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Abstract: Introduction: The mass-harvesting of digitized medical data has prompted their use as a
clinical and research tool. The purpose of this study was to compare the accuracy and reliability of
artificial intelligence derived cephalometric landmark identification with that of human observers.
Methods: Ten pre-treatment digital lateral cephalometric radiographs were randomly selected from
a university post-graduate clinic. The x- and y-coordinates of 21 (i.e., 42 points) hard and soft tissue
landmarks were identified by 6 specialists, 19 residents, 4 imaging technicians, and a commercially
available convolutional neural network artificial intelligence platform (CephX, Orca Dental, Hertzylia,
Israel). Wilcoxon, Spearman and Bartlett tests were performed to compare agreement of human and
AI landmark identification. Results: Six x- or y-coordinates (14.28%) were found to be statistically
different, with only one being outside the 2 mm range of acceptable error, and with 97.6% of
coordinates found to be within this range. Conclusions: The use of convolutional neural network
artificial intelligence as a tool for cephalometric landmark identification was found to be highly
accurate and can serve as an aid in orthodontic diagnosis.

Keywords: artificial intelligence; convolutional neural networks; lateral cephalometric radiographs;
diagnostics

1. Introduction

The delineation and representation of human facial form has found expression through-
out human existence. Ancient Egyptian and Greek cultures developed methods mathemat-
ical and otherwise, such as anthropometrics, for this purpose [1]. Until Roentgen’s first
report of X-rays in 1895 [2], which also were first used in dentistry in the same year [3], these
can be summarized as attempts to quantify faces and bodies according to externally visual-
ized cues and proportions. X-rays now allowed for visualization, albeit two-dimensional,
of the internal hard tissues which support and provide the form outwardly seen. Broadbent,
Wingate and Hofrath codified its place in orthodontics when they independently devel-
oped cranium orienting cephalostats and methods to standardize cephalometric radiology,
in 1931 [4,5]. Brodie with Downs [6,7] initiated the emergence of a plethora of cephalo-
metric analyses which continue to be used as diagnostic tools to quantify craniofacial
characteristics [8–17].

Proficiency in radiographic anatomic landmark identification has facilitated patient
diagnosis and treatment evaluation and a significant researcher tool. However, the ex-
panded use of this method also revealed its inherent limitations as initially described by
Graber [18], and ensued with descriptions of these according to errors due to superimposi-
tion of intervening structures, magnification of structures closer to the X-ray source and
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poor observer landmark identification reliability, all of which limit the effectiveness of this
tool [19–22].

The advent of computed tomography (CT) in 1973, provided a one-to-one 3D radio-
graphic image resolving the aforementioned shortcomings [23]; however, this method was
appropriate for structures larger than teeth or jaws and required much higher doses of radi-
ation than conventional clinical radiology. The introduction of the cone beam CT (CBCT)
in 2001, enabled its use in dentistry. This technology now allows orthodontists to receive
highly accurate representations of cranial structures, including 3D renderings, within a
single diagnostic record while exposing the patient to less radiation than a conventional
panoramic radiograph [24,25].

Digitization of cephalometrics has occurred together with other medical diagnostic
measures. Initially, traditional radiographs were used directly or scanned into software
from which an operator could manually plot the necessary points [26–30]. This approach
was only feasible within an institutional setting where staff could be directed and were
available to do so, until technological advances bypassed this function [31]. In addition,
automatic landmark recognition from the now digitally acquired image has also been
evolving [32–37]. The availability of the needed volume of pertinent digital data has
catalyzed the development of various modes of machine learning and artificial intelligence
(AI), which are being applied to perform autonomous landmark recognition [38–53].

The most commonly used machine learning method of image recognition and classifi-
cation are neural networks. These are currently applied in identification of objects, faces,
traffic signs and to generate vision in self-driving cars, etc. [54]. Convolutional neural
networks (CNNs), like neural networks, are made up of “neurons” with learnable weights
and biases. Each neuron receives several inputs, takes a weighted sum over them, passes it
through an activation function and responds with an output [55]. In this manner, CNNs
are an attempt to mimic the decision-making tasks performed by our own central nervous
system [56].

The objective of the present study is to evaluate the accuracy and reliability of auto-
matic computer-generated lateral cephalometric landmark recognition by the Algoceph®

convolutional neural network (CNN) AI system (Orca Dental, Hertzliya, Israel). Agreement
between human operator manual lateral cephalometric landmark identification with those
automatically derived will be compared to access this. The working hypothesis of the
present study is that there will be no significant difference between trained human and a
taught dedicated automated artificial intelligence tool (Algoceph®) in identifying common
lateral cephalometric anatomic landmarks.

2. Material and Methods

Ten digital lateral cephalometric radiographs of subjects submitting for treatment
in a university post-graduate orthodontic clinic, without congenital craniofacial/dental
anomalies, history of facial trauma and a fully erupted permanent dentition, excluding third
molars, were randomly selected. The digital radiograph picture size was of a magnification
of 1.08–1.13, resolution (digital) max 5.7 lp/mm, image field (digital) 24/27 × 18/30 cm
and image pixel size 48 µm.

All digital radiographs were reviewed and data points selected manually by 30 opera-
tors (7 experienced orthodontic faculty members, 9 third year and 10 first year orthodontic
residents, and 4 imaging center technicians), and automatically using Algoceph® point
detection AI (Orca Dental, Hertzliya, Israel). A total of 21 commonly referenced soft and
hard tissue lateral cephalometric points were selected (Figure 1), as defined by Jacobson
and Jacobson (Table 1) [57].
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Figure 1. Localization of the 21 lateral cephlometric landmarks used in the present study as defined
by Jacobson and Jacobson (see Table 1).

Table 1. Description of hard and soft tissue cranial landmarks used for comparative evaluation of
human and AI detection.

Landmark Definition

1 Sella Midpoint of sella turcica
2 Nasion Most anterior point on frontonasal suture
3 Upper incisor tip (UI) Tip of most prominent upper central incisor
4 Lower incisor tip (LI) Tip of most prominent lower central incisor

5 B point Deepest bony point on mandibular symphysis between
pogonion and infradentale

6 Pogonion (Pog) Most anterior point of mandibular symphysis
7 Menton Lowest point on mandibular symphysis

8 Articulare
Junction between inferior surface of the cranial base and

the posterior border of the ascending ramus of the
mandible

9 A point deepest point of premaxilla concavity bellow ANS
10 ANS Tip of anterior nasal spine
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Table 1. Cont.

Landmark Definition

11 PNS Posterior limit of bony palate
12 Soft pogonion (Softpog) Most anterior soft tissue point of soft chin

13 Soft B The deepest soft tissue point between chin and
subnasale

14 Lower lip The most anterior point of lower lip
15 Upper lip The most anterior point of upper lip

16 Subnasale The junction where base of the columella of the nose
meets the upper lip

17 Softnose Most anterior point of nose tip
18 Orbitale Most inferior point on the orbital margin

19 PTM
The intersection of the inferior border of the foramen

rotundum with the posterior wall of the
pterygomaxillary fissure

20 Porion Most superior point of outline of external auditory
meatus

21 Basale The most inferior point on the anterior border of the
foramen magnum in the midsagittal plane

A training algorithm for AI recognition of these points was performed to imprint
the CNN according to Anuse and Vyas (Figure 2) [58]. Values underwent forward and
backward passes according to Glorot and Bengio until target accuracy is equivalent to or
decreasing slowly from ground truth [59]. Subsequent to training, algorithm detection
is performed and mapped point coordinates (x, y) are superimposed onto the original
image with x and y-coordinates for each point being recorded given a defined 2 mm
circumscribed precision range, according to Wang CW [60]. Each point was plotted 5 times
using the AI method for which no differences in point detection were found, therefore,
each point was noted as a single location. Manual landmark plotting was undertaken once
by each observer.

Statistical analyses were carried out using SPSS version 23 (IBM Corp, Armonk,
New York, NY, USA). Non-parametric tests were required since descriptive statistics and
the Kolmogorov–Smirnov tests for normality revealed that the data was not normally
distributed at a level of significance where p < 0.05. Associations between AI and manual
landmark detection were assessed using Wilcoxon Rank Sum Test (to compare AI to
operator group), Spearman’s Correlation (to compare findings at each delineated landmark),
and Bartlett’s Test (to test differences between variances of both AI and operators).

Signed informed consent for use of medical records for teaching and research purposes
was obtained for each subject prior to inclusion and as a standard procedure in agreeing
to undergo treatment in the university postgraduate orthodontic clinic. Ethics committee
approval was sought but deemed unnecessary.
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Figure 2. Description of phases of algorithm for detection of defined landmarks.

3. Results

A customized (human) operator in situ scattergram showing the envelope of detection
around each evaluated anatomical landmark depicted as yellow ovals surrounding each
“averaged” landmark is shown in Figure 3. Since Algoceph® was “taught” until target
accuracy matched ground truth, the 5 trials performed for each landmark resulted in
repeated single point localization (Figure 4).
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Comparison between operator (avgX, avgY) and automatic (algoX, algoY) landmark
detection are shown in Table 2. All landmark identification points were found to be
statistically similar except; SoftpogY, UpperlipY, OrbitaleX, PTMX, PorionY and BasaleX.
For SoftpogY the difference was found to be 2.67 mm ± 2.55 mm, whereas for the remaining
landmarks the mean recognition error was less than 1.5 mm. Furthermore, comparison of
agreement between AI landmark detection and the x and y coordinates of each landmark
as selected by the human operators found that 36 out of 42 (85.72%) of these coordinates
were found to be highly correlated (r > 0.90). The aforementioned outliers were found to be
moderately correlated (r = 0.729–0.891) (Table 2).
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Figure 4. Example of automatic landmark location performed by the AI application of Algoceph.
Note that identical outcomes of 5 separate trials provide non-scattered single point outcomes.

Table 2. Differences and correlations between Algoceph (algoX and algoY) and the operators’ average
(avgX and avgY). Note: significant differences are marked in bold, p < 0.01. ** significant Spearmen
correlations. r > 0.729, p < 0.01.

Landmark X/Y Coordinate Differences between Measurement Scores Spearman
Correlation

Mean Recognition
Error

Mean Std. Deviation p Mean (mm) ± SD

1
Sella avgX 54.67 3.73 0.114 0.988 ** 0.14 ± 0.39

Sella algoX 54.81 3.74

2
Sella avgY 139.04 6.61 0.959 0.903 ** 0.05 ± 1.28

Sella algoY 138.99 6.51
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Table 2. Cont.

Landmark X/Y Coordinate Differences between Measurement Scores Spearman
Correlation

Mean Recognition
Error

Mean Std. Deviation p Mean (mm) ± SD

3
Nasion avgX 119.94 5.75 0.285 0.952 ** 0.17 ± 1.23

Nasion algoX 119.78 6.58

4
Nasion avY 150.26 7.08 0.878 0.976 ** 0.21 ± 1.27

Nasion algoY 150.05 6.30

5
Ui avgX 125.41 4.39 0.799 0.912 ** 0.17 ± 1.04

Ui algoX 125.58 4.44

6
Ui avgY 73.52 6.92 0.721 0.988 ** 0.25 ± 1.02

Ui algoY 73.26 6.33

7
Li avgX 122.10 4.38 0.445 0.927 ** 0.19 ± 1.05

Li algoX 121.91 4.30

8
Li avgY 75.68 6.34 0.114 0.998 ** 0.39 ± 0.77

Li algoY 76.07 5.81

9
B point avgX 115.18 6.03 0.878 0.964 ** 0.04 ± 1.13

B point algoX 115.22 5.77

10
B point avgY 56.65 6.23 0.921 0.988 ** 0.01 ± 0.65

B point algoY 56.65 5.91

11
Pog avgX 116.02 7.16 0.721 0.915 ** 0.11 ± 1.00

Pog algoX 115.91 7.01

12
Pog avgY 43.80 7.38 0.657 0.988 ** 1.18 ± 0.90

Pog algoY 42.61 7.32

13
Menton avgX 109.56 7.03 0.891 0.976 ** 0.07 ± 0.86

Menton algoX 109.49 6.78

14
Menton avgY 37.95 7.75 0.721 0.998 ** 0.12 ± 0.71

Menton algoY 37.83 7.42

15
Articulare avgX 42.62 2.62 0.959 0.879 ** 0.08 ± 1.11

Articulare algoX 42.54 2.84

16
Articulare avgY 108.06 5.97 0.799 0.915 ** 0.08 ± 2.29

Articulare algoY 108.14 4.50

17
A point avgX 121.51 4.55 0.444 0.903 ** 0.15 ± 1.03

A point algoX 121.35 4.58

18
A point avgY 95.44 6.24 0.721 0.964 ** 0.18 ± 1.16

A point algoY 95.26 5.22

19
ANS avgX 125.92 4.27 0.872 0.915 ** 0.88 ± 1.25

ANS algoX 125.03 4.12

20
ANS avgY 100.68 6.58 0.884 0.988 ** 0.43 ± 1.29

ANS algoY 100.25 5.61

21
PNS avgX 75.83 4.27 0.782 0.867 ** 0.13 ± 1.40

PNS agoX 75.70 3.82
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Table 2. Cont.

Landmark X/Y Coordinate Differences between Measurement Scores Spearman
Correlation

Mean Recognition
Error

Mean Std. Deviation p Mean (mm) ± SD

22
PNS avgY 98.51 5.29 0.918 0.976 ** 0.23 ± 1.46

PNS algoY 98.75 4.15

23
Soft pog avgX 126.92 6.66 0.086 0.964 ** 0.48 ± 1.67

Soft pog algoX 127.40 5.88

24
Soft pog avgy 44.06 6.83 0.022 0.842 ** 2.67 ± 2.55

Soft pog algoy 46.74 5.83

25
Soft b avgX 126.20 5.16 0.878 0.988 ** 0.05 ± 1.25

Soft b algoX 126.15 4.68

26
Soft b avgY 57.78 6.76 0.203 0.988 ** 0.45 ± 0.98

Soft b algoY 58.24 5.99

27
Lower lip avgX 134.90 4.40 0.959 0.891 ** 0.04 ± 1.05

Lower lip algoX 134.95 4.42

28
Lower lip avgY 68.75 7.41 0.721 0.998 ** 0.03 ± 0.88

Lower lip algoY 68.79 6.64

29
Upper lip avgX 137.73 4.58 0.169 0.939 ** 0.31 ± 0.96

Upper lip algoX 137.41 4.83

30
Upper lip avgY 82.05 7.28 0.017 0.964 ** 1.11 ± 1.16

Upper lip algoY 83.17 6.53

31
Subnasale avgX 136.32 4.44 0.541 0.915 ** 0.10 ± 1.33

Subnasale algoX 136.43 4.75

32
Subnasale avgY 96.84 7.21 0.386 0.964 ** 0.35 ± 1.42

Subnasale algoY 96.48 6.05

33
Soft nose avgX 150.25 5.35 0.381 0.976 ** 0.30 ± 1.27

Soft nose algoX 150.55 5.96

34
Soft nose avgY 108.63 8.31 0.918 0.975 ** 0.01 ± 0.75

Soft nose algoY 108.63 7.65

35
Orbitale avgX 105.67 3.90 0.037 0.976 ** 1.07 ± 1.29

Orbitale algoX 106.74 4.56

36
Orbitale avgY 123.12 6.63 0.878 0.915 ** 0.16 ± 1.09

Orbitale algoY 122.96 6.10

37
PTM avgX 70.19 4.03 0.028 0.939 ** 0.99 ± 0.98

PTM algoX 71.19 4.38

38
PTM avgY 123.11 6.27 0.241 0.927 ** 0.98 ± 1.95

PTM algoY 124.10 5.00

39
Porion avgX 32.75 2.57 0.285 0.729 ** 0.64 ± 1.49

Porion algoX 32.11 3.25

40
Porion avgY 120.08 4.38 0.036 0.830 ** 1.14 ± 1.41

Porion algoY 121.23 4.27



Appl. Sci. 2022, 12, 12784 10 of 15

Table 2. Cont.

Landmark X/Y Coordinate Differences between Measurement Scores Spearman
Correlation

Mean Recognition
Error

Mean Std. Deviation p Mean (mm) ± SD

41
Basale avgX 35.89 3.15 0.005 0.903 ** 1.03 ± 0.90

Basale algoX 34.86 3.36

42
Basale avgY 100.71 5.18 0.959 0.976 ** 0.02 ± 1.20

Basale algoY 100.74 4.83

Computer aggregated correlation between AI and human observations are shown in
Figure 5. It can be seen that absolute overlap between scores was found (r = 0.99, p < 0.001)
(Figure 5). Bartlett’s Test to show differences in variances between AI and observers showed
this to be small for both AI (χ2 = 2.98, p = 0.98), and operators (χ2 = 2.72, p = 0.96). These
results indicate that disparity between scores for each point is similar without regard to
landmark chosen or method of location (AI or operator) (Figure 6a,b).
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When the 4 sub-categories of observers were compared using a Repeated Measures
Analysis of Variance no significant differences in agreement in landmark localization existed
for nearly all points (p ranged between 0.063 and 0.913) (Table 2). The only exceptions were
found to be PNSX and SoftnoseY. When the location of these points was examined with
regard to their x,y-coordinates, it was found that differences for PNSX were F(1,9) = 10.44,
p = 0.01, and that first-year residents (M = 76.33, SD = 3.63) and third-year residents
(M = 76.89, SD = 4.19) differed more (higher) in the vertical axes compared to specialists
(M = 74.93, SD = 4.19) and technicians (M = 75.00, SD = 3.80). For Softnose Y, F(1,9) = 9.80,
p = 0.01, it was found that third-year residents (M = 44.32, SD = 7.03), specialists (M = 44.52,
SD = 6.56) and imaging technicians (M = 44.71, SD = 6.12) differed on the y axes (lower)
compared to first-year residents (M = 42.92, SD = 6.88).

4. Discussion

The use of AI as a management tool has already found an application in orthodontic
patient selection/referral within public health care systems [61]. The use of deep learning
in AI as a diagnostic tool to perform cephalometric landmark identification can poten-
tially eliminate intra/inter-observer variation as well as vastly reduce the time invested
and decreased efficiency in performing this task manually [62]. In order to do so, there
have been several methods of application of deep learning in landmark detection [63].
The method used in the present study is regression-based deep learning as described by
Noothout et al. [64].

Yue et.al. proposed as correct/acceptable a ±2 mm differential in human versus
computerized lateral cephalometric landmark identification, where if more than 20% of the
total localizations were unacceptable equated as a failed comparison [43]. Based on this
definition of “correct”, the purpose of the present study was to compare the identification
of lateral cephalometric landmark accuracy by the latest generation of artificial intelligence
to that of human observers with varied amounts of aggregated clinical experience. The
amount of error in landmark identification was the difference between that produced by
experienced observers and by AI.

Twenty-one cranial landmarks (Table 1) were registered according to automatic point
detection (Algoceph®). Human observer identification was plotted as an envelope sur-
rounding the former which was taken as an origin (0,0), with each such point delineated
into its x,y coordinates. It was found that in 36 out of 42 (85.7%) coordinates no statisti-
cally significant differences were found between AI and all human observers (Table 2 and
Figure 6a,b).

It was found that coordinates of six anatomic landmarks showed statistically signifi-
cant differences between human and automatic identification; SoftpogY, whose measure-
ment error was clinically insignificant (2.67 mm ± 2.55), UpperlipY which was clinically
acceptable (1.11 mm ± 1.16), as were OrbitaleX (1.07 mm ± 1.29), PTMX (0.99 mm ± 0.98),
PorionY (1.14 mm ± 1.41), and BasaleX (1.03 mm ± 0.90). These landmarks were also previ-
ously described as highly prone to erroneous identification by Baumrind [19,20], however,
the differences found in the present study were small enough to deem them diagnostically
relevant (Table 2).

Adoption of digital technologies in orthodontics were initially applied to data storage
and automated clear aligner production. Current efforts are to “teach” these tools to
perform diagnostics and treatment planning [65]. Doing so stipulates the understanding
that the reliability of any measurement derived from radiographic analysis depends on
the reproducibility in the identification of defined landmarks. Factors such as the quality
of the radiographs (contrast, scaling, etc.), and operator reliability have been shown to
influence the magnitude of identification error. Earlier studies of the performance of AI
to identify (fewer) cephalometric landmarks reported far lower levels of accuracy than
those found in the present study using the CephX Algo method (Table 3) [36,37,44–46].
A more recent report by Kunz et al. described findings in agreement with those of the
present study [66]. Taken together; these suggest that the CephX Algo method has reduced
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the above sources of measurement error to the extent that its output can be accepted as
diagnostically accurate.

Table 3. Mean measurement error (mm) of human vs. AI from early studies.

Landmark Liu et al. [19] Hutton et al. [8] Saad et al. [20] Tanikawa et al. [21] Rudolph et al. [7] CephX Algo
Sella 0.94 5.5 3.24 2.1 5.06 0.148
Nasion 2.32 5.6 2.95 1.7 2.57 0.27
Orbitale 5.28 5.5 3.4 2.24 2.46 1.08
Porion 2.43 7.3 3.48 3.63 5.67 1.3
ANS 2.9 3.8 2.7 2.32 2.64 0.97
Point A 4.29 3.3 2.54 2.13 2.33 0.23
Point B 3.96 2.6 2.22 3.12 1.85 0.04
Pogonion 2.53 2.7 3.65 1.91 1.85 1.18
Menton 1.9 2.7 4.4 1.59 3.09 0.12
UI 2.36 2.9 3.65 1.78 NAD 0.3
LI 2.86 NAD 3.14 1.81 NAD 0.35

5. Conclusions

The convolutional neural network artificial intelligence method for determining lateral
cephalometric landmark identification was found to be significantly correlated to human
identification of 21 lateral cephalometric radiographic anatomic landmarks. This implies
that this application of AI can be used to reduce the time expenditure and human error
involved in performing this task manually.
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