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Abstract: Loss functions, such as the IoU Loss function and the GIoU (Generalized Intersection
over Union) Loss function have been put forward to replace regression loss functions commonly
used in regression loss calculation. GIoU Loss alleviates the vanishing gradient in the case of the
non-overlapping, but it will completely degenerate into the IoU Loss function when bounding
boxes overlap totally, which fails to achieve the optimization effect. To solve this problem, some
improvements are proposed in this paper on the basis of the GIoU Loss function, taking into account
the overlap rate of complete overlap of bounding boxes. In PASCAL VOC data, the experimental
results demonstrate that the AP of NGIoU Loss function in the YOLOv4 model is 47.68%, 1.15% higher
than that of the GIoU Loss function, and the highest map value is 86.79% in the YOLOv5 model.

Keywords: bounding box regression; IoU; GIoU

1. Introduction

Object detection is one of the most important fields in computer vision, which includes
two tasks: object classification and object localization. Object localization generally refers
to using a rectangular bounding box to frame the location of an object, which is also called
bounding box regression. Bounding box regression is one of the most basic components of
object detection algorithms.

At present, most research enhances the application performance by proposing a better
network structure [1–4] or improving the optimizer [5–8]. In addition, loss function [9–13]
is also a good direction for improvement. The loss function, or cost function, is used to
evaluate the inconsistency between the predicted value and the true value. The optimization
process of the neural network is the process of minimizing the loss function. The smaller
the loss function is, the better the network performs. In object detection algorithms, loss
functions include regression loss function and classification loss function. For the regression
loss function, most of the existing methods use MSE Loss [14], the ln-norm Loss, and so
on to perform bounding box regression. Yet, the actual indicator for evaluating regression
box detection is IoU [15], while the ln-norm Loss is not equivalent. Some detection boxes
may have the same size of ln-norm Loss, but IoU may vary greatly. Therefore, most studies
use a series of IoU Losses instead of other regression losses. For example, the MSE Loss
function is replaced by the CIoU Loss function in the YOLOv4 algorithm.

Although IoU Loss is well equivalent to the index of regression box detection, when
the ground truth detection box and the predicted detection box do not intersect, the loss of
IoU is 0 and there is no gradient backpropagation, which makes the process of learning
and training impossible. Besides, it is difficult for the IoU Loss to precisely represent
the overlap ratio and to accurately judge the regression effect of the overlapping area
alone. Hence, in recent years, people have conducted in-depth research on IoU Loss, and
successively proposed the GIoU Loss [16]. GIoU Loss eliminates the risk of loss becoming 0
by introducing the concept of a minimum closure area to solve the problem that IoU is not
sensitive to the scale of the target object and unable to directly optimize the condition that
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the ground truth detection box does not overlap with the predicted detection box. Different
from IoU Loss, GIoU Loss not only pays attention to overlapping areas, but also to other
non-overlapping areas, which better reflects the overlap ratio.

GIoU Loss is able to make up for the deficiencies of IoU. Unfortunately, it is hard
for GIoU to improve the instability of the regression box in the training process. At the
same time, when the ground truth detection box completely overlaps with the predicted
detection box, GIoU Loss is unable to accurately obtain the exact positions of the two;
that is, the overlap ratio of the two remains unchanged, so that GIoU Loss completely
degenerate to IoU Loss. Therefore, Wang et al. [17] put forward the more advanced DIoU
Loss and CIoU Loss. This kind of loss is more suitable for the bounding box regression
mechanism than GIoU Loss. The area problem is normalized to the distance problem,
and the regression is faster and more stable by combining the aspect ratio. However, the
calculation process of DIOU Loss function only includes the overlapping area and center
distance of the the ground truth detection box and the predicted detection box, which
ignores the aspect ratio of the two boxes.The aspect ratio of CIOU describes the relative
value, which has some ambiguity and does not consider the balance of difficult samples.

In this paper, we propose a NGIoU Loss by adding a new bounding box for bounding
box regression, which is different from the approach of introducing the distance and aspect
ratio of CIoU Loss and DIoU Loss. When the two boxes overlap, the new bounding box
well replaces the containing box and carries out a series of calculations. In this manner,
the overlap ratio will be obtained, and the risk of GIoU Loss degenerating into IoU Loss
will be eliminated. Inspired by the distance normalization in the DIoU Loss, the coefficient
of then penalty term in overlapping is adjusted appropriately. The NGIoU Loss is easily
incorporated into the state-of-the-art object detection algorithms. In addition, NGIoU Loss
will be employed as a criterion in non-maximum suppression(NMS), which is similar to
CIoU and DIoU.

In the experiments, NGIoU Loss has been applied to several algorithms, such as
YOLOv4 [18,19], YOLOv5, SSD [20–23], and YOLACT [24]. Moreover, NGIoU Loss is
evaluated on two popular benchmark datasets PASCAL VOC 2007 (Everingham et al. [20])
and MS COCO 2017 (Lin et al. [25]).

The work contribution is summarized as follows: (1) A new bounding box is added.
The NGIoU Loss works efficiently even though the overlap ratio of the two remains
unchanged. (2) The coefficient of penalty term in overlapping is adjusted appropriately.
The NGIoU Loss has a better performance than GIoU and DIoU. (3) Different regression
functions are used to compare diverse object detection algorithms under different baselines
to verify the effectiveness of the algorithm.

2. Related Work
2.1. Object Detection

For a long time, the bounding box regression has been adopted as an essential compo-
nent in many representative object detection frameworks [26].These detectors are divided
into two categories: one-stage detectors and two-stage detectors. A separate module with
generation region proposals is called a two-stage detector (e.g., R-CNN series [27–29]). The
process of creating a region proposal, also known as the first stage, attempts to develop a
series of candidate boxes to screen these regions that may contain objects. The candidates
are also generated, which are assisted in subsequent work detection tasks in the second
stage. Compared with two-stage detectors, the efficiency of one-stage detectors(e.g., SSD
series) is greatly improved, although at the expense of accuracy.

2.2. Loss Function for Bounding Box Regression

Loss function, for bounding box regression, plays a significant role in object detection.
The ln-norm loss functions are usually used in bounding box regression. They are sensitive
to different scales. Early works claim that the L-norm Loss is represented by L1 and L2
losses and assesses the error between the predicted bounding box and the ground truth box
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by computing the standard deviation or squared deviation between the two. Recent works
replace them with IoU-based loss functions. The IoU Loss is the first attempt to include IoU
in the regression loss, and it is a success. However, when there is no overlap between the
two shapes, the IoU value is 0, so it is hard for the IoU Loss to optimize the regression result.
GIoU solves this problem by using closed regions to ensure that the value between two
shapes without overlapping regions is not zero, thus greatly improving the reliability of the
IoU method. Following GIoU, a number of IoU-based bounding box representations and
losses have evolved, including DIoU (which focuses on the distance between two shapes),
CIoU (which considers the aspect ratio), PIoU [30] (which is recommended for the rotating
target identification) and Updated-IoU [31] (which concentrates on the overlap areas and
predicts object localization to obtain the higher position accuracy performance). Therefore,
we propose NGIoU Loss by adding a new bounding box, which prevents the NGIoU Loss
from completely degrading to IoU Loss.

2.3. Non-Maximum Suppression

Common object detection algorithms in recent years end up finding multiple rectangu-
lar boxes that may be objects in an image, and then do a category classification probability
for each box. Non-maximum suppression means that multiple candidate boxes are ob-
tained by the classifier, and the probability value of the candidate boxes belonging to
the category is sorted according to the category classification probability obtained by the
classifier.The boxes, whose probability value exceed the threshold value, are deleted, and
the remaining boxes are selected with the highest score. Soft-NMS is proposed by Bodla et
al. [21], which adopted a continuous function called IoU. Soft-NMS penalized the detection
score of neighbors. The 3D IoU-Net(Li et al. [32]) includes an Attentive Corner Aggregation
(ACA) module by aggregating a local point cloud feature. NGIoU is deployed as a criterion
in the non-maximum suppression (NMS) in this work.

2.4. Analysis to IoU and GIoU Losses

Algorithm 1 provides the pseudocode of IoU Loss and GIoU Loss.
IoU is a common indicator for evaluating the regression box detection. As a distance

measure, IoU has the characteristics of non-negative, scale invariance, identity, symmetry,
triangle inequality and so on. l1 and l2 losses are designed to calculate and add the losses of
the four coordinates of the regression box, respectively, which may ignore their associativity
and is hard to adapt to the evaluation indicator, IoU.

Therefore, for two-dimensional object detection tasks, it is best to use IoU as the
objective function. Between optimizing the indicator itself and replacing the loss function,
the former is the best choice. Nevertheless, if IoU is directly used as the loss function, the
training may not converge. As observed by line 6 of Algorithm 1, when the predicted
regression box bboxes_p and the ground truth regression box bboxes_g have no intersection,
that is, Ac = 0, and IoU is 0, there is no moving gradient to carry out learning and training.
Meanwhile, the scale invariance of IoU will make the IoU Loss unable to accurately describe
the overlap ratio of the predicted regression box bboxes_p and the ground truth regression
box bboxes_g.

In view of the aforementioned shortcomings of the IoU Loss, Rezatofighi et al. [16]
proposed GIoU Loss. GIoU introduces the minimum closed convex shape bboxes_q that
surrounds the predicted regression box and the ground truth regression box when there
is no overlap. From line 7 of Algorithm 1, GIoU adds a penalty term Aq−AD

Aq
on the basis

of IoU. When the intersection of the two boxes is 0, GIoU still accurately measures the
distance between them. It is observed by line 8 of Algorithm 1 that when the intersection is
0, LIoU will fall into a platform area and no moving gradient is provided, while the penalty
term of LGIoU will make the predicted box move to the ground truth box and speed up
the regression.
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Algorithm 1 IoU and GIoU Loss function

Input: The predicted regression box bboxes_p and the ground truth regression
box bboxes_g.
bboxes_p = (x1p, y1p, x2p, y2p),
bboxes_g = (x1g, y1g, x2g, y2g).

Output: IoU Loss, GIoU Loss.
1: Condition: Guarantee x2g > x1g, y2g > y1g x2p > x1p, y2p > y1p.
2: The area of the predicted regression box and the ground truth regression box is as

follows:
Ap = (x2p − x1p) ∗ (y2p − y1p) Ag = (x2g − x1g) ∗ (y2g − y1g).

3: The intersection C of the predicted regression box and the ground truth regression box:
The upper left coordinate of C: (x1c, y1c),
x1c = max(x1p, x1g), y1c = max(y1p, y1g).
The lower right coordinate of C: (x2c, y2c),
x2c = min(x2p, x2g), y2c = max(y2p, y2g).
Area: Ac = (x2c − x1c) ∗ (y2c − y1c).

4: The union D of the predicted regression box and the ground truth regression box:
Area: AD = Ap + Ag − Ac.

5: The minimum closed convex shape surrounding the predicted regression box and the
ground truth regression box bboxes_q:
The upper left coordinate of bboxes_q: (x1q, y1q),
x1q = min(x1p, x1g), y1q = min(y1p, y1g).
The lower right coordinate of bboxes_q: (x2q, y2q),
x2q = max(x2p, x2g), y2q = max(y2p, y2g).
Area: Aq = (x2q − x1q) ∗ (y2q − y1q).

6: IoU = Ac
AD

.

7: GIoU = IoU − Aq−AD
Aq

= Ac
AD
− Aq−AD

Aq
.

8: LIoU = 1− IOU, LGIoU = 1− GIoU.

Although GIoU alleviates the non-overlapping problem of IoU, when the predicted
regression box and the ground truth regression box completely overlap, the minimum
closed convex shape bboxes_q surrounding the predicted regression box, and the ground
truth regression box is equal to the larger regression box. Then, the penalty term is 0, the
GIoU Loss will degenerate into IoU Loss. Thereby, GIoU is unable to obtain the overlap
ratio between the predicted regression box and the ground truth regression box.

3. NGIoU Loss

Aiming at the aforementioned problem of GIoU Loss, this paper proposes a New
Generalized Intersection over Union (NGIoU) Loss based on a new bounding box regression.
Algorithm 2 demonstrates the novel loss function, as follows.

The core of this algorithm is line 7 of Algorithm 2. NGIoU Loss is explained in Figure 1.
Where, A′and B share the center O. O′ is the center of A, d is the line segment connecting
the upper left corner and the lower right corner of figure B, and d′ is the line segment
connecting the upper left corner and the lower right corner of C′.

As observed in Figure 1, when A ⊆ B, C = A ∪ B, the penalty term C−A∪B
C = 0 in line

5 makes GIOU = IOU. It means that IoU stays unchanged and equals to A
B , so that the

loss is constant and no moving gradient is obtained. Thus, we make a congruent figure
A′ with A centered on the center O of B. The positional relationship between B and A is
replaced by that between A′ and A, that is, the penalty term calculated by A and A′ is used
to substitute for the penalty term 0 of A and B. As the penalty term is no longer 0, in the
case of overlapping, the predicted regression box will move to the ground truth regression
box, speeding up the regression of the bounding box.
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Figure 1. NGIoU loss function.

Algorithm 2 NGIoU bounding box loss function

Input: The predicted regression box A and the ground-truth regression box B.
Output: NGIoU Loss

1: Find the smallest closed convex shape C surrounding A and B.
2: If A ⊆ B, add a new bounding box D that has the same center as B and is congruent

with A, and find the smallest closed convex shape C′1 surrounding A and D. The line
between the upper left corner and the lower right corner of C′1 is d′1.

3: If B ⊆ A, add a new bounding box D that has the same center as A and is congruent
with B, and find the smallest closed convex shape C′2 surrounding A and D. The line
between the upper left corner and the lower right corner of C′2 is d′2.

4: The line between the upper left corner and the lower right corner of A is d2. The line
between the upper left corner and the lower right corner of B is d1.

5: IOU = A∩B
A∪B , LIOU = 1− IOU.

6: GIOU = IOU − C−A∪B
C , LGIOU = 1− GIOU.

7: NGIOU =


IOU − β1

C′1−A∪D
C′1

, A ⊆ B

IOU − β2
C′2−B∪D

C′2
, B ⊆ A

IOU − C−A∪B
C , else

where, β1= d′1
d1

, β2= d′2
d2

.
8: LNGIoU = 1− NGIoU.

DIoU Loss takes into account the distance between the center points of the regression
box and the object, and uses the ratio of the Euclidean distance between the center points
of the two boxes. The minimum length of the diagonal enclosing the two boxes is used to
replace the penalty term of GIoU, which makes the regression faster, more effective and
more stable. It is observed from Figure 1 that when two boxes overlap, by replacing B
with A′, the diagonal length is changed from d to d′. The length becomes shorter, but the
Euclidean distance between the center points of the boxes remains unchanged. That is to
say, the denominator decreases and the numerator remains unchanged, which makes the
whole penalty term larger, the regression unstable and it fluctuates greatly.

Hence, inspired by the distance normalization method in DIoU Loss proposed by
Wang [17], we adjust the coefficient of the penalty term in the case of the overlapping. The
definition of scale factor β is as follows:

βn=
αn

α′n
=

d′n
dn

, (n = 1, 2) (1)

αn=
ρ(o, o′)

dn
, (n = 1, 2) (2)

α′n=
ρ(o, o′)

d′n
, (n = 1, 2) (3)
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where o and o′ are the center points, ρ(.) is the Euclidean distance, dn is the diagonal length
of the smallest closed box covering the two boxes. Since the condition discussed here is
overlapping, d1 is the diagonal length of B and d2 is the diagonal length of A. Similarly, d′n
is obtained by adding the bounding box.

The following figures show IoU Loss, GIoU Loss, and NGIoU Loss at different posi-
tions when the predicted regression box overlaps with the ground-truth regression box.

As observed from Figure 2, when A is in the different positions within B, IoU Loss and
GIoU Loss remain unchanged. It means that the moving gradient is unable to be obtained
and the regression speed decreases. Nevertheless, NGIoU Loss decreases continuously as A
approaches B until the center points of A and B overlap, as shown in Figure 2c. According
to Figure 1, when the center points of A and B coincide and A′ and A completely overlap,
the minimum closed convex shape surrounding A and A′ is C′ = A ∪ A′. At this time, the
penalty term of NGIoU becomes 0, and the NGIoU Loss is equal to GIoU Loss and IoU Loss.

(a)
LIOU=0.75
LGIOU = 0.75
LNGIOU=0.85

(b)
LIOU=0.75
LGIOU = 0.75
LNGIOU=0.80

(c)
LIOU=0.75
LGIOU = 0.75
LNGIOU=0.75

Figure 2. The comparisons of losses at different locations under overlapping conditions.

To sum up, NGIoU Loss retains the characteristics of GIoU Loss, but modifies its
shortcomings. Thereby, NGIoU Loss is used as a substitute for GIoU Loss in computer
vision tasks, which provides a new and effective algorithm for a series of IoU Loss.

4. Experimental Simulation

In this part, NGIoU Loss is applied to the popular two-dimensional object detection
task to evaluate the performance. In this paper, YOLOv4, YOLOv5, SSD, and YOLACT are
used to train.

As a standard data set, PASCAL VOC Dataset is a benchmark to measure the ability of
image classification and recognition, and is also one of the most widely used data sets for
classification, object detection, and semantic segmentation. It consists of 9963 images with
24,640 objects. The data are split around 50% train and 50% test, among which objects from
20 predefined categories have been marked with bounding boxes.

MS COCO dataset is a large-scale object detection, segmentation, and captioning data
set, which targets the scene understanding. It contains 91 object categories, 328,000 images
and 2,500,000 labels. Up to now, it is the largest semantic segmentation data set, with
80 categories and more than 330,000 images. Compared with the PASCAL VOC Dataset,
the image background of MS COCO is more complex, the number of objects is larger, and
the object size is smaller. As a consequence, the task on MS COCO dataset is more difficult.
For the detection task, the standard to measure the quality of a model is more inclined to
use the detection results on the MS COCO dataset.

In this paper, all the results have been reported using the same performance indicators
as the 2018 MS COCO Challenge, which include calculating the mean average precision
(mAP) of the specific value of the IoU threshold on different types of labels. The main
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performance measurement used in this benchmark is shown by AP, which is the average
value mapping of different IoU thresholds, that is,

IoU = {0.5, 0.55, · · · , 0.95}.

The computer configuration used in the experiment is Intel Core i7-8300H CPU, 8GB
RAM, and the GPU is GeForce GTX 2080Ti.

4.1. YOLOv4 Algorithm Based on PASCAL VOC 2007

YOLOv4 algorithm is a popular object detection algorithm of the YOLO series. It
has made many improvements in training skills on the basis of YOLOv3, such as the
replacement of activation function, improvement of the loss function, and so on. We use
some tuning methods of the YOLOv4 algorithm to train. In terms of the network structure,
the code uses SPP and PANet structures. In terms of activation function, the currently
popular Mish activation function is used to replace the Leaky ReLU function in the YOLOv3
algorithm. At the same time, mosaic data augmentation is used to splice images from the
data set.

In this paper, the weights of pre-training on PASCAL VOC 2007 training set are also
used to carry out transfer learning. The PASCAL VOC 2007 Dataset is divided into a
training set and a validation set according to the ratio of 9:1. A total of 100 epochs are
trained, which are divided into two parts. The first 50 epochs freeze partial weights, and
the last 50 epochs train after unfreezing. Table 1 shows the performance comparison of
YOLOv4 under different loss functions. The same performance indicators, AP50, AP75 and
AP = AP50+AP55+...+AP95

10 are used.
It is observed from Table 1 that the CIoU Loss function has the best performance in

AP75, and its effect is generally better than the GIoU Loss function. The NGIoU Loss
function has the best effect in AP and AP50, 1.15% and 1.82% higher than GIoU. Compared
with the CIoU Loss function, NGIoU has a certain competitiveness.

Table 1. The comparison of performance indicators with different loss functions in the YOLOv4
algorithm.

Loss AP AP50 AP75

GIoU 46.53% 79.30% 48.72%

CIoU 46.81% 79.52% 50.81%
Relative improv. % 0.28% 0.22% 2.09%

NGIoU 47.68% 81.12% 50.77%
Relative improv. % 1.15% 1.82% 2.05%

As observed from Figure 3, the loss function proposed in this paper provides a moving
gradient and speeds up the decline of the loss value, thus better compensating for the
deficiencies of the GIoU Loss function.

The following Figure 4 shows the comparison of performance indicator curves of
different loss functions under different IoU thresholds. It is observed from Figure 4 that
under different IoU thresholds, the mAP trained by CIoU and GIoU Loss functions is
generally higher than that trained by GIoU Loss function. Especially, when IoU thresholds
are between 0.6 and 0.8, the mAPs gradually overlap in the later stage. Compared with
the CIoU Loss function, the mAP of our algorithm improves a bit, and there is no obvious
difference in the mAP until the IoU threshold is 0.75.



Appl. Sci. 2022, 12, 12785 8 of 15

Figure 3. The comparison of total loss values trained by using different regression loss functions.

Figure 4. The mAP comparison of different loss functions corresponding to different IoU thresholds.

Figures 5 and 6 show the single object detection results and test results trained with
GIoU, CIoU, and NGIoU Loss functions from left to right. Blue boxes in Figure 5 refer to
true values, and green boxes refer to predicted values. It is observed from Figure 5 that, for
different detection objects, the NGIoU Loss proposed in this paper has a higher overlap
ratio of target detection and a larger IoU. From Figure 6, it is observed that the vehicle
and people will be detected more accurately by using NGIoU Loss function. Relatively
speaking, the use of GIoU Losses may lead to missed and false detection. Accordingly, the
NGIoU Loss function based on a new bounding box regression accelerates the regression.
It makes up for the deficiency that the GIoU Loss function completely degenerates into the
IoU Loss function in the case of bounding boxes completely overlapping, so that the loss
obtains moving gradients and separates from the platform area.

Figure 5. Single object detection results of ground truth boxes and predicted boxes trained by using
GIoU, CIoU, and NGIoU Loss functions in YOLOv4.
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Figure 6. Test results of training weights by using GIoU, CIoU and NGIoU Loss functions in YOLOv4.

4.2. YOLOv5 Algorithm Based on PASCAL VOC 2007

YOLOv5 is slightly inferior to YOLOv4 in performance, but has significantly improved
flexibility and speed. YOLOv5 is chosen as the one-stage anchor-based model,which applies
Auto Learning Bounding Box Anchors. Backbone is CSPDarknet53, including Focus
network structure. A mix of mosaic data augmentation and cutmix data augmentation
is used to splice images from the data set. In order to speed up the training efficiency
of the model and increase the number of positive samples, during the training, each real
box will be predicted by multiple prior bounding boxes, score sorting and non-maximum
suppression screening are also used to obtain prediction boxes. The metrics used in
the experiments to measure the precision of the method are the mAP (mAP50) and the
Recall Rate, which separately measure the precision of detection and the degree of missed
detection. The Pytorch framework is used for this experiment. In terms of experimental
parameters, the SGD optimizer is used with the Momentum being 0.9, and no weight decay
is set. The initial learning rate is set to 1× 10−3, and Cosine Annealing LR is used. The
batch size is set to 8.

Table 2 shows the results of the various Loss function compared to the YOLOv5
algorithm. It is observed from Table 2 that the NGIoU Loss function has the highest mAP
value (86.79%). The YOLOv5 model with NGIoU Loss function does not achieve the highest
ap value when predicting objects of boat, bottle, sheep and other categories. Although
the overall ap value is improved, the improvement of NGIoU Loss function has certain
limitations. In addition, The network training time with NGIoU loss function is 49 minutes
shorter than that with the GIoU Loss function, and has slight advantages over those with
the CIoU loss function.

Table 2. The comparison of performance indicators with different loss functions in the YOLOv5
algorithm.

Class Name GIOU CIOU NGIOU

pottedplant 65.18% 64.25% 67.09%
chair 75.05% 75.65% 75.68%
boat 77.21% 77.60% 77.01%

bottle 77.36% 77.77% 77.65%
diningtable 83.91% 83.52% 84.91%

sofa 84.19% 85.27% 86.54%
tvmonitor 87.46% 86.46% 86.03%

sheep 87.84% 88.01% 87.76%
aeroplane 93.76% 92.42% 93.34%

bird 86.56% 86.97% 87.05%
cow 92.37% 93.25% 92.18%

person 91.64% 91.39% 92.01%
bicycle 93.66% 93.97% 93.98%

motorbike 90.86% 93.18% 93.26%
horse 92.45% 92.68% 93.23%

cat 89.88% 90.04% 90.51%
train 90.65% 90.34% 90.89%
dog 89.88% 90.65% 90.66%
bus 93.70% 92.99% 93.90%
car 94.23% 94.81% 95.06%

mAP 85.06% 86.22% 86.79%

training time 658 min 613 min 609 min
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Figure 7 shows the train loss obtained by using different loss functions on the YOLOv5
model. It is clearly observed that the convergence speed of NGIOU Loss is better than that
of the CIoU Loss and GIoU Loss, which proves that NGIoU Loss has better performance.

Figure 7. The comparison of total loss values trained by using different regression loss functions.

Figure 8 shows object detection results of the predicted boxes trained by using GIoU,
CIoU, and NGIoU regression loss functions in the YOLOv5 algorithm. It is observed from
the picture that compared with GIoU Loss, NGIou Loss and CIoU Loss are able to predict
more objects, even though the overlapping area of the two objects is large. Different from
CIoU Loss, the value of the NGIoU prediction box is higher than that of the CIoU prediction
box, which proves that the NGIoU Loss has a better performance of prediction.

GIoU CIoU NGIoU GIoU CIoU NGIoU
Figure 8. Object detection results of predicted boxes trained by using GIoU, CIoU, and NGIoU
regression loss functions in the YOLOv5 algorithm.

4.3. SSD Algorithm Based on PASCAL VOC 2007

The SSD algorithm is one of the mainstream one-stage algorithms. Compared with
the YOLO algorithm, it is more advantageous in speed. In this paper, 60,000 iterations are
performed on the PASCAL VOC 2007 training set and tested on the PASCAL VOC 2007 test
set. In order to obtain better training results, this paper carries out transfer learning and
uses the pre-trained weights on PASCAL VOC 2007 and 2012 data sets, which are trained
by using the Smooth L1 Loss function, GIoU Loss function, and NGIoU Loss function,
respectively. The results are shown in the table below.

As observed from Table 3, regression loss functions of the IoU series are generally
higher than Smooth L1 regression losses in AP, as well as 1% higher in AP75. Compared
with GIoU Loss, the NGIoU Loss proposed in this paper improves a bit, which verifies the
feasibility of the NGIoU Loss.



Appl. Sci. 2022, 12, 12785 11 of 15

Table 3. The comparison of performance indicators with different loss functions in the SSD algorithm.

Loss AP AP75

Smooth L1 45.44% 47.52%
GIoU 45.91% 48.49%

NGIoU 45.97% 48.65%

Figure 9 shows the single object detection results of ground truth boxes and predicted
boxes trained by using Smooth L1, GIoU, and NGIoU regression loss functions in the SSD
algorithm. The figure is marked with the IoU values of ground truth boxes and predicted
boxes. Compared with the original Smooth L1 regression loss, the replacement of the IoU
series of regression loss functions greatly improves regression accuracy, which will be
clearly observed from the figure and the values. In Figure 10 of the multi-object detection,
the Smooth L1 regression loss function is easy to cause missed and false detection, and the
IoU series of loss functions improve this situation.

Smooth L1
IoU: 90.10%

GIoU
92.16%

NGIoU
95.14%

Smooth L1
82.85%

GIoU
89.68%

NGIoU
90.95%

Figure 9. Single object detection results of ground truth boxes and predicted boxes trained by using
Smooth L1, GIoU, and NGIoU regression loss functions in the SSD algorithm.

Smooth L1 GIoU NGIoU Smooth L1 GIoU NGIoU
Figure 10. Test results of training weights by using Smooth L1, GIoU, and NGIoU regression loss
functions in the SSD algorithm.

Although the regression loss function proposed in this paper speeds up the regression,
provides moving gradients, makes up for the shortcomings of the GIoU Loss function and
increases the accuracy of regression positioning, it has some weaknesses. Since the object
detection loss function includes regression loss, classification loss, and confidence loss, the
improvement of the regression function may affect the accuracy of other aspects. In this
paper, only regression accuracy is taken into account, and the influences on classification
accuracy and confidence is not considered, as shown in the figure above.

It is observed from Figure 11 that the confidence loss increases by replacing the
regression loss function. When using Smooth L1 Loss function, the loss of confidence
is the smallest. When using the IoU series regression loss functions, the confidence loss
increases with little difference. From the example of vehicle detection in Figure 10, it is
clear that the confidence of the vehicle detected by NIoU Loss in Figure 10 (right) is the
smallest, and that by the Smooth L1 Loss function is the largest. Meanwhile, Figure 10 (left)
shows little difference. It is explained that the smaller the detection object is, the worse the
confidence detection effect of NIoU Loss will be. Nevertheless, for large detection objects,
it has little influence.
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Figure 11. The comparison of confidence loss values trained by using different regression loss
functions.

4.4. YOLACT Algorithm Based on MS-COCO

The YOLACT [24] algorithm is a simple, fully convolutional model for real-time
instance segmentation. It achieves instance segmentation by adding a Mask branch to the
one-stage detector. In video detection, YOLACT provides more stable Mask results in the
time domain than Mask R-CNN, and achieves a challenging performance on the MS COCO
dataset. Therefore, ResNet101-FPN is chosen as the backbone, and the default parameters
reported and the number of iterations on each benchmark are used to strictly follow their
training protocols. Smooth L1 Loss function, GIoU Loss function, CIoU Loss function, and
NGIoU Loss function are used for iterative training on the MS COCO 2017 data set. The
performance index AP and AP75 are used to evaluate and compare the performance of the
regression box and Mask of the YOLACT algorithm under different loss functions. The
results are shown in the following table.

Taking into account the performance measurements based on IoU, Table 4 shows
that the positioning accuracy using the IoU series regression loss functions is generally
higher than the benchmark results (using SL1 Losses), reflecting the advantage of the IoU
series regression loss functions adapting to IoU detection indicators. In the IoU series
regression loss functions, it is observed that the training results of NGIoU Loss proposed
in this paper show the optimal performance effect not only in terms of regression but
also in terms of segmentation. Although the CIoU Loss has a poor effect on improving
the performance of the bounding box regression, it has a good effect on improving the
performance of segmentation.

Table 4. The comparison of performance indicators with different loss functions in the YOLACT
algorithm.

Loss
AP AP75

Box Mask Box Mask

SL1 31.5 29.1 32.4 30.1
GIoU 32.4 29.5 34.1 30.6
CIoU 32.2 29.6 33.9 30.9

NGIoU 32.5 29.6 34.4 31.0

As observed from Figure 12, the NGIoU Loss function proposed in this paper is not
prone to missed or false detection in the aspect of detection, which improves the effect of
object detection. At the same time, in the aspect of object segmentation, the detected object
is segmented more completely. Nevertheless, just like the aforementioned experiments, the
confidence is affected, and it is found that the confidence of some targets has decreased.
Therefore, the algorithm in this paper still has a lot of room for improvement.
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Figure 12. Test results of weight trained by using GIoU and NGIoU regression loss functions in the
YOLACT algorithm.

5. Conclusions

In this paper, a new generalized intersection over the union loss based on a new
bounding box regression is proposed when the predicted box overlap with the regression
box. By adding a bounding box regression, the loss will not fall into a plateau when the
predicted box overlaps with the ground-truth box. Otherwise, the moving gradient makes
the predicted box quickly moving to the ground-truth box and accelerating the regression.
Experiment results demonstrate that compared with the GIoU Loss function, the NGIoU
Loss function proposed in this paper makes the regression faster and more stable. In the
two-dimensional target detection task, the NGIoU Loss function well replaces the GIoU
Loss function, which provides a new and effective algorithm for the IoU series regression
loss functions.

Nevertheless, our algorithm still has some shortcomings. Firstly, the penalty term
coefficient needs more theoretical support to adjust and find the best loss function. Sec-
ondly, the AP of the YOLOv4 algorithm does not run to the best effect, and needs further
improvement. Finally, we only modify the loss function and improve the positioning effect
of object detection, but do not consider the impact on other aspects, such as the confidence
of detection.

In the future work, it is planned to introduce two regression boxes for weighting,
adjust the proportion coefficient of penalty terms and balance the proportion of penalty
terms. This expansion and weighting as a loss may have a great potential to improve the
performance of the target detection framework.
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