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Abstract: Increasing product requirements in the mechanical engineering industry and efforts to
reduce time-to-market demand highly accurate and resource-efficient finite element simulations. The
required parameter calibration of the material models is becoming increasingly challenging with
regard to the growing variety of available materials. Besides the classical iterative optimization-
based parameter identification method, novel machine learning-based methods represent promising
alternatives, especially in terms of efficiency. However, the machine learning algorithms, architectures,
and settings significantly affect the resulting accuracy. This work presents a comparative study of
different machine learning algorithms based on virtual datasets with varying settings for the direct
inverse material parameter identification method. Multilayer perceptrons, convolutional neural
networks, and Bayesian neural networks are compared; and their resulting prediction accuracies
are investigated. Furthermore, advantages in material parameter identification by uncertainty
quantification using the Bayesian probabilistic approach are examined and discussed. The results
show increased prediction quality when using convolutional neural networks instead of multilayer
perceptrons. The assessment of the aleatoric and epistemic uncertainties when using Bayesian
neural networks also demonstrated advantages in evaluating the reliability of the predicted material
parameters and their influences on the subsequent finite element simulations.

Keywords: parameter identification; machine learning; convolutional neural networks; Bayesian
neural networks; LS-DYNA; MAT_187_SAMP-1; GISSMO failure model

1. Introduction

In today’s engineering product development process, computer-aided engineering
(CAE) tools are indispensable to further increase product performance while maintaining
safety requirements, thereby satisfying increasing market demands. Using finite element
(FE) simulations, different designs and features can be evaluated at an early development
stage without having to rely on numerous physical prototypes [1]. A precondition for
the use of high-precision simulations involves the consideration of the specific material
behavior using suitable material models of the corresponding FE solvers [2]. Concern-
ing the continuously increasing available material types and mixtures, a high demand
for calibrated material cards thus arises. For the nowadays increasingly used materials
with complex characteristics, such as polymers, the identification of appropriate material
parameters (MPs) for the simulation is a challenging task. Often, these parameters cannot
be measured directly from experiments, and thus a material parameter identification (MPI)
process is required [2,3]. These nonstandard processes include trial and error procedures.
In order to achieve the highest possible agreement between simulation and reality, the
estimation of the MPs in an optimization-based calibration process is necessary. Typi-
cally, different optimization algorithms are used to solve these inverse problems. Grabski
et al. [4] applied the metaheuristic-based virus optimization algorithm in combination
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with meshless methods [5]. In contrast, Jones et al. [2] used the virtual fields method
with the gradient-based algorithm fmincon to solve the inverse problem for full field data.
Recently, the applicability of machine-learning-based methods is increasingly investigated,
which shows promising results [6,7]. These methods mostly aim at reducing the number of
computationally intensive calculations.

This paper focuses on the direct inverse MPI method, in which a surrogate model
(in this case a neural network) learns the relationship between FE simulation results and
the corresponding material parameters [6,8]. The overall goal of this procedure is to pass
the experimental result curves as input to the NN and to predict the MPs which can best
reproduce the experimentally determined material behavior [6]. The knowledge gained
from the simulations is hence stored in terms of the parameters of the NN and can be
repeatedly retrieved, allowing for exceedingly efficient reuse.

Yagawa et al. [9] first proposed the use of a feedforward artificial neural network
(FFANN) to predict the MP of a material model. In recent years, the direct inverse method
has been further investigated and applied to other materials. Abendroth et al. [10] used
this approach to identify the plastic deformation and failure properties of ductile steels.
The simulated material behavior based on the ductile elastoplastic damage GTN-model
of Gurson, Tvergaard, and Needleman and the load-displacement curve of a small punch
test were used as NN input. Furthermore, Chamekh et al. [11] successfully used the
direct inverse method to predict the anisotropic Hill parameters of an elasto-plastic model.
Ktari et al. [12] designed a ring tensile specimen with effective homogeneous stress and
strain distribution along the hoop direction via shape optimization and used the direct
inverse method to predict the material parameters of the yield curve. Asaadi et al. [6]
demonstrated the viability of the direct inverse approach for retrieving fast solutions in
MPI, but highlighted the influence of stochastic noise in the experimental data and the
potential mismatch between the simulation model and experiment, which can lead to poor
results in parameter estimation. Quantifying unavoidable uncertainties and evaluating
their impact on the reliability of the simulation of complex components are increasingly
becoming focuses of MPI tasks [13]. The use of Bayesian neural networks (BNN) has
proven beneficial to account for aleatory and epistemic uncertainties and to counteract
NNs tendency to overfit due to BNNs’ inherent generalization ability [14–17]. Thereby,
the model returns not only one (or more) deterministic MP, but a distribution object from
which, for example, statistics such as the standard deviation can be computed by sampling.
Unger et al. [18] demonstrated the integration of BNNs into the direct inverse MPI and
presented the advantages using a simple linear elastic material model with an exponential
softening function.

Since the input data of the direct inverse MPI method are mostly force-displacement,
force-time, or similar curves, and thus an ordered set of real values, this task can be seen
as a kind of time series classification problem [19]. In this case, however, the input data
are not assigned a class label which would be typical for classification but a continuous
number (the material parameter), which is typical for regression. Within the time series
classification, different 1D convolutional neural network (CNN) architectures have proven
to achieve very high prediction accuracies in recent years [20,21]. To further increase their
prediction accuracy, data augmentation strategies can be used to increase the size of the
training dataset [22,23]. These include random transformation, such as applying random
noise to the input data, and time series decomposition methods [24]. Aside from the specific
NN algorithm and the input dataset that is available for training, the hyperparameters (HP)
of the NN architecture represent a major influencing factor on the achievable accuracy of
the direct inverse MPI [25,26].

Since the choice of suitable machine learning (ML) algorithms, architectures, and
settings for the direct inverse MPI method is very challenging, a comparative study of the
achievable prediction accuracy is presented within this paper. Multilayer perceptrons (MLP)
and convolutional and Bayesian neural networks were implemented in a self-developed
Python framework, and their performances were compared based on different settings
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and datasets. A self-programmed custom loss function (CLF) was also implemented in
the framework. The used CNNs are based on custom network architectures and on es-
tablished architectures from the literature. Using the library Kerastuner, hyperparameter
optimizations (HPO) were performed. Additionally, the influences of applying different
Gaussian noise components to the training data and empirical mode decomposition as
data augmentation techniques were investigated. The data basis of the investigations
was a virtually generated dataset derived from experimental investigations of an addi-
tively processed acrylonitrile butadiene styrene (ABS). To describe the highly nonlinear
material behavior in the FE software LS-DYNA, the material card MAT_187_SAMP-1
(semi-analytical model for polymers) was used in combination with the failure model
MAT_ADD_DAMAGE_GISSMO. Thus, the investigations aimed to further improve the
overall prediction accuracy of the direct inverse MPI method and to simplify the choice
of suitable architectures and settings for researchers and engineers. By varying different
methods and settings, the resulting effects and influences were revealed and quantified in
different runs.

In Section 2, the methods and NN architectures required for understanding the studies
are briefly explained, and the used experimental dataset and the computational studies are
described. The results of the study are presented and compared in Section 3. Finally, in
Section 4 the results are summarized, and an outlook on possible further investigations is
given.

2. Materials and Methods

In the following, the dataset under investigation and the methods and neural network
architectures relevant for understanding are explained. For more detailed explanations,
reference is made to further literature.

2.1. Virtual Dataset under Investigation

For the comparative study, the LS-DYNA material model MAT_187_SAMP-1 [27,28]
combined with the failure model GISSMO [28,29] was chosen, which is suitable to describe
specific material characteristics, such as the tension–compression asymmetry and strain-
rate dependency, of thermoplastics. The direct inverse MPI method applied is not limited
to any particular material model, although the use of such a sophisticated material model
allows an extensive investigation and comparison of different architectures and settings
due to the complexity of the parameter identification task. As a database for this work, a
virtual generated dataset was created by numerical simulations. The underlying material
behavior was based on experimental investigations of an additively processed ABS [26] and
conforms to the description in [7]. In the following, the continuum mechanical formulations
of MAT_187_SAMP-1 relevant to this paper are briefly introduced. For in depth information
on MAT_187_SAMP-1 and GISSMO, we refer to [27,29]. For further information regarding
a numerical simulation with the commercial solver LS-DYNA, we refer to [30].

Depending on the provided input of the material card, three different yield curve
formulations are achievable with MAT_187_SAMP-1. If tension, compression, and shear
test data are provided to the material card, the so-called SAMP-1 yields surface definition
results:

f = σ2
vm − A0 − A1 p− A2 p2 ≤ 0. (1)

σvm represents the von Mises stress and can be formulated as:

σvm =

√
3
2
[(σxx + p)2 + (σyy + p)2 + (σzz + p)2 + 2σ2

xy + 2σ2
yz + 2σ2

xz]. (2)

Here, p is the first stress invariant and can be expressed as:

p = −
σzz + σyy + σzz

3
. (3)
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Providing the tensile, compression, and shear test data, the unknown constants A0,
A1, and A2 can be calculated as functions of the test results:

A0 = 3σ2
s , (4)

A1 = 9σ2
s

(
σc − σt

σcσt

)
, (5)

A2 = 9
(

σcσt − 3σ2
s

σcσt

)
. (6)

Although shear test data were generated in respective virtual experiments, they
were not used as input for the material card, but only as a target curve of the parameter
identification task and thus as input for the NN. Consequently, only tensile and compression
input data were provided to generate the yield surface, which is why the Drucker–Prager
yield surface from MAT_187_SAMP-1 was used and the remaining curve was calculated
internally from the other two available curves:

σs =
2σcσt√

3(σt + σc)
. (7)

Depending on the definition of the plastic Poisson’s ratio (PPR), MAT_187_SAMP-1
offers the possibility to define an associated or a non-associated flow rule. Since in this
work the PPR changing under loading is to be considered in the simulation, the change in
PPR is defined as a function of plastic strain, thereby generating the non-associated yield
rule. The yield rule is given by:

g =
√

q2 + αp2, (8)

with α being the angle between the hydrostatic axis and plastic potential and thus a function
of plastic strain. By the following formula, α can be obtained:

α =
9
2
·

1− 2νp

1 + νp
. (9)

For strain-rate dependency, the load curve defining the yield stress in uniaxial tension
is replaced by a table definition, assuming dynamic test data are available. Thus, the
table contains multiple load curves corresponding to the respective plastic strain rate. In
MAT_187_SAMP-1, these rate effects are assumed to be similar to tension for compression
and shear. For a more detailed description, please refer to [27,28].

For consideration of failure in the numerical simulations, the failure model generalized
incremental stress-state dependent damage model (GISSMO) was applied within this work.
It allows incremental damage accumulation and defining an arbitrary triaxiality-dependent
failure strain; the latter is the input of the material model. GISSMO permits an incremental
description of damage accumulation, including softening and failure, and provides the
advantage of specifying an arbitrary triaxiality-dependent failure strain. The incremental
damage accumulation is defined by [28,29,31–33]:

Ḋ =
n
ε f

D(1− 1
n ) ε̇p. (10)

Here, D represents the current value of damage, ε̇p is the plastic strain rate, n is the
damage exponent, and ε f is the equivalent plastic strain at failure. The forming intensity
parameter F takes into account the onset of necking.

Ḟ =
n

εcrit(η)
F(1− 1

n ) ε̇p, (11)
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and the critical strain curve εcrit(η) is also a function of the triaxiality for coupling damage
and stress under proportional loading. The functions D and F primarily differ in the type
of limiting strain, which depends on the applied triaxiality forms ε f or εcrit(η). Within this
formulation, the damage is coupled to the stress tensor. By applying the concept of effective
stress of Lemaitre [34,35], once instability is reached, F = 1.

σe f f = σ

(
1−

(
D− Dcrit
1− Dcrit

)m)
. (12)

Here, Dcrit represents an indicator for reaching the onset of necking. The fading
exponent m is used for the regularization of fracture strain and the energy consumed
during post-instability deformation [29]. For more detailed information on GISSMO, please
refer to [29].

In several material cards, and so in MAT_187_SAMP-1, there exists the possibility to
import experimental data directly as a defined curve or a table. Since these experimentally
measured data usually do not lead to the desired agreement or sometimes cannot even
be measured completely, the material card input curves (MCIC) are parameterized by a
mathematical formulation, and subsequently their parameters are calibrated in an opti-
mization or trial-and-error process. Thus, the MP to be determined are the parameters of
the mathematical formulation and therefore are only included indirectly into the material
card. In the following, the formulation of the input consisting of parameters and curves
used in this work is briefly presented. This is adapted from the work in [7], but the 19
material parameters used were reduced by the bulk modulus, since this exerts no influence
on the used shell models.

In the present work, the yield curve formula of Meißner et. al [26] with a combination
of second-degree polynomial and root function was used:

σ = a · ε2
pl + b · εpl + c + d ·√εpl , (13)

with a, b, c, and d representing the material parameters and εpl the plastic strain. The
relationship of the PPR as a function of plastic strain in uniaxial tension, and compression
is described with the following formula:

νp = νp,plat − (νp,plat − νp,press) · e
min

(
−5·εpl
εp,plat

;0
)

, (14)

with νp being the plastic Poisson’s ratio. The formula describes an exponential decay from
the constant PPR νp,press of the compression side to a plateau on the tension side. Here,
νp,plat is the respective PPR value of the tension side and εp,plat defines the value where
99% of the difference between compression and tension is subtracted.

For consideration of strain rate dependency, a table with multiple yield curves at
different strain rates must be provided [28]. The Cowper Symonds analytical approach [36]
was used to scale the quasi-static yield curve in this paper:

The following formulation results when this equation is included in the yield curve
expression (13):

σ =
(

a · ε2
pl + b · εpl + c + d ·√εpl

)[
1 +

(
ε̇

C

) 1
P
]

, (15)

with the strain rate ε̇ and the material parameters C and P.
Failure is implemented by providing the lcsdg curve in GISSMO, which defines the

plastic strain at failure (EPSF) as a function of stress triaxiality. Within this work, this curve
is defined by a discontinuous linear function consisting of seven reference points, wherein
the ordinate values (EPSF) represent the material parameters (see Table 1).
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Table 1. Material parameters eps f for description of failure with GISSMO lcsdg.

Reference Point Stress Triaxiality (-) Equivalent Plastic Strain at
Failure (EPSF) (-)

1 −0.333 epsf0
2 −0.250 epsf0
3 0.050 epsf1
4 0.200 epsf2
5 0.430 epsf2
6 0.666 epsf3
7 0.700 epsf3

This curve is derived from the failure behavior of unreinforced thermoplastics known
from the literature [37] and is specified by the four eps f parameters. Failure occurs, and
simultaneously, the element is deleted when an element reaches an equivalent plastic strain
(EPS) greater than or equal to the threshold defined by this curve.

As mentioned initially, the direct inverse MPI method needs artificially created data
for training the surrogate model. This requires the definition of a material parameter range
in which the solution of the inverse problem is assumed. The material parameters of the
virtual experimental dataset (MPexp) used in this work and the corresponding MP ranges
and the respective curve description are shown in Table A2. Additionally, the constants
and settings used in the material card are listed in Table A1.

For creating the virtual dataset, ten different numerical simulations were performed:

• a quasi-static tensile test;
• four strain rate dependent tensile tests (velocity 1–4);
• a compression test;
• a three-point bending test;
• a punch test;
• and two different shear tests.

For all tests, the resulting force-displacement curves were evaluated, and the PPR-EPS
curves exclusively for the compression and punch test using history variables 2 and 27,
respectively. Consequently, a total of twelve simulation output curves (SOCs) resulted. The
corresponding FE models were built as shell models with ELFORM = 16 and are shown in
Figure 1. Using the parameter DT2MS, mass-scaling was applied for all models to reduce
computational time. To further reduce computation times, time-scaling was used for all
tests except the dynamic. Exclusively, the four dynamic tensile tests V1–V4 were simulated
with the strain-rate-dependent material card and in that way are only reported in the
simulation results of these four dynamic tests. The applied test velocities and resulting
strain rates are listed in Table 2.

X

Y

Z X

Y

Z

X

Z
Y

X

Y

Z

X Y

Z

X Y

Z

Tension

Shear_1Shear_2

Compression

Punch

Bending

Fixed Clamping

Force measuring

Force measuring

X, Y Fixed

Fixed Clamping

Y, Z Fixed

Z Fixed

X, Z Fixed

Y Fixed Fixed Clamping

Y Fixed

X Fixed

Fixed Rigid

Figure 1. Used shell models [7].
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Table 2. Test velocities and resulting strain rates of the virtual dataset.

V1 V2 V3 V4

Velocity ( mm
s ) 0.0166 0.1666 16.666 1666.6

Strain Rate ( 1
s ) 1× 10−4 1× 10−3 1× 10−1 1 · 101

A labeled dataset always consists of the twelve SOCs, which are the input of the NN,
its output, and the corresponding material parameters. Besides the virtual experimental
dataset, different datasets of varying sizes were created for the comparative study. As usual,
these were divided into training and validation datasets to counteract overlearning and to
evaluate the performances of the NNs for unseen data. The sampling method used was
Latin hypercube sampling (LHS) using the library PyDOE V.0.3.8, which has shown good
results in previous work [26]. For datasets 1–4, the sampling was carried out individually
for the respective material characteristics (plasticity, failure, etc.) in contrast to datasets
5–8, for which the sampling was carried out on the entire parameter range for comparison
purposes. A training/validation split of approximately 70/30 was used for all datasets.
The distribution of the eight datasets is listed in Table 3.

Table 3. Datasets used for the comparative study.

Dataset Sampling
Method

Sampling
Type

Training Set
Size

Validation
Set Size

Complete
Set Size

1 LHS individually 266 114 380
2 LHS individually 525 225 750
3 LHS individually 1050 450 1500
4 LHS individually 2100 900 3000
5 LHS complete 266 114 380
6 LHS complete 525 225 750
7 LHS complete 1050 450 1500
8 LHS complete 2100 900 3000

2.2. Direct, Inverse Neural Network-Based Material Parameter Identification Process

In combination with a numerical model being able to adequately reproduce reality,
the MPI has a major influence on structure modeling and sustainability assessment. In
addition to the trial-and-error approach, the MPI process consists of solving an inverse
identification problem to identify or estimate the system parameters based on the measured
system response [38]. For solving this identification method, two general methods are
distinguished (see Figure 2). In the most commonly used iterative optimization-based
method, an error function is defined as the difference between experimental measurements
and parameterized model outputs. This error is usually minimized using an optimization
algorithm (e.g., gradient-based or genetic algorithm [39,40]). Since no standardized pro-
cedure or terminology exists, this method is called, e.g., by Kučerová [41], the forward
(classical) mode. With the expanding application of artificial intelligence (AI), a hybrid ML-
based method emerged based on the forward mode, wherein time-consuming numerical
simulations are replaced by surrogate models such as neural networks, and then the error
measure is minimized using an optimization algorithm [42].

Trial & Error
Iterative

Direct InverseOptimization based
ML based

Optimization

Material Parameter
Identification

Figure 2. Different methods for material parameter identification.
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In the second main approach, the existence of an inverse relationship between output
and input was assumed, and by effectively inverting the material model, a surrogate model
(e.g., NN) was trained using material responses from finite element analysis as input.
Afterwards, the model can be applied to directly predict the model (material) parameters
and is therefore called an direct inverse or inverse mode [6,41]. Here, the main advantage
is the computationally cost-efficient prediction of the material parameters for repeated
MPI, since the generated knowledge is stored in the parameters of the surrogate model
and new numerical simulations are not needed [7]. As for the classical forward mode,
no standardized procedure for the direct inverse approach exists, and many different
methods can be implemented into the process. In the following, the specific Python-based
implementation of the direct inverse method used in this work is essentially described (see
Figure 3), and reference is made to [7] for a detailed explanation.

Design of

experiments

Selection of material

parameter range

FFA

LHS

LHSG

FEA

preparation

Input curve calculation

Generation of material card

Generation of FE-models

use
data

augmentation?

Adding data aug.

e.g. gaussian  noise

Yes

Data modification &

NN architecture

Normalization
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Neural network

training and validation

MSE parameter

Gradient descent

Results

sufficient?

FE simulation with

predicted material parameter
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Comparison

output curves

Hyperparameter

optimization

Batch size

Number of neurons

...

FE simulation with

predefined parameter

Generation of labeled data:

No Yes

A
d

ju
st

 s
e�

in
g

s

Experimental data

preparation

using same evaluation

points as for labeled data

Prediction of material

for experimental data

FE simulation

with predicted

Evaluation

+
Calibrated material card

Trained NN for material
parameter identification of

materials with similar
behaviour

F

D

Preset Parameter
Predicted Parameter

F

D

Simulation

Experiment

Simulation Output Curves - MP

 σ  ε

f(x)

x

optimization

simulation

parameters

y

x

Single- or Multi NN
single

multimulti

Neural Network Preparation

Early Stopping
architecture

Truncation

Application Case

MLP CNN

BNN

Figure 3. Applied direct inverse material parameter identification method. Own figure based on [7].

In the first step, a material parameter range had to be defined, which ascertained
sufficient coverage of the material characteristics. By applying appropriate sampling
methods such as LHS, MP sets were generated, and the corresponding material card input
curves/tables were generated using the equations presented in Section 2.2. In this work,
the resulting system responses comprise the respective force-displacement curves (FDC)
and the plastic Poisson’s ratio-equivalent plastic strain curves (PEC) of the numerical
simulations. For comparability purposes, the FDC and PEC were evaluated by default with
an equidistant discretization of 200 points and at the same abscissa locations. Consequently,
twelve SOC 2400 input values were opposed to the corresponding 18 material parameters
as output. Since the output of the simulations was noise-free and clean, and typically data
from experimental measurements are not, Gaussian noise with zero mean and standard
deviation of 0.001 was applied to the force and 0.0005 to the PPR data, taking this into
account.

As mentioned initially, time series data augmentation (AUG) and manipulation are
beneficial for increasing the prediction accuracy of the NN and its generalization ability
by reducing overfitting [22,43]. The basic idea of data augmentation is the generation
of additional datasets by adding slightly modified variations of already existing data or
newly created synthetic data from existing sets while maintaining correct labels [44]. This
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is especially relevant for real-world data such as experimental results and can contribute to
counteracting problems due to insufficient or expensive generated input datasets. While
data AUG is a popular method in image recognition with NNs, it is not a well-established
approach for time series regression tasks, and many techniques are borrowed from the
former [43]. Many different methods exist, which according to Iwana et al. [24] can be
categorized into random transformation, pattern mixing, using generative models (such as
NNs), and decomposition. However, not all techniques are beneficial for each time series
dataset due to their different features and may also cause prediction-accuracy-degrading
effects. In the domain of direct inverse MPI, random transformation in the form of applying
Gaussian noise to the time series datasets to account for random measurement errors
and deviations has already been successfully applied [7,8,26]. Previously, a noise amount
adapted to the noise ratio of the experimental data was used, while the initial dataset
size was unchanged. In this work, several noise amounts also were used in some runs to
artificially increase the dataset size and to investigate whether an increase in the prediction
accuracy can be achieved.

A fundamentally different kind of data augmentation methods are decomposition
methods, which decompose time series by extracting features or underlying patterns [24].
Empirical mode decomposition (EMD) is a technique to decompose nonlinear and non-
stationary signals. The decomposed oscillatoriy components are typically named an in-
trinsic mode function (IMF). These, however, differ in nuances depending on the chosen
settings of the EMD. In this work, it was applied to the virtual dataset using the Python
library PyEMD, which is based on the algorithm by Huang et al. [45]. The input dataset
consisting of the simulation results thus was artificially extended by the IMFs resulting
from the EMD. As is usual for data augmentation techniques, only the training dataset was
increased in size, and for validation, the original data remained unchanged. The chosen
settings are explained in Section 2.3. For more detailed information on data augmentation
methods, please refer to [23,24,43].

Model-related effects in the numerical simulations, such as oscillations after abrupt
failure, complicate the NN training process. Hence, automated data preparation techniques
are often required—e.g., truncating the force-displacement curves after failure in the present
case. Additionally, filtering functions such as moving averages are applied in this step,
which also have to be executed for the prediction based on unknown data. To avoid indirect
weighting and problems during the training of the NN, the input and output data were
normalized separately. Different ML algorithms can be used as surrogate models, whereas
three different NN types were implemented and compared in this work. During the NN
training in direct inverse MPI, the mean-squared error (MSE) of the output (material)
parameters is usually minimized. In [7], an alternative custom loss function was presented,
which was also used in this work (Section 2.2.1). To reduce overlearning tendencies,
early stopping was used, whereby the training is stopped after a defined number of
epochs without improvement of the validation loss. Additionally, checkpointing was
applied, ensuring the best network in terms of loss value was used for the prediction of the
validation dataset and the virtual experiment. To further increase the prediction accuracy, it
is possible to adapt NN settings, including the number of neurons, training algorithms, etc.,
concerning the available dataset in a hyperparameter optimization. Finally, after a further
numerical simulation using the predicted MP, the agreement of the SOC of prediction and
target was assessed, which represents the overall goal of the MPI. For the comparison
of the partially steep noisy curves with different lengths, the dynamic time warping
(DTW) [46–48] distance measurement algorithm of the Python library similaritymeasures
V 0.4.4 was used in this work, which calculated the dimensionless minimum Euclidean
distance of the respective curve pair.

In the application step, the NN can finally be used to predict MPs for experimental
test data, whereas in the present case, the virtually generated experimental dataset was
employed. In this step, the advantage of this approach becomes evident, since in the
conventional forward MPI, e.g., for a similar material compound with different additives,
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the computationally intensive simulations would have to be performed again. In the
following, the neural network types implemented in the direct inverse MPI framework and
the related specific features are presented.

2.2.1. Multilayer Perceptron

Multilayer perceptrons are a fully connected class of feedforward artificial neural
networks, consisting at least of an input layer, a hidden layer, and an output layer. The
network topology can consist of single or multiple hidden layers (HL). In most work related
to direct inverse MPI, including this paper, a fully connected architecture has been chosen,
where each neuron of one layer is connected to each neuron of the adjacent layer. This
results in a relatively high number of network parameters to be optimized in training, which
allows a precise approximation of highly nonlinear functions. For further information on
MLPs, the reader is referred to [49–52].

In the chosen network architecture, the input layer consists of 2400 neurons corre-
sponding to each of the 200 equidistantly distributed abscissa positions of the twelve SOCs.
The output layer, on the other hand, consists of 18 neurons representing the corresponding
material parameters. The settings used for the respective investigation runs are listed in
Section 2.3 and Table A3. Besides the commonly used loss function, which is calculated
from the MSE of the MP, the custom loss (CL) function described in Meissner et al. [7] was
used in combination with the MSE of the MP. The CL uses the MSE of the curves calculated
with the analytical formulas from Section 2.1 instead of the deviation of the MP. Thus, it
considers the observation that sometimes significantly deviating MP can lead to similar
MCIC, which in turn leads to high agreement of the simulation results. In this work, this
custom loss was used in combination with the MSE of the MP to be able to exploit any
synergistic effects that may occur. Despite the normalization of the two loss values, they lie
on different scales, and therefore, they were multiplied by each other. The combined loss
COL was calculated:

COL = MSEMP · CLMCIC. (16)

2.2.2. Convolutional Neural Networks

CNNs are often applied in the context of machine image processing [53], where the
model learns an internal representation of a two- or three-dimensional input. However,
in recent years they have been successfully applied in various other research areas [54],
such as language processing tasks [55] and time series analysis [56]. In the latter, usually,
one-dimensional sequences of data constitute the input. The model learns to extract features
from sequences of observations and how to map the internal features to the possible outputs.
Convolutional neural networks consist of one or more convolutional layer, followed by a
pooling layer, and these units may be repeated arbitrarily several times [49] (see Figure 4).
The central processing step is the convolution, which can be understood as applying and
sliding a filter of definable size over the receptive fields of each data point in the time
series. The repetition of this linear transformation results in a feature map that indicates
the intensity with which the feature encoded in the weights of the filter is present over the
length of the time series. Then, the values of the feature map are passed through a non-
linear activation function. Applying several filters, e.g., to learn multiple discriminative
features, to a time series, results in as many feature maps as filters were applied. The values
of the filter depend highly on the investigated dataset [49,57].
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Figure 4. Schematic illustration of a convolutional neural network.

Typically, a pooling layer is used after convolution, which filters out redundant in-
formation of the resulting time series by aggregating over a sliding window. Despite
the data reduction, the performance of the CNN is usually not reduced, but rather, the
computational efficiency is increased, enabling the solving of more complex tasks and also
counteracting overlearning. Often, for time series data, additional batch normalization
over each channel is applied to enable faster convergence and to keep the mean output
close to zero and the output standard deviation near to one. Through a flattened layer,
the resulting arrays of pooled feature maps are transformed into a one-dimensional vector.
Subsequently, this is fed as input to a fully connected layer (FCL), which resembles the
architecture of the MLPs. This can be used for classification or regression, where the number
of neurons corresponds to the number of classes or (material) parameters to be determined.
Consequently, both feature extraction and regression operations are fused into one process
which can be optimized to maximize prediction accuracy. This is an advantage of 1D CNNs,
which additionally have comparatively low computational complexity [20,49,57].

Hence, CNNs can learn directly from raw time series data and do not require domain
expertise to manually engineer input features. The time series used in this work can be
interpreted as one-dimensional grid structures, with data points having local dependencies
through the continuously increasing abscissa values (e.g., displacements). The main advan-
tage results from the grid-like structure of the feature maps, which allows one to consider
local dependencies in the input in learning the activation patterns. Strong correlations
of neighboring data points can be detected by the feature maps and used as activation
patterns. The CNNs possess comparatively fewer learnable parameters than MLPs, for
which a separate weight is assigned to each input value. The greatest influence on the
number of learnable parameters is caused by the width and depth of the subsequent MLP.
In contrast, the convolutional layers of the CNN have significantly fewer parameters due
to the shared weights and the sparse connections between the neurons [49].

Within this work, various CNN architectures from the literature were implemented
in the self-developed framework of direct inverse MPI, and their performances were
investigated in the comparative study. Their internal denotation and the corresponding
literature sources of the CNNs are listed in Table 4. The CNN proposed by B. Zhao
et al. [58] was used as the default architecture for most studies. Based on the network
of Wang et al. [59], the two custom architectures FCN2 and FCN3 were included in the
experimental plan. In Table A5, the individual settings of different networks are listed in
additional to those of Default_CNN by Zhao et al. For detailed information (number of
filters in convolution, kernel_size, etc.) about the remaining CNN architectures from the
literature, we refer to the corresponding sources in Table 4. Additionally, based on the
network of Zhao et al. [58], hyperparameter optimization was performed, and the applied
HPO parameter ranges and resulting settings are presented in the Tables A6 and A5.
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Table 4. Internal denotation of the CNNs used and corresponding literature sources.

CNN Number Internal Denotation Author Source

1 Default_CNN B. Zhao et al. [58]
2 CNN Yang H. Yang et al. [60]
3 CNN Azizjon M. Azizjon et al. [61]
4 CNN Rautela M. Rautela et al. [62]
5 MCDCNN Y. Zheng et al. [63]
6 Resnet Z. Wang et al. [59]
7 FCN Z. Wang et al. [59]
8 Encoder J. P. Serrà et al. [64]
9 FCN2 Meißner et al. -

10 FCN3 Meißner et al. -

The network of Zhao et al. [58] utilizes two repetitions of a 1D convolutional layer,
followed by an average pooling layer. The second pooling layer is followed only by a
flattened layer and subsequently by a fully connected dense layer containing the 18 output
neurons. Thus, the authors omitted the following MLP. Yang et al. [60] also used a network
with two convolutional layers. Additionally, they integrated a dropout layer for each to let
random data points become zero during training. Furthermore, they incorporated batch
normalization and a subsequent MLP with 32 neurons. Azizjon et al. [61] also applied
dropout and batch normalization in their two-layer CNN variant. However, while in Yang
et al. the convolution layer is followed by a dropout layer and a pooling layer followed
by normalization, in Azizjon et al., two convolutions are performed directly in sequence,
followed by the pooling layer with subsequent batch normalization and dropout. By adding
a third sequence of convolution and pooling layer, the architecture of Rautela et al. [62] is
theoretically capable of more complex feature extraction.

The present dataset is considered to be a multivariate time series (MTS) because
the input data consist of the twelve SOCs of the respective simulation results, which
depend not only on their previous values but also on further variables. However, different
parameters can only be estimated from some SOC. Therefore, it could be advantageous to
separate the feature maps of the twelve SOC, which was done within this work by using
the multi-channel deep convolutional neural network (MCDCNN) of Zheng et al. [63].
Here, the convolutions are applied independently (in parallel) on each SOC time series.
The separate convolutional stages are finally merged by a concatenate layer. Since the
architecture applied by Zheng et al. additionally uses a subsequent MLP with 732 neurons,
a comparatively high number of learnable parameters resulted. In contrast, the architecture
of Wang et al., a residual network (RESNET) [59], again assumes a univariate time series and
represents a relatively deep network with eleven layers, of which nine are convolutional
layers. The subsequent global average pooling (GAP) layer replaces the flattened layer and
averages the time series across the time dimension. This reduces the very high number of
otherwise resulting learnable weights and biases. The fully convolutional neural network
(FCN) presented by Wang et al. also does not have a flattened layer and uses a GAP layer
instead. In contrast to the previous architecture, it only consists of three convolutional
blocks and thus is less deep. The encoder CNN used by Serrà et al. [64] was originally
inspired by the FCN, the main difference being the replacement of the GAP layer with
an attention layer. The attention mechanism enables the network to learn which parts of
the time series are responsible for a specific classification or regression part. Like the FCN
network, it consists of three convolutional blocks. For detailed information, please refer to
the above-mentioned sources.

In the self-adapted FCN2 and FCN3, the complexity of the original network was
reduced to counteract overlearning (see Section 3). In contrast to FCN and FCN3, no
batch normalization was used for FCN2. Nevertheless, it is mentioned again that the
performance of a CNN architecture heavily depends on the fundamental characteristics of
the time series, and the CNNs from the literature were used for different time series types.
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For the implementation of the networks, the structure of Fawaz et al. [57] was adopted
and implemented in the framework. If available, the CNNs implemented in the Fawaz
et al. repository were used for the investigation within this work. Based on Default_CNN,
hyperparameter optimizations were also performed for some runs, resulting in additional
networks (see Table A5).

2.2.3. Bayesian Neural Networks

In most MPI methods, including the direct inverse methods using standard NNs, the
output consists of the deterministic material parameters, providing no information about
their accuracy and the model’s confidence in the prediction. For example, predictions
outside the parameter range applied for the training or a too-small training dataset size
can result in highly deviating MP predictions, which can lead to a significantly reduced
informative quality of subsequent numerical simulations. In this case, information about
the existing uncertainties can significantly support the engineer in the assessment of the
results and contribute to obtaining correct conclusions from them, e.g., in order to initially
increase the prediction accuracy of the method. Furthermore, methods based on NNs often
tend to overfit, which limits their generalization ability. One opportunity to overcome these
limitations and to maintain prediction accuracy is to use Bayesian neural networks [16],
which have the same advantages as the standard neural networks but possess the benefit
of providing additional information about the persisting uncertainties.

In the literature, no uniform BNN definition exists, although they can be understood
as stochastic artificial neural networks (SANN) which are trained by Bayesian inference [16].
SANN are built by applying stochastic components such as stochastic activation or stochas-
tic weights to the network, to simulate multiple possible models θ with their associated
probability distribution p(θ) [17]. θ are the parameters of the network such as weights
and biases, which are determined during the learning process depending on the training
data D. Depending on the chosen NN architecture, different BNNs are achievable, such
as a Bayesian convolution neural network (BCNN) or Bayesian recurrent neural network
(BRNN), whereas in the present work the underlying architecture is an MLP. For BNN
model generation, a prior distribution over the possible model parametrization p(θ) and
a prior confidence in the predictive power of the model p(y|x, θ) has to be chosen, with x
being the input and y their corresponding labels. By applying Bayes’ theorem and forcing
independence between the model parameters and the input, the Bayesian posterior value
is given by:

p(θ|D) =
p(Dy|Dx, θ)p(θ)∫

θ p(Dy|Dx, θ′)p(θ′)dθ′
∝ p(Dy|Dx, θ)p(θ), (17)

with Dx being the training data inputs and Dy the training labels [17]. For further details
on the underlying mathematical theory, please refer to [14,16,17,65]. Uncertainties in
the prediction of MP can arise due to measurement errors and noise, and insufficient
data availability [17]. The former is referred to as aleatoric p(y|x, θ) and the latter as
epistemic p(θ|D) uncertainty, whereas BNNs provide the further advantage of being able
to distinguish between them.

Aleatoric uncertainties lead to unpredictable differences even if a model prediction is
repeated for a constant dataset. The uncertainties are inherent in the data, so increasing the
size of the training dataset does not reduce these uncertainties. For BNN model generation
and implementation in the direct inverse MPI framework, the libraries TensorFlow V.2.1.0,
TensorFlow Probability V.0.9.0 (TFP), and Keras V.2.3.1 were used in this work, as for the
MLPs and CNNs. To account for aleatoric uncertainties in the model, a TFP Indepen-
dentNormal layer was used. Consequently, instead of the deterministic MP, the model
returns a distribution object with a learnable mean and standard deviation (STDV). Hence,
instead of the MSE or the custom loss function, the negative log-likelihood (NLL) was used,
in order to compute how likely it is to get the true data from the estimated distribution.
The negative sign is used because minimization is better to apply in computation and
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minimizing negative log-likelihood coincides with maximizing the likelihood. To obtain
the MP estimates and the standard deviation, we sampled 500 times from the distribution
object and calculated the statistics based thereon.

In contrast, epistemic uncertainties can be reduced by adding more data. For im-
plementation into the network, instead of deterministic weights or bias values, weight
distributions are learned during the training process (see Figure 5). The preliminary dis-
tribution is called the prior, which is then adjusted during the learning process, yielding
the posterior distribution. A variety of usable distributions exist, although the choice of a
specific prior distribution is not straightforward [17]. The use of a normal distribution with
zero mean, a standard deviation of one, and a diagonal covariance is often a suitable default
setting [17], which is why this was also used within this work. For the implementation,
the TFP DenseVariational layer (DVL) was applied, which allows performing complex
calculations, such as the computation of the evidence’s lower bound (ELBO). For further
details on the mathematical backgrounds and software implementations, we refer to [16,17]
and the TensorFlow Probability package. As a consequence of implementing epistemic
uncertainties into the network, it returns a different output for each prediction run, since a
new set of weights are sampled from the distributions to build the BNN and predict an
output. Hence, in the present study, we ran each prediction 100 times to determine the
mean values of the outputs and corresponding standard deviations, whereas the latter
should decrease when using more data. Due to the large input neuron number of 2400
for the time series, the additional parameters of the network (distribution parameters and
covariance matrix) resulted in a very high number of network parameters to be trained,
even with a small number of hidden layer neurons. This led to a very long training time
or even to untrainable network architectures due to limited hardware resources. An ap-
plicable alternative is to utilize only a few or just the last layer as a stochastic one, which
may be considered as learning a point estimate transformation, followed by a shallow
BNN [17]. For the fully stochastic networks used, the number of points of the SOC was
reduced to decrease the input data point amount and thus the network parameter number.
In this work, different variants and settings for the BNN were used, which are listed in the
Appendix in Table A7.

Figure 5 illustrates a BNN based on an MLP, which can account for both aleatoric and
epistemic uncertainties. BNNs have been previously been used for direct inverse MPI for
a simple material model by Unger et al. [18], who demonstrated some advantages in the
context of MPI. In this work, the BNNs were applied to the proposed complex material
models MAT_187_SAMP-1 and GISSMO, and we evaluated the effects of different settings
on the prediction accuracy in comparison to other network types. Advantages for the
subsequent numerical simulation are also shown, by which the effects of uncertainties can
thus be evaluated. Furthermore, it is shown how well the underlying relationship could be
learned and how much prediction repetitions or inherent uncertainties affect the prediction
result.
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Figure 5. Schematic illustration of a Bayesian neural network.

2.3. Experimental Plan for Comparative Study

The experimental plan included several MPI runs based on the virtual dataset pre-
sented in Section 2.1 with various NN architectures and settings (see Table A8). The goal
of this MPI is to achieve the highest possible agreement between the simulation results of
the various experiments obtained with the MP of the experimental virtual dataset and the
corresponding predicted MP. The assessment basis is the dynamic time-warping error aver-
aged for the simulation results; a lower value indicates better agreement. Additionally, this
error was also evaluated for the validation dataset, which represents a more representative
assessment due to the higher number of samples. In contrast to the experimental dataset,
the validation datasets were used to evaluate the prediction accuracy during the training
process, which is why the experimental dataset provided additional information regarding
the generalization ability of the NN. Besides the DTW error, the values of the loss function
were considered for the evaluation of the varying runs, which are also represented the
evaluation criterion during the network training. However, only identical loss functions can
be compared with each other. Since the numerical simulations necessary for the calculation
of the DTW values are very resource-intensive, they were not performed for each run.

As explained in Section 2.2, artificial Gaussian noise was applied to all datasets. For
the runs with Noise AUG, the additional Gaussian noise amounts listed in Table A9 were
applied to the used unnoised training dataset. Consequently, the training set size of the
underlying dataset, dataset 3, increased from 1050 to 5250. For the runs designated as EMD
AUG in Table A8, an EMD was performed using the PyEMD V.1.2.3 library so that five
additional corresponding IMF curves were added to each SOC. Thus, the training set size
of dataset 3 increased from 1050 to 6300.

The presented NN architectures were implemented in the MPI framework with Python
V.3.7.7 using TensorFlow V.2.1.0, TensorFlow Probability V.0.9.0, and Keras V.2.3.1. For the
hyperparameter optimizations, the library KerasTuner V.1.0.1 was used. The settings of
the implemented networks are listed in Appendix A; and the trainings and predictions,
were performed on a GPU NVIDIA RTX 3090. For the numerical simulations, the solver
LS-DYNA R.11.1 was used.

3. Results and Discussion

The results of the comparative study are listed in Table 5 for the respective runs. In
addition to the presented error measures, the training loss of the corresponding epoch with
the lowest validation loss was added. As expected, a larger dataset tends to be associated
with an increase in prediction accuracy, which can be seen from the decreasing mean DTW
distance of the SOC of the validation set. Furthermore, an increase in the accuracy of the
DTW distances of the validation sets is often coupled with an increase in the predictive
accuracy of the virtual experimental dataset. However, this ratio does not show a linear
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relationship, since the error measure of the experimental dataset exhibits high variations
due to the sample size of unity. This sample size was chosen because the experimental
dataset represents the actual use case of the MPI and therefore consisted of only one set
of material parameters. This also demonstrates a fundamental disadvantage of the direct
inverse MPI compared to the iterative optimization-based method, since hereby the mean
error of a training or validation set was minimized rather than the error of the present
MP set. This again emphasizes the importance of the network’s generalization capability,
which brought both errors closer together on average.

Table 5. Results of comparative study. (* = Not representative, due to insufficient data points
on SOCs).

Run NN Dataset Loss Stopped
Epoch

Best Val.
Loss (-)

Cor.
Training
Loss (-)

MSE MP
Val. Set (-)

Mean
DTW SOC
Val. Set (-)

Mean
DTW SOC
Exp. Set (-)

1 Default_MLP 1 MSE 180 0.0579 0.0370 0.0579 2.835 3.171
2 Default_MLP 2 MSE 184 0.0489 0.0384 0.0489 2.598 2.386
3 Default_MLP 3 MSE 193 0.0433 0.0385 0.0433 2.582 1.505
4 Default_MLP 4 MSE 254 0.0385 0.0333 0.0385 2.134 1.396
5 Default_MLP 1 COL 245 0.00107 0.00049 0.0588 3.174 1.685
6 Default_MLP 2 COL 450 0.00092 0.00046 0.0538 2.779 2.384
7 Default_MLP 3 COL 333 0.00068 0.00036 0.0455 2.477 1.718
8 Default_MLP 4 COL 441 0.00047 0.00027 0.0403 2.024 1.314
9 Default_MLP 5 COL 265 0.00113 0.00071 0.0609 - -
10 Default_MLP 6 COL 168 0.00089 0.00056 0.0547 - -
11 Default_MLP 7 COL 310 0.00068 0.00041 0.0467 - -
12 Default_MLP 8 COL 339 0.00050 0.00037 0.0409 - -
13 MLPHPO 3 COL 316 0.00059 0.00033 0.0439 1.855 1.257
14 Default_MLP 3 COL 96 0.00064 0.00043 0.0464 2.319 1.494
15 Default_MLP 3 COL 340 0.00128 0.00224 0.0637 4.528 8.485
16 Default_CNN 3 MSE 922 0.0352 0.0285 0.0352 1.416 2.165
17 Default_CNN 1 COL 927 0.00090 0.00044 0.0573 2.413 1.199
18 Default_CNN 2 COL 736 0.00063 0.00039 0.0439 1.660 1.214
19 Default_CNN 3 COL 1000 0.00053 0.00030 0.0388 1.503 0.841
20 Default_CNN 4 COL 946 0.00035 0.00028 0.0338 1.327 0.844
21 CNN_Yang 3 COL 668 0.00144 0.00122 0.0727 12.014 10.555
22 CNN_Azizjon 3 COL 132 0.00086 0.00051 0.0481 3.908 3.835
23 CNN_Rautela 3 COL 152 0.00073 0.00030 0.0469 - -
24 MCDCNN 3 COL 142 0.00083 0.00037 0.0563 3.308 1.729
25 Resnet 3 COL 238 0.00069 0.00015 0.0451 2.698 2.263
26 FCN 3 COL 174 0.00065 0.00044 0.0443 3.814 2.460
27 Encoder 3 COL 136 0.00082 0.00015 0.0468 2.867 1.660
28 FCN2 3 COL 2000 0.00091 0.00041 0.0655 3.246 3.936
29 FCN3 3 COL 594 0.00048 0.00041 0.0382 2.282 2.505
30 CNNHPO 3 COL 614 0.00045 0.00036 0.0332 1.538 0.91
31 Default_CNN 3 COL 408 0.00048 0.00025 0.0375 1.289 0.699
32 Default_CNN 3 COL 1000 0.00081 0.00185 0.0502 2.985 1.676
33 BNN1 3 NLL 20,000 2.4365 2.7654 0.0706 - -
34 BNN2 3 NLL 20,000 1.6138 1.8899 0.0703 - -
35 BNN1 3 NLL 20,000 1.9382 2.2223 0.0668 1.087 * 0.752 *
36 BNN3 1 NLL 5000 1.1575 1.2249 0.0657 5.372 3.865
37 BNN3 2 NLL 5000 −0.1687 −1.8456 0.0542 4.431 2.641
38 BNN3 3 NLL 5000 −2.9159 −3.1798 0.0480 4.734 4.124
39 BNN3 4 NLL 5000 −3.6197 −3.5577 0.0483 3.848 2.334
40 BNN3 3 NLL 5000 −1.1842 1.7050 0.0678 - -
41 BNN3 3 NLL 5000 −2.1214 −3.3050 0.0501 - -
42 BNN3 3 NLL 5000 −1.3211 −1.5385 0.0568 - -
43 BNN3 3 NLL 5000 −2.1592 −2.3138 0.0525 - -
44 BNN3 3 NLL 5000 −3.7239 4.7501 0.0452 4.284 2.483
45 BNN3 3 NLL 5000 1.8077 2.0721 0.0720 - -
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Based on the validation loss and the corresponding MSE of the material parameters of
runs 5 to 12, it can be seen that for the investigated dataset, the sampling types individually
or complete of the selected LHS do not have a significant influence on the prediction
accuracy. Using the newly defined custom loss function (COL), the prediction accuracy
could be increased for the larger datasets, 3 and 4, concerning the DTW distance of the SOC
of the validation set. However, this does not apply to the smaller datasets, and therefore,
the performance of COL should be investigated more comprehensively in further studies.
In general, across all network types, a tendency can be observed that more epochs are
needed for training when larger datasets are available, which may result from the network’s
ability to adjust its parameters more precisely due to a higher number of epochs.

As expected, the MLP hyperparameter optimization also led to an increase in predic-
tion accuracy. In contrast, for the CNN, this only led to slight minimization of the validation
loss and the MSE of the MP, along with a simultaneous minor increase in the DTW distances
of the SOC. A reason could be that the hyperparameters and network architecture of the
Default_CNN are already very well suited for the present dataset. Furthermore, the data
augmentation with additional noise amounts was successful, which can be seen in the re-
ductions in the DTW distances of runs 14 and 31 compared to the corresponding runs 7 and
19, which each contained the same settings and no additional noise amounts. This is valid
for the DTW distance of both the validation set and the experimental set, providing a sig-
nificant advantage for the final application of direct inverse MPI on experimental datasets.
Run 14, with additional noise amounts and Default_CNN of Zhao et al. [58], achieved the
best results of the entire study, despite not being trained on the largest dataset, 4.

However, data augmentation with empirical mode decomposition did not prove to
be effective. The reason might have been the implementation into their MPI framework.
Due to the widely varying characteristics of the individual time series (see Figure A1), they
would have to be decomposed into different numbers of IMFs. This quantity of the resulting
IMFs is furthermore dependent on the chosen stopping criteria of the used algorithm, which
can be selected separately for different time series. For the present study, a limitation was
defined by a maximum number of five resulting IMFs. Without this limitation, certain
complex SOCs with sophisticated characteristics, such as the FDC of the tensile test V4,
would have to be decomposed into additional curves. Other time series, such as the PEC
of the compression and punch test, resulted in a smaller number of IMFs. However, the
current implementation in the direct inverse MPI required an equal number of IMFs for
the different tests, and therefore, the dataset was replenished with the available IMFs. This
resulted in implicit weighting, which may influence the training process. Furthermore,
different settings of the EMD algorithm may also affect it, which is why the suitability of
data decomposition methods and EMD in particular for increasing the prediction accuracy
for complex direct inverse MPIs cannot be conclusively evaluated. This should be further
investigated in future studies.

Figure 6 compares the distance measures of the five best runs of each network type
with an additional 95% confidence interval, revealing the performance advantage of the
CNN runs for both validation and experimental datasets. In Figure A1, the simulation
results of run 19 are compared with those of the virtual experiment, whereby a good match
can be observed. Except for run 21, which showed outlying high deviation in all error
measures, the performances of all CNN runs are compared in Figure 7.
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Figure 6. Distance measure comparison for the five best runs of each network: (a) the validation
dataset, and (b) the corresponding experimental dataset.

The higher performance regarding the prediction accuracy of the Default_CNN, com-
pared to the remaining CNN types, is assumed to result from the relative simplicity of
the network architecture (see Section 2.2.2). Unlike the other CNNs, this has no third
convolutional block and no GAP or subsequent MLP layer, and possesses the smallest
number of parameters due to the use of sparse connections and shared weights. Here, the
CNN architecture seems to be of higher importance compared to the hyperparameters,
since run 30 with HPO and the same architecture yielded comparable results. Partially,
the other CNN types, such as CNN_Rautela, Resnet, and Encoder, achieved lower loss
values for the training dataset compared to the Default_CNN, which suggests a too-high
level of complexity of these CNN architectures regarding the present dataset. Thereby, the
differences between the loss values for the training and the validation dataset are very large,
which indicates overlearning. This can also be detected by observing the learning curves,
whereas in Figure 8 the differences between training and validation loss of (a) Resnet and
(b) Default_CNN are compared. The implemented early stopping prevented a further
separation of the training and validation losses.
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Figure 7. Distance measure comparison for CNN runs on (a) the validation dataset and (b) the
corresponding experimental dataset.
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Figure 8. Learning curves of (a) Resnet run 25 and (b) Default_CNN run 19.

The worst performance in terms of DTW distance for validation and experimental
dataset was obtained by run 21 with CNN_Yang and run 22 with CNN_Azizjon, these
being networks using dropout, which could have a negative impact on the present dataset.
The second-best performance of the CNNs from the literature regarding DTW distances
was achieved by the encoder architecture.

To counteract overlearning and adapt the capacity of the networks to the fundamental
time series regression problem, the number of parameters to be learned was reduced in
FCN2 and FCN3 compared to FCN. This was done by significantly decreasing the number
of filters in all three convolutional blocks. FCN2 omitted batch normalization. Based
on the DTW distance of the validation dataset, it can be seen that this was successful.
This is primarily valid for FCN3. The omission of the batch normalization conversely
showed a negative effect on the prediction accuracy, which should be verified for other NN
architectures in the future. Generally, the comparison between MLP and CNN architectures
suggests a greater potential for increasing the prediction accuracy by CNNs. This may be
due to the reduction in learnable network parameters of CNNs compared to MLPs due to
the sparse connections and shared weights, and the consideration of local dependencies of
data points.

In contrast, the BNNs based on the MLPs showed the lowest performance of the
three investigated network variants. However, the reason may have been the complex
and resource-intensive training process of the BNNs due to the large number of network
parameters to be adjusted. Even after 20,000 epochs, the training and validation loss were
still improving, which is why a continuation would probably lead to better results. Never-
theless, even for the small number of 20 to 30 hidden layer neurons, the training required
several days, resulting from the high number of network parameters to be optimized.
Since this number is also significantly dependent on the input point number of time series,
this was reduced, whereas if the reduction is too large, as in run 35, this will lead to an
SOC that is no longer representative and is therefore of limited applicability. In future
investigations, further possibilities should be searched, e.g., by adapting the underlying
network architecture. Due to the limitation of implementing only one subsequent stochastic
layer, as described in Section 2.2.3, a larger number of neurons could be used in the first
HL. This proved to be beneficial with respect to reducing the required epochs and training
time and increasing the prediction accuracy; and again, a larger dataset led to better results.
Varying the parameters of the normal distribution of the prior for runs 40 to 43 showed no
advantage; thus, the common approach of a zero mean and a standard deviation of one
is probably an appropriate starting point. Other distribution functions could be tested in
future studies. As for the other network types, the use of multiple noise amounts further
increased the prediction accuracy, but the training loss showed very high deviation from
the corresponding validation loss.
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Nevertheless, the main advantage of this network type is the distinction and quantifi-
cation of the aleatoric and epistemic uncertainties. Figure 9 shows by example the effect
of aleatoric uncertainties on the simulation with the predicted material parameters of run
39. This was obtained by sampling from the resulting probability density function (PDF),
leading to a variety of material parameter sets, and each of these was used to simulate
the ten experimental tests. Since the implementation of epistemic uncertainties leads to a
divergent output for each prediction, 100 times the 500 MP sets of the PDF were sampled,
and these 100 sets were then averaged. This result shows the underlying uncertainty of
the data, which cannot be reduced by adding more datasets but is inherent to the data.
Additionally, the experimental curve and the simulation result obtained from the point
estimate which was calculated from the predicted PDF are shown. This displays that the
underlying sensitivity of the MP on the simulation results has a varying impact on the
different experiments. For example, the aleatoric uncertainties of the MP prediction have
only a relatively small effect on the PEC of the compression test (Figure 9b) and the FDC of
the bending test (Figure 9c). In contrast, they have a comparatively large impact on the FDC
of the tensile test V3 (Figure 9a) and the FDC of the punch test (Figure 9d). Furthermore,
it can be seen in Figure 9b that regardless of the uncertainties, the BNN was not able to
predict the exact MP of νp,press = 0.5, which would have led to the exact simulation result.
The reason is probably that the searched material parameter also lay exactly on the MP
range boundary.
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Figure 9. Comparison of the influence of aleatoric uncertainties on the experimental dataset simula-
tion output for run 39: (a) FDC tension test V3, (b) PEC compression test, (c) FDC bending test, and
(d) FDC punch test.

Figure 10 shows the probability density functions of two estimated material param-
eters. The true MP can also lie outside the PDF, which is not necessarily due to a poor
prediction. Since the MP are coupled with each other and different MP combinations can
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lead to similar or maybe even the same simulation results, there probably exist different
MP combinations that can similarly reproduce the relationship to be learned. Therefore,
the plot of the simulation results based on the sampled MP shown in Figure 9 provides
additional value for assessing the reliability of the subsequent numerical simulations.

In the Appendix in Figure A2, the predicted MP with the true values and the aleatoric
uncertainties (standard deviations) for the Runs 36 to 39 and 44 are shown. Despite the
expectation of aleatoric uncertainties remaining constant for increasing dataset size, they
decreased slightly (see also Table A10). Thus, the Gaussian noise amounts may not have
been the main cause for the aleatoric uncertainties. Their origin lay instead in the data
generation process and the occasionally unpredictable heavy oscillations, which could not
be completely eliminated from the time series using the applied functions. Filter functions
or other numerical effects during the simulation and the presence of many nonunique MP
could also contribute to this.
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Figure 10. Probability density function of run 39 with the virtual experiment set of (a) MP dt and (b)
MP bc.

In contrast, the more significant reducibility of epistemic uncertainties by using larger
datasets can be seen in Figure 11. Normalized standard deviations of mean MPs and STDV
of MPs for the validation and the experimental dataset are shown on the graphs. These
resulted because a different probability density function was obtained for each prediction
based on the weights and biases sampled for each prediction. This PDF can be described
by the calculated statistics mean and STDV, whereas in the present case, the STDV of these
means and STDVs can be calculated for the number of 100 performed predictions per BNN.
For both validation and experimental datasets, a descending trend with a higher number
of data can be observed for the mean and for the STDV. An exception is the MPs’ STDV of
the means of the second smallest dataset from the experimental dataset. This could be an
indication that that model could produce a better predictions when repeating the stochastic
training process with a constant number of data, and repetition could be advantageous.
Based on the curve plot, it is reasonable to assume that further increasing the size of the
dataset could lead to further reductions in epistemic uncertainties. However, in Table A10,
when comparing the aleatoric and epistemic uncertainties, it can be seen that the latter are
relatively small compared to the aleatoric uncertainties. Thus, the aleatoric uncertainties
contributed more to the uncertainties of the prediction.
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Figure 11. Epistemic uncertainties of different runs with varying dataset sizes of (a) validation dataset
and (b) virtual experimental dataset.

4. Conclusions and Outlook

In this paper, the influences of different settings and architectures of MLP, CNN, and
BNN on the prediction accuracies of material parameters were compared using the direct
inverse MPI method in a comparative study. Thereby, 1D convolutional CNN network
architectures proved to be especially capable of achieving high prediction accuracy, and
in particular, the architecture of Zhao et al. [58] was able to achieve the best results for
the present dataset. Most of the other CNN architectures from the literature tended to
overlearn due to their high capacity. However, using a customized network, it was shown
that by decreasing the capacity, e.g., by reducing filters, their prediction accuracy could
be further increased, which suggests high potential for improvements. Furthermore, the
application of batch normalization also positively affected prediction accuracy.

Furthermore, two data augmentation methods were investigated, whereby the use
of different Gaussian noise amounts applied to the training data led to a further increase
in the prediction accuracy and thus proved to be beneficial not exclusively due to the
enhancement of the network’s generalization capability. The application of the employed
data decomposition method EMD did not improve any network’s performance. However,
this could have been due to the specific implementation and should be examined in further
studies with various settings, in addition to other data augmentation methods.

The performances of the MLP-based BNNs did not reach those of the MLPs and
CNNs, which might have been due to the resource-intensive training process caused by
the large number of network parameters (distribution parameters and covariance matrix)
and necessary complex computations. Hence, future work should investigate further
possibilities, such as network complexity reduction, to further increase the prediction
accuracy of BNNs. In conclusion, regarding prediction accuracy, CNNs are superior to
at least the investigated MLP and BNN variants, potentially, among other things, due to
their underlying grid structure and the consideration of the position of the data points.
The sparse connections and shared weights lead to relatively short training durations.
Although, if the network architecture is inappropriately chosen, overlearning can lead to
significantly reduced prediction accuracies. However, the investigated BNNs demonstrated
their advantage in terms of evaluability of prediction accuracy in the subsequent numerical
simulation using the quantified aleatoric and epistemic uncertainties. Regarding the
performance increase and reduction in the training duration, a test of the performances
of BNNs based on CNNs would also be conceivable wherein the sparse connections
could further reduce the number of network parameters. Additionally, the integration
of the custom loss function or COL into the negative log-likelihood could be beneficial.
Major advantages of the Bayesian network type are the assessable aleatoric and epistemic
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uncertainties, which can be significant criteria for the evaluation of the simulation results
of later component calculations.
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The following abbreviations are used in this manuscript:
ABS Acrylonitrile Butadiene Styrene
AI Artificial Intelligence
AUG Augmentation
BNN Bayesian Neural Network(s)
BCNN Bayesian Convolution Neural Network(s)
CAE Computer Aided Engineering
CNN Convolutional Neural Network
CL Custom Loss
CLF Custom Loss Function
COL Combined Loss Function
DA Data Augmentation
DTW Dynamic Time Warping
DVL DenseVariational Layer
EMD Empirical Mode Decomposition
EPS Equivalent Plastic Strain
EPSF Equivalent Plastic Strain at Failure
FCL Fully Connected Layer
FCN Fully Convolutional Neural Network
FDC Force–Displacement Curve(s)
FE Finite Element
FFANN FeedForward Artificial Neural Network
GAP Global Average Pooling
GD Gradient Descent
GISSMO Generalized Incremental Stress State-Dependent Damage Model
HL Hidden Layer(s)
HP Hyperparameter(s)
HPO Hyperparameter Optimization
IMF Intrinsic Mode Function
LHS Latin Hypercube Sampling
MCDCNN Multi-Channel Deep Convolutional Neural Network
MCIC Material Card Input Curve(s)
ML Machine Learning
MLP Multilayer Perceptron
MP Material Parameter(s)
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MPI Material Parameter Identification
MSE Mean Squared Error
MTS Multivariate Time Series
NLL Negative Log-Likelihood
PDF Probability Density Function
PEC Plastic Poisson’s Ratio – Equivalent Plastic Strain Curve(s)
PI Parameter Identification
PPR Plastic Poisson’s Ratio
SANN Stochastic Artificial Neural Networks
SOC Simulation Output Curve(s)
STDV Standard Deviation
TFP TensorFlow Probability

Appendix A

Table A1. Non-default constants and settings of the virtual dataset. In the solver LS-DYNA, the
inputs are specified without units. The unit system mm · t · s was used.

Input Name Value

ro 1.04× 10−9

nue 0.35
dtyp 1.0
ecrit 0.0

dmgexp 1.0
dcrit 1.0

Table A2. Material parameters of the virtual experimental dataset and the corresponding MP ranges.
Additionally, the corresponding material card input curve names are listed. In the Solver LS-DYNA,
the inputs are specified without units. The unit system mm · t · s was used.

MP Name MPexp MPMin MPMax MCIC

emod (MPa) 2127.3 2000.0 2300.0 -
at (-) 43,416.1 40,000.0 46,000.0 lcid-t; lcid-t1–lcid-t4
bt (-) −3934.39 −4100.00 −3700.00 lcid-t; lcid-t1–lcid-t4
ct (-) 9.702 8.000 10.500 lcid-t; lcid-t1–lcid-t4
dt (-) 551.24 540.00 562.00 lcid-t; lcid-t1–lcid-t4
ac (-) 51,000.0 47,000.0 52,000.0 lcid-c
bc (-) −3900.00 −4100.00 −3800.00 lcid-c
cc (-) 12.500 9.500 13.000 lcid-c
dc (-) 550.00 540.00 560.00 lcid-c
νp,plat (-) 0.2265 0.1900 0.2900 lcid-p
νp,press (-) 0.5000 0.4000 0.5000 lcid-p
εp,plat (-) 0.1232 0.1000 0.1500 lcid-p
C ( 1

s ) 27,572.1 15,000.0 50,000.0 lcid-t1–lcid-t4
P (-) 3.7482 2.7000 4.2000 lcid-t1–lcid-t4
epsf0 (-) 0.3000 0.2500 0.4500 lcsdg
epsf1 (-) 0.0500 0.0400 0.0550 lcsdg
epsf2 (-) 0.0400 0.0340 0.0430 lcsdg
epsf3 (-) 0.2400 0.2100 0.2800 lcsdg
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Table A3. MLP architecture settings (* = default parameter).

(Hyper-)Parameter Default_MLP MLPHPO

Batch Size 25 40
Maximum Epochs * 500 500
Early Stopping Patience * 60 60
Neurons (IL) * 2400 2400
Hidden Layers 1 2
Neurons (HL1) 100 330
Kernel Initializer (HL1) He Uniform He Uniform
Activation (HL1) Hard Sigmoid Hard Sigmoid
Dropout (HL1) 0.10 0.05
Neurons (HL2) - 400
Kernel Initializer (HL2) - Normal
Activation (HL2) - Softsign
Dropout (HL2) - 0.05
Neurons (Output Layer) * 19
Kernel Initializer (OL) He Uniform He Uniform
Activation (OL) * Linear Linear
Gradient Descent Optimizer Adam Adamax
HP Optimizer - Bayesian
HPO max. Trials - 500

Table A4. MLP hyperparameter optimization search ranges (* = default parameter).

(Hyper-)Parameter Search Range

Batch Size 20; 25 *; 30; . . . ; 150
Number HL 1 *; 2; 3
Neurons (HL1) 30; 40; 50 *; . . . ; 500
Kernel
Initializer (HL)

Normal *; Uniform; Glorot Uniform; Lecun Uniform; Glorot Normal;
He Normal; He Uniform

Activation (HL1) Softmax; Softplus; Softsign; Relu *; Sigmoid; Hard Sigmoid
Dropout (HL1) 0.000; 0.025; 0.050 *; . . . ; 0.250
Neurons (HL2) 30; 40; 50 *; . . . ; 500
Kernel
Initializer (HL2)

Normal *; Uniform; Glorot Uniform; Lecun Uniform; Glorot Normal;
He Normal; He Uniform

Activation (HL2) Softmax; Softplus; Softsign; Relu *; Sigmoid; Hard Sigmoid
Dropout (HL2) 0.000; 0.025; 0.050 *; . . . ; 0.250
Neurons (HL3) 30; 40; 50*; . . . ; 500
Kernel
Initializer (HL3)

Normal *; Uniform; Glorot Uniform; Lecun Uniform; Glorot Normal;
He Normal; He Uniform

Activation (HL3) Softmax; Softplus; Softsign; Relu *; Sigmoid; Hard Sigmoid
Dropout (HL3) 0.000; 0.025; 0.050 *; . . . ; 0.250
Kernel
Initializer (OL)

Normal *; Uniform; Lecun Uniform; Glorot Normal;
He Normal; He Uniform

GD Optimizer Adam *; Adagrad; Adamax; Nadam
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Table A5. CNN architecture settings.

(Hyper-)Parameter Default_CNN CNNHPO FCN2 FCN3

Batch Size 16 16 16 16
Maximum Epochs 1000 1000 1000 2000
Early Stopping Patience 100 100 none 100
Layer 1 Conv1D Conv1D Conv1D Conv1D
Layer 1 Filters 6 12 12 12
Layer 1 Kernel Size 7 2 8 8
Layer 1 Activation Sigmoid Tanh Relu Relu
Layer 1 Batch Normalization no no no yes

Layer 1 Pooling
Average

Pooling1D
Average

Pooling1D no no

Layer 1 Pooling Size 3 7 - -
Layer 2 Conv1D Conv1D Conv1D Conv1D
Layer 2 Filters 12 128 24 24
Layer 2 Kernel Size 7 2 5 5
Layer 2 Activation Sigmoid Tanh Relu Relu
Layer 2 Batch Normalization no no no yes

Layer 2 Pooling
Average

Pooling1D
Average

Pooling1D no no

Layer 2 Pooling Size 3 5 - -
Layer 3 - - Conv1D Conv1D
Layer 3 Filters - - 24 24
Layer 3 Kernel Size - - 3 3
Layer 3 Activation - - Relu Relu
Layer 3 Batch Normalization - - no yes
Layer 3 Pooling - - no no

Layer 4 Flatten Flatten
Global

Average
Pooling1D

Global
Average

Pooling1D
Dense Output Layer Neurons 18 18 18 18
Gradient Descent Optimizer Adam Adam Adam Adam
HP Optimizer - Bayesian - -
HPO max. Trials - 250 - -

Table A6. CNN hyperparameter optimization search range.

(Hyper-)Parameter Search Range

Layer 1 Filters 3; 6; 12; 16; 32; 64; 128
Layer 1 Kernel Size 2; 3; 5; 7; 9
Layer 1 Pooling Size 2; 3; 5; 7
Layer 2 Filters 3; 6; 12; 16; 32; 64; 128
Layer 2 Kernel Size 2; 3; 5; 7; 9
Layer 2 Pooling Size 2; 3; 5; 7
Activation Function Relu; Sigmoid; Tanh
GD Optimizer Adam; Adamax; Nadam
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Table A7. BNN architecture settings (building order).

(Hyper-)Parameter BNN1 BNN2 BNN3

Batch Size 25 25 25
Maximum Epochs 20,000 20,000 5000
Early Stopping none none none
Batch-
Normalization-
Layer

yes yes yes

Not Stochastic-
Hidden FCL no no yes

Not Stochastic-
FCL Neurons - - 100

Not Stochastic-
FCL Activation - - Sigmoid

Not Stochastic-
FCL Kernel-
Initializer

- - Glorot Uniform

DVL Neurons 30 20 25
DVL Activation Sigmoid Sigmoid Sigmoid

TFP Prior
Multivariate-
NormalDiag

Multivariate-
NormalDiag

Multivariate-
NormalDiag

TFP Posterior
Multivariate-
NormalTriL

Multivariate-
NormalTriL

Multivariate-
NormalTriL

kl_use_exact True True True
TFP Output Layer IndependentNormal IndependentNormal IndependentNormal
GD Optimizer RMSprop RMSprop RMSprop

Table A8. Settings of the NN-based direct inverse MPI runs.

Run NN Dataset Loss Noise
AUG

EMD
AUG

Eval.
Point

Number
SOC

Prior
Mean

Prior
SDV

1 Default_MLP 1 MSE No No 200 - -
2 Default_MLP 2 MSE No No 200 - -
3 Default_MLP 3 MSE No No 200 - -
4 Default_MLP 4 MSE No No 200 - -
5 Default_MLP 1 COL No No 200 - -
6 Default_MLP 2 COL No No 200 - -
7 Default_MLP 3 COL No No 200 - -
8 Default_MLP 4 COL No No 200 - -
9 Default_MLP 5 COL No No 200 - -
10 Default_MLP 6 COL No No 200 - -
11 Default_MLP 7 COL No No 200 - -
12 Default_MLP 8 COL No No 200 - -
13 MLPHPO 3 COL No No 200 - -
14 Default_MLP 3 COL Yes No 200 - -
15 Default_MLP 3 COL No Yes 200 - -
16 Default_CNN 3 MSE No No 200 - -
17 Default_CNN 1 COL No No 200 - -
18 Default_CNN 2 COL No No 200 - -
19 Default_CNN 3 COL No No 200 - -
20 Default_CNN 4 COL No No 200 - -
21 CNN_Yang 3 COL No No 200 - -
22 CNN_Azizjon 3 COL No No 200 - -
23 CNN_Rautela 3 COL No No 200 - -
24 MCDCNN 3 COL No No 200 - -
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Table A8. Cont.

Run NN Dataset Loss Noise
AUG

EMD
AUG

Eval.
Point

Number
SOC

Prior
Mean

Prior
SDV

25 Resnet 3 COL No No 200 - -
26 FCN 3 COL No No 200 - -
27 Encoder 3 COL No No 200 - -
28 FCN2 3 COL No No 200 - -
29 FCN3 3 COL No No 200 - -
30 CNNHPO 3 COL No No 200 - -
31 Default_CNN 3 COL Yes No 200 - -
32 Default_CNN 3 COL No Yes 200 - -
33 BNN1 3 NLL No No 50 0 1
34 BNN2 3 NLL No No 50 0 1
35 BNN1 3 NLL No No 30 0 1
36 BNN3 1 NLL No No 200 0 1
37 BNN3 2 NLL No No 200 0 1
38 BNN3 3 NLL No No 200 0 1
39 BNN3 4 NLL No No 200 0 1
40 BNN3 3 NLL No No 200 0 0.2
41 BNN3 3 NLL No No 200 0 2
42 BNN3 3 NLL No No 200 2 1
43 BNN3 3 NLL No No 200 0.25 1
44 BNN3 3 NLL Yes No 200 0 1
45 BNN3 3 NLL No Yes 200 0 1

Table A9. Additional Gaussian noise amounts (normalized by standard deviation) for noise data
augmentation. The mean for each dataset is zero.

SOC Type SDV1 SDV2 SDV3 SDV4

FOC 0.001 0.002 0.003 0.004
PEC 0.0005 0.0006 0.0007 0.0008

Table A10. Aleatoric and epistemic uncertainties of normalized MP for different BNN runs for
experimental dataset. (The mean was calculated for all 18 MP).

Normalized
Uncertainty (-)

Uncertainty Type Run36 Run37 Run38 Run39 Run44

STDV aleatoric 0.24221 0.21959 0.20172 0.20719 0.19264
STDV of Mean epistemic 0.06325 0.07678 0.05650 0.03543 0.04427
STDV of STDV epistemic 0.01582 0.01402 0.00902 0.00793 0.00797
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Figure A1. Comparison simulation output curves of run 19 with the virtual experimental test dataset:
(a) FDC tension test, (b) FDC compression test, (c) PEC compression test, (d) FDC tension test V1, (e)
FDC tension test V2, (f) FDC tension test V3, (g) FDC tension test V4, (h) FDC bending test, (i) FDC
shear1 test, (j) FDC shear2 test, (k) FDC punch test, and (l) PEC punch test.
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Figure A2. Deviation plots for different runs and all material parameters (a–r).
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