Modified Barnacles Mating Optimization with Deep Learning Based Weed Detection Model for Smart Agriculture
Abstract
:1. Introduction
2. Literature Review
3. The Proposed Model
3.1. Image Pre-Processing
3.2. Feature Extraction
Algorithm 1: Pseudocode of BMO |
Initializing the population of barnacles Compute the fitness of all the barnacles Arrange for locating an optimum outcome at the top of populations (T = the optimum solution) while (I < Maximal iterations) Fixed the value of if selective of Dad and Mum = for all the variables Off spring generation: end for else if selective of Dad and Mum > for all the variables Off spring generation: end for end if Bring the present barnacle back once it moves outside the boundaries Compute the fitness of all the barnacles Arranging and upgrading T if there is an optimum solution l = l + 1 end while Return T |
3.3. Weed Detection and Classification
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peteinatos, G.G.; Reichel, P.; Karouta, J.; Andújar, D.; Gerhards, R. Weed identification in maize, sunflower, and potatoes with the aid of convolutional neural networks. Remote Sens. 2020, 12, 4185. [Google Scholar] [CrossRef]
- Yang, J.; Bagavathiannan, M.; Wang, Y.; Chen, Y.; Yu, J. A comparative evaluation of convolutional neural networks, training image sizes, and deep learning optimizers for weed detection in Alfalfa. Weed Technol. 2022, 36, 1–11. [Google Scholar] [CrossRef]
- Sabzi, S.; Abbaspour-Gilandeh, Y.; Garcia-Mateos, G. A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Comput. Ind. 2018, 98, 80–89. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, M.; Xiao, X.; Yuan, H.; Zhu, J.; Fan, C.; Zhang, J. An image segmentation method based on deep learning for damage assessment of the invasive weed Solanum rostratum Dunal. Comput. Electron. Agric. 2021, 188, 106320. [Google Scholar] [CrossRef]
- Dadashzadeh, M.; Abbaspour-Gilandeh, Y.; Mesri-Gundoshmian, T.; Sabzi, S.; Hernández-Hernández, J.L.; Hernández-Hernández, M.; Arribas, J.I. Weed classification for site-specific weed management using an automated stereo computer-vision machine-learning system in rice fields. Plants 2020, 9, 559. [Google Scholar] [CrossRef]
- Wang, S.; Han, Y.; Chen, J.; Zhang, K.; Zhang, Z.; Liu, X. Weed Density Extraction based on Few-shot Learning through UAV Remote Sensing RGB and Multi-spectral Images in Ecological Irrigation Area. Front. Plant Sci. 2022, 12, 3456. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ma, G.; Du, X.; Shaheen, N.; Mao, H. Recognition of weeds at asparagus fields using multi-feature fusion and backpropagation neural network. Int. J. Agric. Biol. Eng. 2021, 14, 190–198. [Google Scholar] [CrossRef]
- Roy, A.M.; Bhaduri, J. Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4. Comput. Electron. Agric. 2022, 193, 106694. [Google Scholar] [CrossRef]
- Khan, W.; Raj, K.; Kumar, T.; Roy, A.M.; Luo, B. Introducing Urdu Digits Dataset with Demonstration of an Efficient and Robust Noisy Decoder-Based Pseudo Example Generator. Symmetry 2022, 14, 1976. [Google Scholar] [CrossRef]
- Yaacob, M.E.; Nobily, F.B.; Lu, L.; Che Ya, N.N.; Aziz, A.A.; Dupraz, C.; Yahya, M.S.; Hassan, S.N.S.; Mamun, M.A.A. Tropical Weed Identification in Large Scale Solar Photovoltaic Infrastructures: Potential Impacts on Field Operation. Available at SSRN 4075575. [CrossRef]
- Sodjinou, S.G.; Mohammadi, V.; Mahama, A.T.S.; Gouton, P. A deep semantic segmentation-based algorithm to segment crops and weeds in agronomic color images. Inf. Process. Agric. 2022, 9, 355–364. [Google Scholar] [CrossRef]
- Zou, K.; Liao, Q.; Zhang, F.; Che, X.; Zhang, C. A segmentation network for smart weed management in wheat fields. Comput. Electron. Agric. 2022, 202, 107303. [Google Scholar] [CrossRef]
- Sa, I.; Popović, M.; Khanna, R.; Chen, Z.; Lottes, P.; Liebisch, F.; Nieto, J.; Stachniss, C.; Walter, A.; Siegwart, R. WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sens. 2018, 10, 1423. [Google Scholar] [CrossRef] [Green Version]
- Zou, K.; Wang, H.; Yuan, T.; Zhang, C. Multi-species weed density assessment based on semantic segmentation neural network. Precis. Agric. 2022, 1–24. [Google Scholar] [CrossRef]
- Toğaçar, M. Using DarkNet models and metaheuristic optimization methods together to detect weeds growing along with seedlings. Ecol. Inform. 2022, 68, 101519. [Google Scholar] [CrossRef]
- Zou, K.; Chen, X.; Wang, Y.; Zhang, C.; Zhang, F. A modified U-Net with a specific data argumentation method for semantic segmentation of weed images in the field. Comput. Electron. Agric. 2021, 187, 106242. [Google Scholar] [CrossRef]
- Abdalla, A.; Cen, H.; Wan, L.; Rashid, R.; Weng, H.; Zhou, W.; He, Y. Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure. Comput. Electron. Agric. 2019, 167, 105091. [Google Scholar] [CrossRef]
- Ahsan, M.; Based, M.A.; Haider, J.; Kowalski, M. An intelligent system for automatic fingerprint identification using feature fusion by Gabor filter and deep learning. Comput. Electr. Eng. 2021, 95, 107387. [Google Scholar]
- Chhabra, M.; Kumar, R. A Smart Healthcare System Based on Classifier DenseNet 121 Model to Detect Multiple Diseases. In Mobile Radio Communications and 5G Networks; Springer: Singapore, 2022; pp. 297–312. [Google Scholar]
- Norouzi, A.; Shayeghi, H.; Olamaei, J. Multi-objective allocation of switching devices in distribution networks using the Modified Barnacles Mating Optimization algorithm. Energy Rep. 2022, 8, 12618–12627. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, Z.; Huang, X. Parameter conjugate gradient with secant equation based elman neural network and its convergence analysis. Adv. Theory Simul. 2022, 5, 2200047. [Google Scholar] [CrossRef]
- Alrowais, F.; Asiri, M.M.; Alabdan, R.; Marzouk, R.; Hilal, A.M.; Gupta, D. Hybrid leader based optimization with deep learning driven weed detection on internet of things enabled smart agriculture environment. Comput. Electr. Eng. 2022, 104, 108411. [Google Scholar] [CrossRef]
Class | No. of Images |
---|---|
Crop | 287 |
Weed | 2713 |
Total Number of Images | 3000 |
Class | MCC | |||||
---|---|---|---|---|---|---|
Training Phase (60%) | ||||||
Crop | 90.62 | 88.41 | 90.62 | 89.51 | 88.48 | 94.64 |
Weed | 98.84 | 99.08 | 98.84 | 98.96 | 88.48 | 94.64 |
Average | 94.73 | 93.75 | 94.73 | 94.23 | 88.48 | 94.64 |
Testing Phase (40%) | ||||||
Crop | 85.83 | 96.46 | 85.83 | 90.83 | 90.01 | 92.47 |
Weed | 99.63 | 98.34 | 99.63 | 98.98 | 90.01 | 92.47 |
Average | 92.73 | 97.40 | 92.73 | 94.91 | 90.01 | 92.47 |
Class | MCC | |||||
---|---|---|---|---|---|---|
Training Phase (70%) | ||||||
Crop | 97.01 | 96.06 | 97.01 | 96.53 | 96.17 | 98.29 |
Weed | 99.58 | 99.68 | 99.58 | 99.63 | 96.17 | 98.29 |
Average | 98.30 | 97.87 | 98.30 | 98.08 | 96.17 | 98.29 |
Testing Phase (30%) | ||||||
Crop | 98.84 | 92.39 | 98.84 | 95.51 | 95.08 | 98.99 |
Weed | 99.14 | 99.88 | 99.14 | 99.51 | 95.08 | 98.99 |
Average | 98.99 | 96.13 | 98.99 | 97.51 | 95.08 | 98.99 |
Methods | MCC | ||||
---|---|---|---|---|---|
MBMODL-WD | 98.99 | 96.13 | 98.99 | 95.08 | 98.99 |
RF Model | 95.53 | 95.24 | 93.93 | 88.63 | 89.87 |
KNN Model | 62.81 | 62.43 | 61.85 | 35.83 | 93.29 |
SVM Model | 94.39 | 91.32 | 91.24 | 84.00 | 90.34 |
ResNet-101 Model | 93.52 | 93.15 | 94.47 | 92.90 | 92.80 |
VGG-16 Model | 93.29 | 93.96 | 92.76 | 92.93 | 89.07 |
SVM-Pixel-based | 85.84 | 85.41 | 85.79 | 86.81 | 93.62 |
HLBODL-WDSA | 98.96 | 95.84 | 95.18 | 93.34 | 95.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albraikan, A.A.; Aljebreen, M.; Alzahrani, J.S.; Othman, M.; Mohammed, G.P.; Ibrahim Alsaid, M. Modified Barnacles Mating Optimization with Deep Learning Based Weed Detection Model for Smart Agriculture. Appl. Sci. 2022, 12, 12828. https://doi.org/10.3390/app122412828
Albraikan AA, Aljebreen M, Alzahrani JS, Othman M, Mohammed GP, Ibrahim Alsaid M. Modified Barnacles Mating Optimization with Deep Learning Based Weed Detection Model for Smart Agriculture. Applied Sciences. 2022; 12(24):12828. https://doi.org/10.3390/app122412828
Chicago/Turabian StyleAlbraikan, Amani Abdulrahman, Mohammed Aljebreen, Jaber S. Alzahrani, Mahmoud Othman, Gouse Pasha Mohammed, and Mohamed Ibrahim Alsaid. 2022. "Modified Barnacles Mating Optimization with Deep Learning Based Weed Detection Model for Smart Agriculture" Applied Sciences 12, no. 24: 12828. https://doi.org/10.3390/app122412828
APA StyleAlbraikan, A. A., Aljebreen, M., Alzahrani, J. S., Othman, M., Mohammed, G. P., & Ibrahim Alsaid, M. (2022). Modified Barnacles Mating Optimization with Deep Learning Based Weed Detection Model for Smart Agriculture. Applied Sciences, 12(24), 12828. https://doi.org/10.3390/app122412828