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Abstract: In the past, fatigue cracks have appeared in the orthotropic steel decks of bridges shortly
after they opened to traffic. Previous studies have shown that high tensile welding residual stress
exists in welded joints of steel bridges, which significantly changes the average stress and stress
ratio of the joints. However, traditional fatigue crack propagation (FCP) calculations based on the
Paris equation do not consider the influence of the stress ratio. Steel Q345qD is a common material
used in bridges. Therefore, it is meaningful to study the influence of the stress ratio on the FCP life
of steel Q345qD. In this paper, an FCP equation based on the energy release rate considering the
influence of the stress ratio is first derived and named the da/dN-∆G-R equation. Next, three material
parameters in the equation are determined based on the results from tests of steel Q345qD under
different stress ratios. Then, a user subroutine based on the extended finite element method (XFEM)
that considers the influence of the stress ratio is defined and the effects of mesh size are analyzed.
Finally, the effects of the stress ratio on FCP are discussed and the adaptability of the da/dN-∆G-R
equation is verified by comparing the values obtained from the equation with experimental results.
The results show that: with a 95% guarantee rate, three material parameters in the da/dN-∆G-R
equation are: log(C) = −10.71, m = 2.780, and γ = 0.957; in the numerical simulation, a mesh size of
1 mm is more appropriate than other mesh sizes as it shows better accuracy and efficiency; under the
same energy release rate range, the crack growth rate decreases as the stress ratio increases; under the
same loading amplitude and cycles, the fatigue life decreases as the stress ratio increases; and finally,
the numerical results considering the influence of stress ratio based on the da/dN-∆G-R equation
are close to the test results, while the results without considering the stress ratio based on the Paris
equation are inaccurate.

Keywords: steel bridge; fatigue crack; stress ratio; energy release rate; XFEM; Q345qD

1. Introduction

Steel box girder bridges with orthotropic steel decks are widely used in long-span
highway and railway bridges because of their light weight, convenient construction, and
high load-carrying capacity [1,2]. However, in one case, serious fatigue cracks appeared
in the steel deck shortly after the bridge opened to traffic [3,4]. The fatigue life of some
steel box girder bridges is less than 10 years, which is far lower than the bridge design
life [4,5]. Previous studies have shown that welding residual stresses significantly changed
the mean stress level of welded joints of steel box girder bridges, that is, the stress ratio
changed significantly under certain stress amplitudes. The high mean stress (or stress
ratio) consequently reduced the fatigue life of the steel bridges [5]. Based on the test
data regarding 14MnNbq steel used in bridges, Liu et al. found that the fatigue crack
propagation (FCP) rate increased as the stress ratio under the same stress intensity factor
amplitude increased [6]. However, traditional FCP calculations based on the Paris equation
only reflect the relationship between FCP and the stress intensity factor amplitude, without
considering the influence of the stress ratio [7].
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Scholars have done extensive research regarding the influence of the stress ratio on
FCP. Forman et al. [8] assumed that the crack growth rate would tend to infinity when
the maximum stress intensity factor approaches the fracture toughness, and subsequently
established a fatigue crack propagation equation that considered the influence of the
stress ratio and fracture toughness. Walker [9] used experimental data to propose an FCP
equation that considered the influence of the stress ratio. Donald and Lados [10] introduced
the adjusted compliance ratio parameter into the Walker two-parameter formula and
considered the influence of residual stress. Kwofie et al. [11,12] deduced the stress intensity
factor under different stress ratios according to the transformation relationship between
stress amplitudes and mean stresses, and created a driving force model that considered the
influence of stress ratios. Li et al. [13] proposed a modified Walker equation to characterize
the FCP of a cracked body under constant amplitude cyclic loading. Zhan et al. [14]
presented an exponential equation that considered the stress ratio effect. Cano et al. [15]
compared several different driving force models based on the energy release rate while
also considering the effects of the stress ratio. The term ∆

√
G seems to be a valid crack

driving force for adhesives, composites and polymers such as copolyester polyethylene
terephthalate glycol. Xin et al. [16] incorporated the mean stress effects by employing the
Walker equation to fit the fatigue crack propagation rate of steel S355 and S690 based on
experimental data. Ribeiro et al. [17] suggested deterministic quadratic relations based
on experimental results regarding the relationship between the crack closure quantitative
parameter U and the applied stress ratio R and between the effective stress ratio Reff and the
applied stress ratio R in comparison with various crack closure models. An FCP model for
two different stress ratios was generated based on the strain energy density approach and
considering the residual stress effects [18]. Moarrefzadeh et al. [19] modified the Walker
equation by considering the influence of welding residual stress on the effective stress
intensity factor and effective stress ratio. Therefore, it is necessary to derive an equation
considering the effect of the stress ratio to describe fatigue crack growth more accurately;
experiments under different stress ratios are sometimes needed to obtain such an equation.

Several methodologies can be used for modeling FCP, including the mesh-free method [20],
boundary element method [21,22], discrete element method [23], traditional finite element
method (FEM) [24,25], and extended finite element method (XFEM) [26–29]. The most
used numerical simulation methods are traditional FEMs, such as ANSYS [24,25], the
specialized crack propagation simulation software ZENCRACK [30], and the XFEM in
ABAQUS [27–29]. In the traditional finite element method ANSYS, a wedge singular
element should be established at the crack tip because of stress singularity, as shown in
Figure 1a [25]. The stress intensity factor in ANSYS can be calculated, but the energy release
rate cannot be extracted directly. ZENCRACK is a specialized finite element software that
is used to simulate crack propagation. A special crack block is set at the crack tip, which
can move with the crack propagation, as shown in Figure 1b [30]. This software is good at
crack simulation but has poor universality and often needs to be used in combination with
other conventional software. The XFEM was first proposed by Belytschko in 1999 [26]. The
enrichment function is introduced into the conventional finite element displacement mode
to reflect the crack discontinuity, and the level set function is used to trace the crack surface.
Therefore, as shown in Figure 1c [28], the crack can penetrate the element directly without
the use of refined mesh at the crack tip, which is easier in terms of meshing than ANSYS
and ZENCRACK. It can also clearly show the continuous crack propagation process. At
present, the XFEM in ABAQUS generally uses the virtual crack closure technique (VCCT)
to calculate the energy release rate, and its accuracy is higher than that of the stress
intensity factor calculated by the node displacement extrapolation method. It also has
a good ability to solve fatigue fracture problems involving linear, nonlinear, and even
anisotropic materials [29].



Appl. Sci. 2022, 12, 12782 3 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 18 
 

placement extrapolation method. It also has a good ability to solve fatigue fracture 
problems involving linear, nonlinear, and even anisotropic materials [29]. 

 
  

(a) (b) (c) 

Figure 1. Meshing at the crack tip in different numerical simulation methods. (a) ANSYS [25]; (b) 
ZENCRACK [30]; (c) XFEM [28]. 

In this paper, an FCP equation based on the energy release rate considering the in-
fluence of the stress ratio is first derived. Then, three material parameters in the equation 
are determined based on tests of bridge steel Q345qD under different stress ratios. Fi-
nally, a user subroutine based on the XFEM that considers the influence of the stress ratio 
is defined. The effects of the stress ratio on FCP are discussed. The numerical simulation 
results considering and not considering the influence of the stress ratio are compared 
with the experimental results. 

2. Deriving an FCP Equation Considering the Stress Ratio R Based on the Energy Re-
lease Rate G 

An FCP calculation based on the Paris equation without considering the stress ratio 
R is shown in Equation (1): 

0
0

mda C K
dN

= ⋅Δ  (1)

where C0, m0 are material parameters, ΔK is the stress intensity factor range, a is the crack 
length, N is the number of cycles, and da/dN is the FCP rate. 

Based on the Paris equation, Walker [9] proposed a fatigue crack growth equation 
that considered the stress ratio R based on ΔK, as shown in Equation (2): 

1(1 )

m
da KC
dN R γ−

 Δ=  − 
 (2)

where C, γ, m are material parameters and R is the stress ratio. 
For opening mode cracks, the relationship between the energy release rate G and 

stress intensity factor K is shown in Equation (3) [31]: 

2
'

1G K
E

=  (3)

Where E’ = E for plane stress, E’ = E/(1 – ν2) for plane strain, E is material elasticity mod-
ulus, and ν is Poisson’s ratio. 

The stress ratio R and intensity factor range can be calculated as Equation (4): 

Figure 1. Meshing at the crack tip in different numerical simulation methods. (a) ANSYS [25];
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In this paper, an FCP equation based on the energy release rate considering the
influence of the stress ratio is first derived. Then, three material parameters in the equation
are determined based on tests of bridge steel Q345qD under different stress ratios. Finally,
a user subroutine based on the XFEM that considers the influence of the stress ratio is
defined. The effects of the stress ratio on FCP are discussed. The numerical simulation
results considering and not considering the influence of the stress ratio are compared with
the experimental results.

2. Deriving an FCP Equation Considering the Stress Ratio R Based on the Energy
Release Rate G

An FCP calculation based on the Paris equation without considering the stress ratio R
is shown in Equation (1):

da
dN

= C0 · ∆Km0 (1)

where C0, m0 are material parameters, ∆K is the stress intensity factor range, a is the crack
length, N is the number of cycles, and da/dN is the FCP rate.

Based on the Paris equation, Walker [9] proposed a fatigue crack growth equation that
considered the stress ratio R based on ∆K, as shown in Equation (2):

da
dN

= C

(
∆K

(1− R)1−γ

)m

(2)

where C, γ, m are material parameters and R is the stress ratio.
For opening mode cracks, the relationship between the energy release rate G and stress

intensity factor K is shown in Equation (3) [31]:

G =
1
E′

K2 (3)

where E’ = E for plane stress, E’ = E/(1 – ν2) for plane strain, E is material elasticity modulus,
and ν is Poisson’s ratio.
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The stress ratio R and intensity factor range can be calculated as Equation (4):

R = Kmin/Kmax, ∆K = Kmax − Kmin (4)

Thus, the energy release rate range is expressed in Equation (5) based on the relation-
ship between G and K in Equation (3).

∆G = Gmax − Gmin =
K2

max − K2
min

E′
(5)

Substituting Equation (4) into Equation (5), Equation (6) is obtained.

∆G =
1
E′
· 1 + R

1− R
∆K2 (6)

∆K can be solved from Equation (6) and substituted into Equation (2). Thus, as shown
in Equation (7), an FCP equation considering the stress ratio R based on the energy release
rate G, which is named the da/dN-∆G-R equation, is obtained.

da
dN

= C

(
E′ · ∆G · (1− R)2γ−1

(1 + R)

)m
2

(7)

It can be seen from the derivation process that the material parameters C, γ, m in
Equation (7) are the same as those in Equation (2). Therefore, a standard compact tensile
test using the specifications outlined in [32] can be used to obtain the material parameters
in the da/dN-∆G-R equation.

3. Determining Material Parameters in the da/dN-∆G-R Equation by FCP Tests
3.1. FCP Tests

The chemical composition of steel Q345qD is shown in Table 1 [33]. To obtain the
material parameters C, γ, m of steel Q345qD, a standard FCP test was designed according
to the metallic materials fatigue test specifications [32]. The size of the standard compact
tensile specimen (CT specimen) is shown in Figure 2. The thickness of the specimen is
10 mm, the machining notch length an is 9 mm, and the initial crack length a0 is 10 mm to
eliminate the effect of machining notch on crack growth [32]. The material is steel Q345qD.
Table 2 shows the test loading scheme. FCP tests in which the loading amplitude ∆P was
kept at 15kN were conducted under four different stress ratios: 0.1, 0.3, 0.5, and 0.7.

Table 1. Chemical composition of steel Q345qD [33].

Chemical Composition C Si Mn P S Nb V

Mass proportion (%) ≤0.18 ≤0.55 0.90~1.70 ≤0.025 ≤0.020 ≤0.06 ≤0.08

Chemical composition Ti Cr Ni Cu Mo N Als

Mass proportion (%) ≤0.03 ≤0.80 ≤0.50 ≤0.55 ≤0.20 ≤0.012 ≥0.015

As shown in Figure 3, a QBG-100 fatigue testing machine with a maximum load of
100 kN and maximum loading frequency of 50 Hz was used as the loading equipment.
The axial tensile cyclic loading mode was used and the experimental maximum load and
loading frequency were 50 kN and 20 Hz, respectively. The stress-controlled constant
amplitude loading method was used until the crack reached the critical value and the
specimen fractured. The initial crack length was 10 mm. During the test, the crack length
was measured by visual inspection. The data regarding the crack length a and the number
of cycles N can be recorded every 1 mm at the beginning of crack growth and recorded
every 2~3 mm when the specimen is close to being fractured. The crack length a was
measured on the front and back sides of the specimen, and the average value was taken as
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the actual crack length. For each case, three specimens were taken to avoid experimental
error. The number of cycles N is the arithmetic mean value of the three specimens under
the same crack length a. Figure 4 shows the FCP process of the CT specimen.
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3.2. Analysis of Test Results

The a-N curves under different stress ratios measured in the tests are shown in
Figure 5a, indicating that the specimen crack propagates faster as the stress ratio increases.
For example, at N = 6 × 104, the crack lengths are about 12 mm, 13 mm, 16 mm and 26 mm
when R equals to 0.1, 0.3, 0.5 and 0.7, respectively. In order to obtain the FCP rate da/dN-∆K
curve, a seven-point incremental polynomial method recommended by GB/T6398-2017 is
used to process the data [32]. That is, for each data point (ai, Ni), the previous three points
and next three points are taken, and these seven data points are used to fit a quadratic
polynomial. The slope of the fitted curve at this data point is regarded as the FCP rate
da/dN. ∆K under different crack lengths can be calculated using Equation (8). The FCP
rate curves in Figure 5b show that the FCP rate increases as the stress ratio increases. Since
the slopes and intercepts of these fitted curves vary with the stress ratio, this means that
the Paris equation including only two material parameters and without considering the
influence of the stress ratio is inaccurate. Equation (8) is shown below:

∆K =
∆P

B
√

W
· 2 + α

(1− α)3/2

(
0.886 + 4.64α− 13.32α2 + 14.72α3 − 5.6α4

)
(8)

where ∆P is the load amplitude, B is the specimen thickness, W is the horizontal distance
from the loading point to the edge of the specimen (as shown in Figure 2), a′ is the calculated
crack length which is the horizontal distance from the loading point to the crack tip, and
α = a′/W.
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Equations (1) and (2) are expressed in logarithmic form, as shown in
Equations (9) and (10), respectively. The material parameters C0, m0 in the Paris Equation (9)
and C, γ, m in the Walker Equation (10) of steel Q345qD can be obtained by experimental
data fitting, as shown in Figure 6. The material parameters in the da/dN-∆G-R equation are
the same as those in the Walker Equation (10) and are obtained according to the derivation
process described in the last section. The material parameters of steel Q345 are shown
in Table 3.

Paris : log(da/dN) = log C0 + m0 log(∆K) (9)

Walker : log(da/dN) = log C + m log(∆K) + m(γ− 1) log(1− R) (10)
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Table 3. Material parameters of steel Q345qD.

FCP Equation Guarantee Rate
Material Parameters

log(C0) or log© m0 or m γ

Paris
Mean −10.80 2.687

With 95% guarantee −10.54 2.847

Walker, da/dN-∆G-R
Mean −10.85 2.696 0.947

With 95% guarantee −10.71 2.780 0.957

4. Numerical Simulation Considering the Stress Ratio R Based on the XFEM
4.1. FEM of the CT Specimen

Figure 7 shows the FEM of the CT specimen and the model size that is consis-
tent with the test. The mesh is fine near the crack and coarser away from the crack.
Two reference points are defined such that they are coupled to the inner surface of the
circular hole. This is done so that the boundary conditions and loads can be applied directly
to the reference points. Reference point (RP)-1 constrains translation in the x, y, and z
directions and rotation in the x and z directions. Translation and rotation in the x, y and z
directions of RP-2 are constrained. The cyclic load P is applied on RP-1 according to the
loading scheme in Table 2. The elastic modulus and Poisson′s ratio of steel Q345qD are
2.06 × 105 MPa and 0.3, respectively [34]. As shown in Figure 7, the cyclic load P is only
in the XY plane. Therefore, the CT specimen under the cyclic load P experiences plane
stress because the stress is only in the XY plane and the stress perpendicular to the XY
plane can be ignored. Under these conditions, E’ in Equations (3) and (7) equals to E, that is
2.06 × 105 MPa.
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4.2. FCP User-Defined Subroutine Considering R Based on the XFEM

When the energy release rate of a crack tip satisfies Gth < ∆G < Gpl, a fatigue crack
begins to grow. Gpl is the upper threshold value of the energy release rate, which is close to
the steel fracture toughness GC. Gth is the lower threshold value of the energy release rate.
The stress intensity factor Kth of steel Q345qD is 92 MPa·mm1/2 [35]. The energy release
rate threshold Gth can be obtained through Equation (3). When the maximum energy
release rate of a crack tip is greater than the lower threshold value Gth, a fatigue crack
propagates along the direction of the maximum principal stress in ABAQUS. Assuming
that the ith element at the crack tip is the crack growth direction, the virtual crack closure
technique (VCCT) is used to calculate the energy release rate ∆Gi. ∆Ni is calculated using
Equation (7). The element with the lowest number of cycles is the final fracture element,
and the number of cycles increment ∆N and crack propagation increment ∆α are obtained.
The cycle continues until the crack length reaches the final crack length αf. To consider the
influence of the stress ratio R, a user-defined subroutine is used in the simulation. A flow
chart of FCP considering R effects based on the XFEM is shown in Figure 8.
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4.3. Effect of Mesh Size

Figure 9a shows four different mesh sizes: 0.5 mm, 1 mm, 1.5 mm, and 2 mm. Cal-
culation results of these four different meshing models under ∆P = 15 kN and R = 0.1 are
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shown in Figure 9b. Under the same cycles, the crack length decreases as the mesh size
increases. For example, under N = 2 × 105, the crack lengths are 22.5 mm, 22.3 mm, 19 mm,
and 18 mm for mesh sizes of 0.5 mm, 1 mm, 1.5 mm and 2 mm, respectively. The results
are towards insecurity with the increase of mesh size. However, the calculation results
obtained when using a mesh size of 1mm are close to those obtained when using a mesh
size of 0.5 mm, while the calculation efficiency is obviously improved. Therefore, a 1 mm
mesh size is more appropriate to use in the simulation.
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The maximum principal stress distributions of the FCP process with a mesh size of
1mm under ∆P = 15 kN and R = 0.1 are shown in Figure 10. The stress is large near the
crack tip and decreases rapidly away from it. The stress at the crack tip increases with the
degree of crack propagation. As shown in Figure 10b–d, the stress at the crack tip is about
500~2200 MPa at the steady crack propagation stage. When the model is approaching the
fracture point, the stress reaches 1.2 × 105 MPa, as shown in Figure 10f. The increment
number of cycles decreases while the crack propagation length remains constant, indicating
that the growth rate of the fatigue crack increases.
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4.4. Effect of the Stress Ratio R

Fatigue crack propagation da/dN-∆G curves at R ratios of 0.1, 0.3, 0.5 and 0.7 are
shown in Figure 11. The simulation results were calculated based on the XFEM using the
da/dN-∆G-R equation, as shown in Figure 8, and were close to the experimental results.
Figure 11 shows that under the same energy release rate range ∆G, the crack growth rate
da/dN decreases as the stress ratio R increases. However, under the same number of cycles
N, the crack length a increases along with R, as shown in Figure 5a. This means that in the
experiment, the fatigue crack growth rate increases as R increases, which seems to contradict
the results in Figure 11. The reason for this is that ∆G is not a constant value under the
same load amplitude ∆P and crack length a, and instead increases along with R, as shown
in Equation (6). ∆K is a constant value under the same ∆P and crack length a according to
Equation (8). For example, when a = 20 mm, ∆G is 8334 N/m, 12,664 N/m, 20,458 N/m,
and 38,642 N/m and da/dN is 2.45 × 10−7, 2.54 × 10−7, 2.67 × 10−7, and 2.87 × 10−7 for
R = 0.1, 0.3, 0.5, and 0.7, respectively, as shown in the Figure 11. Therefore, under the same
crack length a and load amplitude ∆P, the fatigue crack growth rate increases as R increases.
In the experiment, under the same number of cycles N, the crack length a increases as
R increases.
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Figure 12 compares the experimental and numerical simulation results under different
stress ratios. In Figure 12, the initial crack length a0 is 10 mm, which is given in Section 3.1.
Numerical simulation results considering the stress ratio R were calculated based on the
XFEM using the da/dN-∆G-R equation, as shown in Figure 8. The simulation results
without considering R were calculated using the Paris equation. Figure 11 shows that
the simulation results considering R from this paper are closer to the experimental data.
However, the simulation crack length a considering R is slightly smaller than the test results
obtained under the same number of cycles N. This may be because in the tests, the fixture
and specimen are not completely fixed constraints, which is slightly different from the
simulation. The simulation results without considering R calculated by the Paris equation,
which are close to the mean values of different stress ratios, are inaccurate; when R is equal
to 0.1 or 0.3, the crack length without considering R is larger than the test value, while it is
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smaller than the test value when R is equal to 0.5 or 0.7. Therefore, these findings suggest
that the method based on the da/dN-∆G-R equation proposed in this paper should be used
to calculate the FCP life of steel Q345qD.
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5. Conclusions

In this paper, an energy release rate-based fatigue crack propagation equation was
derived and used to describe the FCP rate of bridge steel Q345qD using the experimental
data obtained from various stress ratio tests. Then, a user subroutine based on the XFEM
that considers the influence of the stress ratio was defined and the effects of mesh size
were analyzed. Finally, the effects of the stress ratio were discussed and the adaptability of
the equation was verified by comparing the values obtained from the equation with the
experimental results. The main conclusions of this research are the following:

• A fatigue crack propagation equation based on the energy release rate considering the
influence of the stress ratio was derived and named the da/dN-∆G-R equation.

• Three material parameters in the da/dN-∆G-R equation were determined with a
95% guarantee rate based on the standard compact tensile tests of steel Q345qD
under different stress ratios. These parameters are log(C) = −10.71, m = 2.780, and
γ = 0.957, respectively.
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• A fatigue crack propagation subroutine using the da/dN-∆G-R equation based on the
XFEM was defined. In the numerical simulation, a CT specimen mesh size of 1 mm
showed better accuracy and efficiency than other mesh sizes.

• The effects of the stress ratio on fatigue crack propagation were discussed. The results
showed that under the same energy release rate range, the fatigue crack growth rate
decreases as the stress ratio increases.

• Under the same loading amplitude and number of cycles, the fatigue life decreases
as the stress ratio increases. The numerical results considering the influence of stress
ratio using the da/dN-∆G-R equation based on the XFEM were close to the test results,
while the results without considering the stress ratio based on the Paris equation
were inaccurate.

6. Future Work

• When considering the deck-rib welding joints of steel bridges, the residual stress is
much greater than the external vehicle load stress [5]. Therefore, the real effective
stress ratio will change significantly and not be equal to the external load stress ratio.
The method proposed in this paper that considers the influence of the stress ratio will
help guide future studies regarding the effects of welding residual stress on the fatigue
life of steel bridges.

• In practical engineering, the load forms, such as tension, bending, shearing, and some
combination forms, are complicated than those used in this study. Thus, the influence
of load forms on FCP should be studied further.

• In practical engineering, the initial crack forms are random and require special flaw
detection equipment to be detected. Two-dimensional surface cracks are also common.
Therefore, further research regarding methods for describing the propagation of two-
dimensional surface cracks is also needed.
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