlexNet-LSTM and Vgg-
LSTM networks to obtain better accuracy calculation results. The experimental results

are shown in Table 7, where “

1

 ” indicates that an improved quantization calibration

method was added, and “

1

 ” without identification indicates that the regular layer’s
quantization calibration method (which is mentioned in subsection C of Section 3) was
used. Experimental results show that the accuracy loss of the combined strategy with
sequential characteristics adopted for the quantization calibration set is reduced from
1.544% (or 2.707%) to 0.803% (or 1.68%). It confirms that this strategy can improve the
accuracy of LSTM quantization deployment.

4.3.2. Comparision between Clipping Methods

The goal of a quantization algorithm is to generate quantization parameters. The
activation threshold for each layer is a quantization parameter that is selected according to
the dynamic range of the activation value. After investigation, LSTM layer activation quan-
tization clipping methods include KL-divergence, MIN–MAX, AVG–MAX, Easy Quant,
ADMM, etc. Here, the first three were selected for the ablation experiments on the UCF101
dataset.

Appl. Sci. 2022, 12, 12744 18 of 22

Table 7. Experiment on sequential quantization calibration.

Model Sequential
Quantization

Inference Acc
on PC

Quantization
Acc on NPU Acc Loss

AlexNet-LSTM
none

52.808%
51.264% −1.544%

1

52.005% −0.803%

Vgg16-LSTM none
56.889%

54.182% −2.707%

1

55.209% −1.68%

Table 8 shows the accuracy calculation results of different test models under different

activation clipping methods, where “

1

 ” indicates that the corresponding activation
clipping method was added. It can be seen from the accuracy loss results that no matter
which test model it is based on, and no matter which activation quantization clipping
method is used, the quantization loss using the proposed method only differs by 0.803% in
the best accuracy and 2.812% in the worst.

Table 8. Experiment on activation quantization clipping.

Model Sequential
Quantization

KL-
Divergence MIN-MAX AVG-MAX Acc Loss

AlexNet-
LSTM

1

1

−0.803%

1

−1.104%

1

−0.892%

Vgg16-LSTM

1

1

−1.68%

1

−2.075%

1

−2.812%

In order to show the specific values of the inference accuracy on PC and the calculation
accuracy on NPU in more detail, we have plotted the following comparative experiment
based on different test models. The quantization accuracy experiments in Figure 8 show
that, compared with the inference accuracy on PC, the model deployed on the NPU using
the proposed method reflects high accuracy loss and the practical value of the proposed
quantization method.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 23

Figure 8. Detailed comparative experiment on different activation quantization clipping methods.

Therefore, these two ablation experiments show that the operator disassembly oper-
ation of the LSTM layer can solve the problem that the existing NPU cannot directly com-
pute the LSTM layer.

4.4. Performance Analysis
It is very important to measure the deployment performance of the model on differ-

ent platforms, and it has a strong reference for improving the quantization scheme and
FPGA hardware design. Since the speed of simulating NPU calculations on the PC side is
slower, we deployed the proposed method to a real NPU, embedding the core calculations
of the model on the neural network accelerator. Quantization and classification prediction
are carried out on the neural network accelerator.

The experiments on the PC were carried out on Windows 10. The CPU is Intel(R)
Core(TM) i7-8700 K, 3.70 GHz, the GPU is NVIDIA GeForce GTX1070, and the deep learn-
ing framework is Torch 1.4.1 and Caffe. The experiment on NPU uses the TIANJI NPU3.0
neural network accelerator proposed by Xi’an Microelectronics Technology Institute [40].
This accelerator is implemented based on Xilinx ZCU102 FPGA, with self-controllable IP
and the application development tool chain. It supports multi-model online switching and
pipeline parallel acceleration [41]. It supports real-time detection and positioning applica-
tions of satellites, spacecrafts, and other targets and can meet the needs of visual ranging
and intelligent obstacle avoidance applications.

We test the running speed of LRCN models of different backbone networks on the
CPU, GPU, and NPU, respectively. At the same time, the running speed of the backbone
network itself on the NPU was also tested. Moreover, the specific speed of the LSTM layer
was obtained by the difference between the execution speed of the AlexNet-LSTM or
Vgg16-LSTM networks and the backbone network (AlexNet or Vgg16) on the NPU. Note
that the execution speed here is the average model deployment time over a single time
step. The details are shown in Table 9.

Table 9. Comparison experiment of running speed.

Model PC(CPU) PC(GPU) NPU
AlexNet Alone / / 25.7 ms
AlexNet-LSTM 42.6 ms (1.6 times) 34.2 ms (1.3 times) 26.4 ms

LSTM Alone / / 0.7 ms
Vgg16 Alone / / 102.4 ms
Vgg16-LSTM 194.6 ms (1.87 times) 39.7 ms (0.38 times) 103.8 ms
LSTM Alone / / 1.4 ms

Figure 8. Detailed comparative experiment on different activation quantization clipping methods.

Appl. Sci. 2022, 12, 12744 19 of 22

Therefore, these two ablation experiments show that the operator disassembly op-
eration of the LSTM layer can solve the problem that the existing NPU cannot directly
compute the LSTM layer.

4.4. Performance Analysis

It is very important to measure the deployment performance of the model on different
platforms, and it has a strong reference for improving the quantization scheme and FPGA
hardware design. Since the speed of simulating NPU calculations on the PC side is slower,
we deployed the proposed method to a real NPU, embedding the core calculations of the
model on the neural network accelerator. Quantization and classification prediction are
carried out on the neural network accelerator.

The experiments on the PC were carried out on Windows 10. The CPU is Intel(R)
Core(TM) i7-8700 K, 3.70 GHz, the GPU is NVIDIA GeForce GTX1070, and the deep learning
framework is Torch 1.4.1 and Caffe. The experiment on NPU uses the TIANJI NPU3.0
neural network accelerator proposed by Xi’an Microelectronics Technology Institute [40].
This accelerator is implemented based on Xilinx ZCU102 FPGA, with self-controllable IP
and the application development tool chain. It supports multi-model online switching
and pipeline parallel acceleration [41]. It supports real-time detection and positioning
applications of satellites, spacecrafts, and other targets and can meet the needs of visual
ranging and intelligent obstacle avoidance applications.

We test the running speed of LRCN models of different backbone networks on the
CPU, GPU, and NPU, respectively. At the same time, the running speed of the backbone
network itself on the NPU was also tested. Moreover, the specific speed of the LSTM
layer was obtained by the difference between the execution speed of the AlexNet-LSTM or
Vgg16-LSTM networks and the backbone network (AlexNet or Vgg16) on the NPU. Note
that the execution speed here is the average model deployment time over a single time step.
The details are shown in Table 9.

Table 9. Comparison experiment of running speed.

Model PC(CPU) PC(GPU) NPU

AlexNet Alone / / 25.7 ms

AlexNet-LSTM 42.6 ms (1.6 times) 34.2 ms (1.3 times) 26.4 ms

LSTM Alone / / 0.7 ms

Vgg16 Alone / / 102.4 ms

Vgg16-LSTM 194.6 ms (1.87 times) 39.7 ms (0.38 times) 103.8 ms

LSTM Alone / / 1.4 ms

Experiments show that the execution speed of the AlexNet-LSTM model on the neural
network accelerator is 1.6 times faster than on the CPU and 1.3 times faster than on the
GPU. The Vgg16-LSTM model is executed fastest on the GPU due to the small filter size
and large model depth. The execution time is 39.7 ms. The execution time on the neural
network accelerator is still 1.87 times faster than on the CPU. Moreover, from the data point
of view, a single time step of the LSTM with the hidden state output feature dimension of
256 on the NPU is about 1 ms at 20 W power consumption.

5. Conclusions

Aiming at the problem that the existing neural network accelerator cannot directly
execute the LSTM layers, the quantization method integrating LSTM layers is proposed.
One of the innovations is that the LSTM layer is split into multiple regular layers supported
by the neural network accelerator. The other is that the quantization calibration set takes
into account the sequential characteristics of the LSTM layer. The proposed method for
LSTM layers differs by only 0.803% in terms of accuracy between the deployment model

Appl. Sci. 2022, 12, 12744 20 of 22

on the NPU and the benchmark model on the PC. Execution speed on neural network
accelerators is up to 1.87 times faster than on CPUs and 1.3 times faster than on GPUs.

The method not only meets the accuracy and speed requirements of complex sequential
forecasting tasks but also quickly and efficiently implements the support of the neural
network accelerator for the LSTM layer on the embedded platform. The quantized LSTM
model can be widely used in various sequential data-prediction tasks. The quantization
parameter generation methods can be migrated to other RNN models. The operators’
disassembly operation of LSTM has strong application potential in terms of the quantization
aspects of novel operators for future neural network accelerators. It can be widely deployed
on various embedded computing platforms with low power consumption and limited
resources. What needs to be accomplished in the future is improving the quantization
accuracy of LSTM models with mixed-bit-width configurations and deploying them on
hardware platforms that support mixed-bit-width architectures.

Author Contributions: Conceptualization, Y.W. and Z.M.; Methodology, Y.W.; Software, Y.W. and
Z.Y.; Validation, Z.M. and Z.Y.; Formal analysis, Y.W.; Investigation, Y.W. and Z.Y.; Resources,
Z.M.; Data curation, Y.W. and Z.Y.; Writing—original draft, Y.W.; Writing—review & editing, Z.M.;
Visualization, Y.W.; Project administration, Z.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Notations Definition
it, ft, ot input gate, forget gate, output gate
gt, ct, ht cell input vector, cell state vector, hidden state vector
Wx = [Wxi, Wx f , Wxo, Wxg] weight matrix of the input state
Wh = [Whi, Wh f , Who, Whg] weight matrix of the hidden node
b = [bxi, bx f , bxo, bxg] bias term
T time step
Cont continuity identifier
I input feature dimension
O output feature dimension
x = {x0, x1 · · · xt, · · · xT−1} input of the LSTM layer: a tensor of (T, I)
h = {h0, h1 · · · ht, · · · hT−1} output of the LSTM layer: a tensor of (T, O)
s scaling factor
c weight threshold
t activation threshold
n quantization bit width

References
1. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning. Trained Quantization Huffman

Coding Fiber 2015, 56, 3–7.
2. Gong, Y.; Liu, L.; Ming, Y.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014,

arXiv:1412.6115.
3. Wang, Y.J.; Ma, Z.; Yang, Z.M. A new quantization deployment method of neural network models integrating LSTM layers. In

Proceedings of the 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), Chengdu, China,
19–21 August 2022; pp. 1299–1303.

4. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
5. Cheng, Y.Q.; He, Z.Z.; Ma, Z.; Bi, R.X.; Mao, Y.H. Intelligent target detection algorithm for embedded FPGA. Microelectron. Comput.

2021, 38, 87–92.

http://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637

Appl. Sci. 2022, 12, 12744 21 of 22

6. Mikolov, T.; Sutskever, I.; Kai, C.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their compositionality.
In Proceedings of the NIPS’13: Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake
Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119.

7. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.
8. Zhang, L.X.; Hu, W.X. Research on character relationship extraction in Chinese text based on bidirectional GRU neural network

and double-layer attention mechanism. Comput. Appl. Softw. 2018, 35, 130–135.
9. Yang, Z.M.; He, Z.Z.; Ma, Z.; Yang, J. An LSTM acceleration method based on embedded neural network accelerator. In

Proceedings of the 4th International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 22–24
December 2021.

10. Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J.; Zhu, Z. Deep speech 2: End-to-end speech recognition in English and
mandarin. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015.

11. Donahue, J.; Hendricks, L.A.; Rohrbach, M.; Venugopalan, S.; Guadarrama, S. Long-term recurrent convolutional networks for
visual recognition and description. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 677–691. [CrossRef] [PubMed]

12. Zaman, S.K.; Jehangiri, A.I.; Maqsood, T.; Umar, A.I.; Khan, M.A.; Jhanjhi, N.Z. COME-UP: Computation offloading in mobile
edge computing with LSTM based user direction prediction. Appl. Sci. 2022, 12, 3312. [CrossRef]

13. Krishnamoorthi, R. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper. arXiv 2018,
arXiv:1806.08342v1.

14. Szymon, M. 8-bit inference with tensorrt. GPU Technol. Conf. 2017, 2, 7.
15. Wu, D.; Tang, Q.; Zhao, Y.; Zhang, M.; Zhang, D. EasyQuant: Post-training quantization via scale optimization. arXiv 2020,

arXiv:2006.16669.
16. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural

networks for efficient integer arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.

17. Zhang, P.; Ouyang, W.; Zhang, P.; Xue, J.; Zheng, N. SR-LSTM: State refinement for LSTM towards pedestrian trajectory prediction.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 12077–12086.

18. Zhang, Y.W.; Wang, C.; Gong, L.; Lu, Y.; Zhou, X. A power-efficient accelerator based on FPGAs for LSTM network. In Proceedings
of the 2017 IEEE International Conference on Cluster Computing (CLUSTER), Honolulu, HI, USA, 5–8 September 2017; pp.
629–630.

19. Zhang, Y.W.; Wang, C.; Gong, L.; Lu, Y.; Zhou, X. Implementation and optimization of the accelerator based on FPGA hardware
for LSTM Network. In Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with
Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou,
China, 12–15 December 2017; pp. 614–621. [CrossRef]

20. Chang, G.; Neil, D.; Ceolini, E.; Liu, S.C.; Delbruck, T. DeltaRNN: A power-efficient recurrent neural network accelerator. In
Proceedings of the 2018 ACM/SIGDA International Symposium, Monterey, CA, USA, 25–27 February 2018.

21. Zeng, X.; Zhi, T.; Zhou, X.; Du, Z.; Guo, Q.; Liu, S.; Wang, B.; Wen, Y. Addressing irregularity in sparse neural networks through a
cooperative software/hardware approach. IEEE Trans. Comput. 2020, 69, 968–985. [CrossRef]

22. Alom, M.Z.; Moody, A.T.; Maruyama, N.; Essen, B.C.V.; Taha, T.M. Effective quantization approaches for recurrent neural
networks. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13
July 2018; pp. 1–8. [CrossRef]

23. Taylor, A.; Marcus, M.; Santorini, B. The Penn treebank: An overview. In Treebanks; Springer: Berlin/Heidelberg, Germany, 2003;
pp. 5–22.

24. Wei, L.; Ma, Z.; Wang, Y.J.; Yang, C.J. An Adaptive Quantization Method for Neural Network Accelerators Running on FPGA.
Chinese Invention Patent CN202110057445.3, 15 January 2021.

25. Courbariaux, M.; Bengio, Y.; David, J.P. BinaryConnect: Training deep neural networks with binary weights during propagations.
In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 3105–3113.

26. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet classification using binary convolutional neural
networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016.

27. Hou, L.; Yao, Q.; Kwok., J.T. Loss-aware binarization of deep networks. In Proceedings of the International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

28. Li, F.; Liu, B. Ternary weight networks. arXiv 2016, arXiv:1605.04711.
29. Hou, L.; Yao, Q.; Kwok, J.T. Loss-aware weight quantization of deep networks. In Proceedings of the International Conference on

Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.
30. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized neural networks: Training neural networks with low

precision weights and activations. arXiv 2016, arXiv:1609.07061.
31. Zhou, S.C.; Wang, Y.Z.; Wen, H.; He, Q.Y.; Zou, Y.H. Balanced quantization: An effective and efficient approach to quantized

neural networks. J. Comput. Sci. Technol. 2017, 32, 667–682. [CrossRef]
32. Guo, Y.W.; Yao, A.B.; Zhao, H.; Chen, Y. Network sketching: Exploiting binary structure in deep CNNs. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

http://doi.org/10.1109/TPAMI.2016.2599174
http://www.ncbi.nlm.nih.gov/pubmed/27608449
http://doi.org/10.3390/app12073312
http://doi.org/10.1109/ISPA/IUCC.2017.00098
http://doi.org/10.1109/TC.2020.2978475
http://doi.org/10.1109/IJCNN.2018.8489341
http://doi.org/10.1007/s11390-017-1750-y

Appl. Sci. 2022, 12, 12744 22 of 22

33. Chen, X.; Yao, J.; Lin, Z.; Ou, W.; Zha, H. Alternating Multi-Bit Quantization for Recurrent Neural Networks. arXiv 2018,
arXiv:1802.00150.

34. Ardakani, A.; Ji, Z.; Smithson, S.C.; Meyer, B.H.; Gross, W.J. Learning recurrent binary/ternary weights. In Proceedings of the
International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

35. Hou, L.; Zhu, J.; Kwok, J.T.; Gao, F.; Qin, T.; Liu, T.Y. Normalization helps training of quantized LSTM. In Proceedings of the
Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

36. Yin, S.Y.; Ouyang, P.; Tang, S.B.; Tu, F.B.; Li, X.D.; Zheng, S.X.; Lu, T.Y.; Gu, J.Y.; Liu, L.B.; Wei, S.J. A high energy efficient
reconfigurable hybrid neural network processor for deep learning applications. IEEE J. Solid-State Circ. 2018, 53, 968–982.
[CrossRef]

37. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, long short-term memory, fully connected deep neural networks.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
Australia, 19–24 April 2015; pp. 4580–4584.

38. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
Neural Information Processing Systems Conference, Vancouver, BC, Canada, 8–14 December 2012; pp. 1097–1105.

39. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv 2012,
arXiv:1212.0402.

40. Jiao, F.; Ma, Y.; Bi, S.Y.; Ma, Z. Design of Instruction Control System for Neural Network Accelerator. Microelectron. Comput. 2022,
39, 78–85.

41. Ma, Y.; Bi, S.Y.; Jiao, F.; Ma, Z.; Zhou, F.; Nie, Y.C. A CNN Accelerator with High Bandwidth Storage. Chinese Invention Patent
CN20210921363.9, 11 August 2021.

http://doi.org/10.1109/JSSC.2017.2778281

	Introduction
	Related Works
	Proposed Methodology
	Problem Definition
	Overall Method Design
	LSTM Operators Disassembly Design
	LSTM Sequential Quantization Design

	Experiments
	Implementation Details
	Experiment Settings
	Experimental Details

	Comparison with the State of the Art
	Character-Level Language Prediction
	Word-Level Language Prediction
	Image Classification

	Ablation Experiments
	W/ and W/O Sequential Quantization Calibration
	Comparision between Clipping Methods

	Performance Analysis

	Conclusions
	References

