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Abstract: The accurate identification of the shape of the blast furnace (BF) burden surface is a crucial
factor in the fault diagnosis of the BF condition and guides the charge operation. Based on the BF 3D
point cloud data of phased array radar, this paper proposes a 3D burden surface feature definition
system. Based on expert experience, the feature parameters of the burden surface are extracted. The
voxel feature was extracted based on improved BNVGG. The optimized PointCNN extracts the point
cloud features. The features of the burden surface were defined from three perspectives: the surface
shape, voxel, and point cloud. The research of the 2D burden line is extended to the 3D burden
surface, and the assumption of the symmetry of the BF is eliminated. Finally, the accuracy of the
burden surface classification under each feature was evaluated, and the effectiveness of each feature
extraction algorithm was verified. The experimental results show that the shape feature defined
based on expert experience affects the recognition of the burden surface. However, it is defined
from the data perspective and cannot accurately identify a similar burden surface shape. Therefore,
the voxel features and point cloud features of the burden surface were extracted, improving the
identification accuracy.

Keywords: 3D burden surface; BNVGG; PointNet; PointCNN

1. Introduction

The BF ironmaking production process is the focus of the steel industry, and the
development of steel intelligent manufacturing is an important direction for the transfor-
mation and upgrading of the industry [1]. The application of modern technologies such as
industrial Internet and artificial intelligence to the steel manufacturing industry is of great
significance to enhancing the comprehensive competitiveness of the steel industry [2].

The traditional method uses diverse sensors to detect the burden surface and obtain
multi-source data. The burden surface detection instruments include the height and tem-
perature sensors [3]. Height sensors use multiple radars or mechanical probes to measure
different points on the burden surface and then reconstruct the non-sampling points accord-
ing to the mechanism model method or the fitting method [4]. The temperature sensors,
using cross-temperature measurement methods, obtain the temperature distribution map
by interpolation and reconstruct the burden surface [5].

The burden surface can reflect the production status and thus guide the upper adjust-
ment of the BF. In actual production, the accuracy and adaptability of the burden surface
model are the key factors to ensuring the normal operation of the smelting process [6]. The
complex environment inside the BF makes it difficult to measure the data, so the 2D burden
line is often used to describe the 3D burden surface. The 2D burden line data are from
the height value of the sparse discrete data points, and the radial burden line is obtained
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by interpolating or fitting the data [7]. Liu described the shape of the burden surface in
two straight lines [8]. Guan et al. established the distribution model of the burden surface
by using two straight lines and two curves [9]. Zhu et al. used two straight lines and one
curve to describe the shape of the burden surface [10]. Matsuzaki described the charge
distribution using a single functional equation [11]. In the asymmetric state, a single fitted
burden line cannot represent the entire burden surface, and the burden line’s fitting model
has a large error, which leads to losing a lot of information about the burden surface.

The feature parameters of the burden surface can accurately reflect the real production
status. Li et al. pointed out that the two key factors of the BF charge control are the width
of the surface platform and the depth of the funnel [12]. Based on expert experience, Zhang
et al. proposed a method for defining and extracting six features that can characterize the
shape of the burden surface [13]. However, the above research also extracted and defined
the features of the 2D burden line. How to define the 3D burden surface feature is the focus
of this manuscript.

Based on the phased array radar point cloud data, this manuscript proposes a method
for defining the characteristics of the BF 3D burden surface. Based on expert experience,
18 sets of burden surface features were defined and extracted. To solve the problem that
similar burden surfaces cannot be accurately classified from the data perspective, we use
the BNVGG network to extract the 2D voxel features [14] and use PointCNN to extract the
3D point cloud features [15]. Through these three sets of features, the correct identification
of the burden surface is realized, which lays the foundation for charge operation, a historical
burden surface database, fault diagnosis, etc.

This manuscript is divided into five sections. The second section introduces a 3D
burden surface feature definition method based on expert experience. The third section
is a 2D voxel feature extraction method based on BNVGG and a 3D point cloud feature
extraction method based on PointCNN. The fourth section is about the simulation results.
The fifth section has the conclusion, which summarizes the main content of the manuscript
and future work.

2. 3D Burden Surface Feature Parameter Definition

The 3D burden surface can truly reflect the condition information of the BF, and the
feature parameters can accurately reflect the real production situation. The new phased
array radar measurement device successfully solves the problem of measuring the burden
surface by accurately detecting the feeding situation of the BF in all directions, increasing
the detection point to more than 2000 points. By analyzing the point cloud data detected by
phased array radar, the mathematical geometric characteristics of the burden surface are
summarized, and the feature definition strategy is designed based on expert experience.
The extracted features can realistically reflect the 3D surface shape and help analyze the
furnace condition.

2.1. Phased Array Radar

BF ironmaking is a typical “black box” system with nonlinearity, time lag, and noise.
Despite the substantial number of inspection devices installed, measurement of the 3D
burden surface is still difficult to achieve. If this point can be broken, it will improve the
level of charge control and help the burden surface research.

The traditional detection method is limited by data points, which cannot fully reflect
the actual situation of the burden surface. Industrial phased array radar detection technol-
ogy can scan the entire burden surface of the BF, which has the characteristics of flexible
beam direction, strong adaptability to complex environments, and good anti-interference
performance [16]. Kundu C successfully solved the problem of direct measurement of the
burden surface by developing a new phased array radar measuring device and increasing
the detection point to more than 2000 points [17]. The high-resolution image of the burden
surface acquired by the phased array radar is shown in Figure 1. From bottom to top, each
burden surface corresponds to a charging process.
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Figure 1. A high-resolution image of the burden surface.

From the figure, the height of the burden surface and the position of the furnace wall
can be found. The burden surface fluctuates in various places, and the furnace wall can
also have an impact. Through the multi-point detection technology of industrial phased
array radar, the entire burden surface’s height information can be obtained. Compared
with other radar detection methods, phased array radar can obtain more detection data,
and the 3D burden surface contains more shape information, providing a data basis for
subsequent research.

2.2. 3D Burden Surface Feature Parameter Definition

Zhang proposed three 3D burden surface definition methods: linear definition, ring
definition, and sector definition. However, this definition method still follows the defined
strategy of the burden line, which has certain limitations. The 3D burden surface is an
irregular spatial surface. At present, no researchers have systematically proposed a clear
method for defining this.

Based on the phased array radar point cloud data, a 3D burden surface feature defi-
nition method is proposed. The extracted feature parameters can reflect the shape of the
burden surface well, which is helpful for the operator to understand the internal charge
operation of the BF.

Combined with the experience of on-site experts, the definition of burden surface
features should be universal. Eighteen surface feature parameters were determined, as
shown in Figure 2. In the figure, the spatial 3D burden surface is divided into three
areas: the central coke area Ψc, the funnel area Ψ f , and the platform area Ψp. The spatial
3D burden surface shape is fitted by the three-segment ruled surface method. Once the
equations of the highest point

(
cx, cy, cz

)
and the three characteristic curves Γd, Γu, and Γo

are determined, the spatial burden surface equation can be determined [18].
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Figure 2. 3D burden surface feature parameters.

Using the parametric equation of the space curve to correlate the curve equations of
two dimensions, the equations of the characteristic curves Γd, Γu, and Γo are obtained:

Γd :


Xd(u) = xd + Rd cos u
Yd(u) = yd + Rd sin u
Zd(u) = a1u3 + a2u2 + a3u + a4

Γu :


Xu(u) = xu + Ru cos u
Yu(u) = yu + Ru sin u
Zu(u) = a5u3 + a6u2 + a7u + a8

Γo :


Xo(u) = xo + Ro cos u
Yo(u) = yo + Ro sin u
Zo(u) = a9u3 + a10u2 + a11u + a12

(1)

The parametric equations of three region surfaces Ψc, Ψ f , and Ψp are as follows:

Ψc :


Xc(u, v) = (1− v)cx + vXd(u)
Yc(u, v) = (1− v)cy + vYd(u)
Zc(u, v) = (1− v)cz + vZd(u)

Ψ f :


X f (u, v) = (1− v)Xd(u) + vXu(u)
Yf (u, v) = (1− v)Yd(u) + vYu(u)
Z f (u, v) = (1− v)Zd(u) + vZu(u)

Ψp :


Xp(u, v) = (1− v)Xu(u) + vXo(u)
Yp(u, v) = (1− v)Yu(u) + vYo(u)
Zp(u, v) = (1− v)Zu(u) + vZo(u)

(2)

The complete burden surface equation obtained by fitting is Ψ = Ψc + Ψ f + Ψp. The
results of the area surface fitting are shown in Figure 3.
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Figure 3. Characteristic curve definition (left) and area surface fitting (right).

After the burden surface fitting process is completed, 18 feature parameters are ex-
tracted. The highest point C

(
cx, cy, cz

)
in the central focal area is directly obtained from

the point cloud data. The center points D(xd, yd), U(xu, yu), and O(xo, yo) and the radii Rd,
Ru, and Ro are obtained by the least square method, and the calculation formulas of the
remaining eight features are as follows.

The center focus area width is wc:

wc = 2Rd (3)

The average height of the central coke area is hc:

hc =
1

πR2
d

∫∫
Ψcdσ (4)

The average height of the lower part of the funnel is hl :

hl =
1

2π

∫ 2π

0
Zd(u)du (5)

The average height of the upper part of the funnel is hu:

hu =
1

2π

∫ 2π

0
Zu(u)du (6)

The funnel width is w f :

w f = 2Ru (7)

The average depth of the funnel is h f :

h f =
1

2π

∫ 2π

0
[Zu(u)− Zd(u)]du (8)

The average width of the platform is wp:

wp =
1

2π

∫ 2π

0

√
[Xo(u)− Xu(u)]

2 + [Yo(u)− Yu(u)]
2du (9)

The average height of the outer edge of the burden surface is ho:

ho =
1

2π

∫ 2π

0
Zo(u)du (10)

This method defines 18 3D burden surface features, which will be used as the main
index parameters of subsequent research.

Based on the phased array radar data, a 3D burden surface feature definition method
is proposed in this section. According to the burden surface structure, it is divided into
three areas: the central coke area, the funnel area, and the platform area. Fitting each
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area with the three-segment method is performed to extract the feature parameters. The
extracted feature parameters can reflect the surface shape, providing visual and accurate
support for the operator’s cloth operation. Depending on the feature parameters of the
different regions, the abnormal area of the failed burden surface can be quickly determined.
This is helpful for surface recognition and troubleshooting.

3. 3D Burden Surface Feature Extraction

The feature definition method based on expert experience is for studying the geometry
of the 3D burden surface. The surface shapes are defined by transforming them into points,
lines, and surfaces. This method is suitable for distinguishing faulty surfaces that differ
from normal conditions, but there are similarities in the surface types under certain furnace
conditions, and these are difficult to accurately classify from a data perspective.

To solve the above problems, the burden surface depth feature extraction schemes
are designed. First, the classical VGG network structure is optimized, and the BNVGG
network is designed to extract the voxel features of the burden surface. Second, the
optimizer of PointCNN is tweaked, and a learning rate decay strategy is added. The
improved PointCNN network is used to extract the point cloud features. The machine
learning method is used to mine the depth features and achieve the purpose of accurate
identification of the burden surface.

3.1. Voxel Feature Extraction by BNVGG

The traditional convolutional neural network (CNN) is very mature in 2D images,
but due to the out-of-order nature of the point cloud data, it is difficult for CNNs to be
directly applied to point clouds. We transform the 3D models into Euclidean spaces such
as image regions, voxel regions, or primitive regions to accommodate traditional deep
learning methods.

The term voxel is a combination of pixel, volume, and element, being equivalent to
pixels in 3D space. Through standard meshing, the (x, y) coordinates of the burden surfaces
are aligned, and each (x, y) corresponds to a different z. The 3D burden surface data are
converted into a 2D array, and their voxel features are extracted. The results of this meshing
are shown in Figure 4.

Figure 4. The burden surface meshing.

VGGNet is a deep convolutional network structure proposed by the Visual Geometry
Group (VGG) of the University of Oxford [19]. In VGG, three 3 × 3 convolution kernels
are used instead of 7 × 7 convolution kernels, and two 3 × 3 convolution kernels are used
instead of 5 × 5 convolution kernels. The main purpose of this is to increase the depth of
the network, reduce the parameters, and improve the effectiveness of the neural network
to a certain extent under the condition of ensuring that it has the same sensing field. The
network structure of VGGNet is shown in Figure 5.
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Figure 5. The network structure of VGGNet.

Following the concept of the convolution kernel in VGGNet, the network structure
is optimized, and a BN layer is added after each convolutional layer [20]. We call the
optimized network structure BNVGG. The BN layer normalizes the features of the output
of the convolutional layer; that is, it converts the input data into a normal distribution with
zero as the mean and one as the variance.

x̂(k) =
x(k) − E

[
x(k)

]
√

Var
[
x(k)

] (11)

where x̂(k) = wu + b, w is the weight of the layer, and u is the output of the previous
layer. This operation increases the derivative value of the activation function and makes
convergence occur faster:

y(k) = γ(k) x̂(k) + β(k) (12)

where the γ and β parameters can be learned through backpropagation, through which the
data are expanded and translated to restore the distribution of some features.

The optimized network structure is shown in Figure 6, which includes nine convo-
lutional layers, three maximum pooling layers, and four fully connected layers. Among
them, the activation functions of the convolutional layer and the fully connected layer are
both ReLU functions.

Figure 6. The network structure of improved BNVGG.

We set the neural network parameters of BNVGG. The batch size was set to 30, the
momentum was 0.9, and the learning rate was set to 0.01. Training was regularized by
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weight decay (L2 penalty multiplier set to 5× 10−4), and the first two fully connected layers
took dropout regularization (dropout ratio set to 0.5). Then, 128 features were extracted
from the third fully connected layer (FC-128) and transformed into dimensions to obtain a
voxel feature matrix of the 3D burden surface, which was saved and used for subsequent
research.

3.2. Point Cloud Feature Extraction

Most of the feature extraction methods for the burden surface are extracted by dimen-
sionality reduction or expert experience. These extraction methods generally do not have
high utilization and introduce quantization artifacts that may mask the natural invariances
of the data. To solve the above problems, PointNet and PointCNN, which specialize in
processing point cloud data, were used to extract the features and compare the results with
other feature extraction methods.

3.2.1. PointNet

PointNet is a network model specifically for training point cloud data proposed by
R. Q. Charles in 2017 [21]. The network structure is shown in Figure 7.

Figure 7. The network structure of PointNet.

The PointNet network takes n points in a set of point clouds as input, each containing
three dimensions (x, y, z). Then, the input data are spatially transformed. The feature
transformation is realized through the convolutional layer. Then, the feature space is
spatially transformed, and the feature is reduced in the maximum pooling layer to obtain
the compressed global feature. Finally, the high-dimensional features are fused by the fully
connected layer, and the score of the point in each class of K is the output. It is an extended
network of classification networks that fuses the local features of each point and outputs
the score of each point belonging to each part.

The PointNet network has three key modules:

1. It uses the maximum pooling layer as a symmetric function that aggregates informa-
tion from all points. The high-dimensional features extracted from the point cloud
converge through a symmetry function and finally approach the function defined on
the point set:

f ({x1, . . . , xn}) ≈ g(h(x1), . . . , h(x1))

f : 2R
N → R, h : RN → RK and g : RK × · · · ×RK︸ ︷︷ ︸

n

→ R (13)

Here, h is simulated by a multilayer perceptron (MLP) and combined with the max-
imum pooling function to simulate g. With the set of h, the network can learn f to
capture different properties of the point cloud data.

2. The structure combines the local and global features. After calculating the global
features of the point cloud data, the global features and the local features of each
point are connected as a new feature matrix, and then the new features of each point
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are extracted from the new feature matrix so that the local and global information is
considered for each point.

3. Two federated alignment networks rotate and align each point and feature in the
point cloud data. PointNet uses T-net to learn the structure of point cloud data and
obtain a spatial transformation matrix. This method can be extended to feature space
alignment. We add another T-net network after the convolutional layer to learn
the feature structure information of this layer and perform spatial transformation
processing on the current high-dimensional features. However, the dimensionality of
the features is much higher than that of the point cloud data, which leads to increased
computational complexity, making it hard to converge. The orthogonal transformation
matrix does not lose information, so PointNet adds the orthogonalization function of
the transformation matrix to the final loss function:

Lreg =
∥∥∥I − AAT

∥∥∥2

F
(14)

Here, A is the spatial transformation matrix learned by T-net, which has the effect of
aligning features.

We build PointNet and adjust the network hyperparameter separately to realize the
feature extraction of the burden surface. The network structure is shown in Figure 8.

Figure 8. The network structure of T-net and PointNet.

In the first T-net, k = 3, corresponding to the (x, y, z) coordinate values, realizes the
rotationally symmetric transformation of the point cloud data. The second T-net (k = 64)
outputs a 64-dimension spatial transformation matrix. This T-net is the point cloud data
after a convolution transformation, and the characteristics of the obtained points are data-
aligned. The final output is a 1× 4 matrix representing four types of the burden surface.
This method implements classification through the last fully connected layer (FC-4). The
output results are also used for the calculation of loss values and the adjustment of network
parameters. A total of 256 features were extracted from the fully connected layer (FC-256),
and a point cloud feature matrix was obtained, which was used for subsequent research.

In the training of the network model, the stochastic gradient descent (SGD) optimizer
is replaced by the Adam optimizer. The Adam optimizer can automatically fine-tune the
learning rate for each different network parameter during the training process to achieve a
better convergence effect. An attenuation strategy is designed for the learning rate so that
it can automatically decrease with the increase in the number of training iterations, thereby
reducing the possibility of mutation of the results and reducing the frequency of glitches.

3.2.2. PointCNN

The PointCNN is a method for processing point cloud data proposed by Li Y in 2018.
PointCNN defines a transformation matrix with dimensions K × K. The function of the
transformation matrix is to regularly sort and weight the out-of-order point cloud data to
obtain a new set of data. This new set of data has a certain order, and the data elements
have adjacent position information, and then ordinary convolution operations can be used
to achieve feature extraction. Based on the above ideas, PointCNN proposes the Ξ-Conv
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operation to replace the traditional convolutional operation. The algorithm is expressed as
follows:

Fp = Conv(K, Ξ× p) = Ξ- Conv(K, p, P, F) (15)

Here, K is a convolution kernel with dimensions K× K, p represents the point cloud
data to be convolved or the feature set extracted from the previous layer, P is the neighbor
point set, and F is the feature set of the neighbor points. For Ξ-Conv, the operation process
is as follows.

Algorithm 1 calculates the adjacent point set P of each point in p before the Ξ-Conv
operation. In this step, the KNN algorithm or random sampling can be used to extract the
neighbor point set P and then follow the following process:

1. Subtract the coordinates of point p from the coordinates of each neighbor point and
obtained the relative coordinates of the point.

2. The location information of neighboring points is converted into feature vectors
through an MLPδ network.

3. Splice the transformed features with their own features to obtain new features.
4. Calculate the Ξ-matrix through the MLP network, corresponding to the current input.
5. Use the Ξ-matrix to process the feature matrix of a specific order.
6. Perform convolution operations to obtain the future of the p point set.

Algorithm 1 X -Conv operator.
Input: K, p, P, F
Output: Fp . Features “projected”, or “aggregated”, into representative point p

1: P′ ← P− p . Move P to local coordinate system of p
2: Fδ ← MLPδ(P′) . Individually lift each point into Cδ dimensional space
3: F∗ ← [Fδ, F] . Concatenate Fδ, and F, F∗ is a K× (Cδ + C1) matrix
4: X ← MLP(P′) . Learn the K× KX -transformation matrix
5: FX ← X × F∗ . Weight and permute F∗ with the learned X
6: Fp ← Conv(K, FX ) . Finally, typical convolution between K and FX

The algorithm flow can be expressed as follows:

Fp = Ξ- Conv(K, p, P, F) = Conv(K, MLP(P− p)× [MLPδ(P− p), F]) (16)

According to the core ideas elaborated upon by Li Y et al., PointCNN is built based
on Ξ-Conv. Each Ξ-Conv has four basic properties of K, D, P, and C. K represents the
number of neighboring points, D represents the expansion coefficient, P represents the
number of points, and C represents the number of channels (characteristic dimension) of
the output. The three inputs are the point set p that needs to be extracted from the features,
the representative point set q, and the feature vector set F. The size of the representative
point set q needs to be consistent with the point set p, and q is a subset of p. The flow of the
Ξ-Conv operation is as follows:

1. Neighbor sampling: The KNN algorithm is used to find K× D nearest neighbors for
each representative point in q, and the interval D sampling is decimated to obtain the
P× K nearest neighbor point set matrix.

2. Decentralization: Subtract the corresponding representative point coordinates from
each set of neighbor coordinates to obtain the relative coordinate matrix of the near
neighbor points.

3. Feature splicing: The relative coordinate matrix boosts the dimensions through two
fully connected layers and is spliced with the input feature vector set F to obtain a
new set of features.

4. Calculation transformation Ξ-matrix: The relative coordinate obtained by step 2 is
processed, and the coordinate-related features are extracted to obtain a set of a K× K
transformation Ξ-matrix.
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5. Conduct transformation Ξ-matrix: The features extracted in step 3 are combined with
the transformation Ξ-matrix to obtain a new feature matrix.

6. Feature transformation: New features are extracted and elevated to the C dimension.

The process in step 4 is shown in Figure 9.

Figure 9. Transformation Ξ-matrix.

The calculation of the transformation Ξ-matrix first performs a conventional convolu-
tion operation through K × K convolution kernels, which promotes the feature dimension
to the K dimension. Then, two depth-wise convolutions are conducted while keeping the
feature dimension unchanged. The use of a deep convolutional layer here to increase the
influence of each channel individually, on the one hand, is conducive to feature extraction,
and on the other hand, it also reduces the parameters in the calculation.

For a sampling of the nearest neighbor points in step 1, the expansion rate D is
introduced into the Ξ-Conv. It acts as a perforated convolution to improve the information
contained in the extracted features.

We built a PointCNN based on Ξ-Conv, and the structure is shown in Figure 10.

Figure 10. The PointCNN based on Ξ-Conv.

In the first layer of Ξ-Conv, the point set p is processed as representative points, and
the feature of each point is extracted, where p0 = q0. The subsequent Ξ-Conv layer takes the
previous representative point as the point set of the feature processing; that is, qn−1 = pn,
and it randomly extracts a certain number of points as the representative point qn of this
Ξ-Conv. The network structure is such that with the increase in the number of layers,
the number of extracted representative points P decreases, and the feature dimension C
increases, which is similar to a CNN, increasing the depth of the feature channels and
reducing the number of input points. The number of neighboring points K increases
correspondingly with the expansion rate D, and the point set p used to sample the near
neighbors is sparser, which will make each feature fuse more point cloud information.
This means that the previous layer integrates the local information of the point cloud and
gradually increases the scale of integration until the deeper layer has more macroscopic
information for data extraction and reflects the global structure information of all of the
point cloud data.

In the PointCNN network structure, the last three layers are fully connected layers
that aim to fuse and classify the features of the extracted data. The last fully connected layer
also plays a simple classification role, realizing four classifications of compressed features.
In the penultimate fully connected layer, this experiment also adds a dropout layer, which
sets the probability of discarding at 0.3 so that each feature value output by FC-192 discards
30% of each training time to prevent data overfitting. The Adam optimizer is still selected
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to optimize the gradient of the output results of the network model, which increases the
adaptability of the learning rate. As in PointNet, the learning rate decay strategy is set to
reduce the learning rate to 0.85 every thousand iterations.

This section mainly introduces the frameworks and principles of BNVGG, PointNet,
and PointCNN. The network model was built and optimized to extract and classify the
feature of the 3D burden surface.

4. Results

From Figure 11, the burden surface data were acquired using phased array radar and
divided by expert experience into (a) normal, (b) center is too high, (c) funnel is too large,
and (d) coke is too much. These four types of surfaces each had 1000 sets of data. Through
the classification experiment, the accuracy of the burden surface recognition under each
feature was verified. The training and test sets were at a ratio of 7:3.

The four sets of feature parameters of the burden surface, based on expert experience,
are shown in Table 1. These feature parameters can reflect differences among the burden
surface. For example, the wc parameter of the (d) group was significantly larger than that
for the other surfaces, indicating that there was too much central coking. Group (c) had an
oversized w f parameter, indicating an oversized funnel area, and so on.

Table 1. Part of the feature parameters.

Category Normal Surface Surface Center That Is Too High

Highest point of the central coke area(
cx, cy, cz

) (−0.0149, 0.0603, 8.3764) (−0.0078, 0.0371, 8.8423)

Center coke area width wc 4.4337 3.5887

Average height of central coke area hc 7.3073 8.0187

Lower funnel center (xd, yd) (−0.1030, −0.0579) (−0.3332, 0.0131)

Average height of the lower part of the
funnel hl

6.2381 7.1951

Funnel width w f 7.0114 5.7969

Upper funnel center (xu, yu) (−0.0665, −0.1135) (−0.0396, −0.0030)

Average height of the upper part of the
funnel hu

7.1065 8.0944

Average depth of funnel h f 0.8684 0.8993

Outer edge center (xo, yo) (0.0090, 0.1101) (−0.0263, −0.0171)

Outer edge radius of burden surface Ro 6.1137 6.1334

Average height of the outer edge of the
burden surface ho

5.986 6.0198

Average width of the platform wp 2.6135 3.235

Category Oversized funnel Oversized central coke area

Highest point of the central coke area(
cx, cy, cz

) (−0.0767, −0.0379, 7.3416) (−0.0232, −0.0657, 8.8423)

Center coke area width wc 4.1924 7.9719

Average height of central coke area hc 6.6158 7.1492

Lower funnel center (xd, yd) (−0.0232, −0.0657) (−0.0109, 0.1026)

Average height of the lower part of the
funnel hl

5.89 5.8666

Funnel width w f 11.1124 9.9707

Upper funnel center (xu, yu) (0.0014, −0.0049) (0.4436, −0.0149)



Appl. Sci. 2022, 12, 12860 13 of 20

Table 1. Cont.

Category Oversized funnel Oversized central coke area

Average height of the upper part of the
funnel hu

8.2377 6.0718

Average depth of funnel h f 2.3477 1.8051

Outer edge center (xo, yo) (−0.0514, −0.0299) (−0.0299, −0.0350)

Outer edge radius of burden surface Ro 6.103 6.0781

Average height of the outer edge of the
burden surface ho

8.0259 7.9719

Average width of the platform wp 0.5483 1.1433

Figure 11. Four types of burden surfaces.

4.1. Feature Parameter Results

Based on expert experience, 18 feature parameters of 4 types of surfaces were calcu-
lated. We converted the feature parameters into a 1 × 18 feature matrix and input that into
the GWOKEM classification algorithm. The ratio of the training set to the test set was 7:3;
that is, 2800 sets were training sets, and 1200 sets were test sets. The performance of this
algorithm has been experimented with in previous articles and will not be repeated in this
article. The classification results are shown in Figure 12.

Figure 12. Classification results of the feature parameters.
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The feature parameters contain shape information of the burden surface, such as
the depth, width, and radius. Based on this underlying mathematical shape information,
specious surface shapes that are difficult to recognize in neural networks can be excluded.
The center coke area, funnel area, and platform area contain their own feature parameters
to facilitate a quick search of the fault area. In contrast to the depth features (voxel features
and point cloud features), each feature parameter has mathematical significance and is
solvable.

The ordinate represents the surface category, and the abscissa is the test set designator.
The accuracy of the test set was about 65.37%. From the classification results of the
feature parameters, the recognition accuracy of (a) and (c) was low. This was due to
the similarities between the two sets of surfaces, which made accurate classification difficult
from a data perspective. Therefore, it was necessary to extract the voxel features and the
point cloud features.

4.2. BNVGG Results

The network structure of traditional VGG was optimized, the number of network lay-
ers was simplified, the training time was reduced, and the BN layer was added to improve
the network convergence speed and reduce the number of iterations. The training results
of BNVGG were compared with VGG16, ResNet, and AlexNet to verify the performance of
the network structure.

From Table 2, the accuracy of BNVGG for the burden surface recognition was better
than that of other neural networks for the same number of iterations, and BNVGG can
converge faster than VGG16. It was verified that the BNVGG network structure had good
training and classification effects on the current experimental subjects.

Table 2. Algorithm performance comparison.

Metric Train Accuracy Test Accuracy Loss Run Time (s)

VGG16 80.00 71.67 0.4555 259
VGG16 96.00 95.25 0.0088 792

ResNET [22] 96.88 94.00 0.1087 36
AlexNET [23] 99.22 94.11 0.0423 133

BNVGG 99.22 95.67 0.0016 238

4.3. PointNet Results

The point cloud data of the burden surface were put into the model and trained. After
the hyperparameters were adjusted, the learning rate had a more significant impact on
the experimental results. If the learning rate was too large, the network would oscillate
significantly during the convergence process, and it would not be easy to converge to
a stable state. Additionally, the optimal solution may have been skipped, resulting in
overfitting. If the learning rate was too small, the convergence would be slow. It needed to
iterate multiple times to reach the optimal interval, which greatly wasted the amount of
calculation and time and would also lead to convergence in the suboptimal solution. After
many trials, the initial learning rate was set to 1× 10−5. The training process is shown in
Figure 13.

From top to bottom, the train loss curve, test loss curve, and test accuracy curve are
shown. The training results tended to converge, and the loss value of the training set decreased
steadily with the increase in the number of iterations. The accuracy rate of the test set gradually
increased, which shows that the network did have a classification effect. However, it can be
seen from the figure that the final accuracy rate curve still had oscillations, and the results
of the training model were unstable. During the training process, there were many glitches
on the curve, and the accuracy rate at the lowest point was only about 75%. Therefore, a
learning rate-decreasing strategy was added to the training process. After every 400 steps of
iterative training, the learning rate was reduced by 30%. Based on this strategy, the initial
learning rate was adjusted to 1× 10−4 to speed up the convergence, reduce the amount of
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computation, and shorten the computation time. The learning rate curve during training is
shown in Figure 14.

Figure 13. PointNet training curve (no learning rate decay).

Figure 14. Learning rate curve.
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The network training results based on the learning rate strategy are shown in Figure 15.

Figure 15. PointNet training curve (learning rate decay).

At the beginning of training, due to the large learning rate, the loss curve and accuracy
curve fluctuated greatly, resulting in unstable training results. However, as the learning
rate decreased, the curve gradually stabilized and approached convergence. Compared
with the curve before adding the learning rate decay strategy, the curve in the later stage
of training was more stable, and almost no glitches were generated. It can be intuitively
reflected that the training tended to converge, and the accuracy curve was stable. The final
test accuracy rate reached about 96.5%, which verified the performance of the network.

4.4. PointCNN Results

We put the point cloud data into the PointCNN for training after setting the parame-
ters. The training results are shown in Figure 16.

Compared with the training process of PointNet, the PointCNN had more twists and
turns, and the amplitude during training was larger. From the accuracy curve of the test set,
the accuracy of model classification was finally maintained at about 94.4%, which was still
far behind PointNet’s 96.5%. The experimental results show that the PointNet network was
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2.1% better than the PointCNN network. PointNet has better performance in the feature
extraction and classification of the burden surface.

Figure 16. PointCNN training curve (learning rate decay).

The network structure of PointNet is relatively simple, and the number of network
layers is relatively shallow. The feature extraction part is only composed of a normal train-
ing network plus two T-net symmetrical transformation networks. The network structure
of PointCNN is relatively complex, consisting of four Ξ-Conv, and in each Ξ-Conv unit,
the data need to go through at least three convolutional layers, which is better in terms of
network depth, and the PointCNN network model uses fewer parameters during training.
The situation of PointCNN is better than that of PointNet mentioned in the literature, but
that was not reflected in this experiment. I personally think that this was caused by too little
burden surface data and PointCNN overfitting, because for a deeper network, theoretically,
the fitting effect is better, but the difficulty of network training will also increase. Due
to the small data set, the burden surface feature information in the training samples was
not perfect, and it was more difficult to extract features during deep learning, and thus
overfitting occurred. It can be seen from the network structure of PointNet that after the
maximum pooling layer, the extracted features were global features, and its classification
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model used the classification of global features and did not process the local features. How-
ever, PointCNN only uses convolution for feature extraction, which makes it easier to retain
the local information of the processed data. Therefore, the PointNet network model is more
dominant in the problem of global feature processing of the burden surface data.

Table 3 shows the accuracy of the burden surface recognition under the three features.

Table 3. The accuracy of recognition under each features.

Algorithm Feature
Parameters BNVGG PointNet PointCNN

Train Accuracy 73.0 99.2 99.7 99.5

Test Accuracy 65.4 95.7 96.5 94.4

5. Discussion

A 3D burden surface feature definition system was proposed in this manuscript. We
divided the burden surface into the central coke area, funnel area, and platform area. Based
on expert experience, the feature parameters for each region were defined and extracted.
The feature parameters contain the shape information of the burden surface. Based on this
underlying mathematical shape information, specious surface shapes that are difficult to
recognize in neural networks can be excluded. The depth features (voxel features and point
cloud features) were extracted based on improved BNVGG and PointCNN. Deep learning
of the burden surface can improve the accuracy of recognition. The 3D burden surface
feature definition system is perfected through different angles, which lays the foundation
for the subsequent matching of surface types, fault diagnosis, and the establishment of
the surface history database. Experiments have verified the accuracy of burden surface
recognition under each feature. The following conclusions were obtained through the
analysis of the experimental results of Section 4:

1. The 18 feature parameters based on expert experience can accurately classify some
burden surfaces with obvious differences, but they are difficult to classify on similar
shapes. The accuracy of the test set was about 65.37%. It defined the shape of the
burden surface from the perspective of the data and had a certain reference value.

2. We extracted the voxel features of the burden surfaces by the optimized BNVGG
network. The accuracy of the burden surface recognition was increased (95.67%),
and the time of network training was reduced (238 s). The comparative experiment
verified the effectiveness of the network structure, which had good identification and
classification effects on the burden surface data.

3. The two neural network models of PointNet (96.5%) and PointCNN (94.4%) can obtain
better results when processing point cloud data. PointNet implements the extraction
and classification of the global features, while PointCNN realizes the extraction of the
global and local features of the burden surface data. However, due to the particularity
of the burden surface data, the local feature part of PointCNN has no effect. In the
extraction of global features, PointNet’s performance is better, and it is more suitable
for the feature extraction and classification of the burden surface.

According to the experimental results, in subsequent research, some objectives are the
following:

• Increase the scale and category of the data before training. By increasing data com-
plexity, the advantages and disadvantages of deep neural networks can be reflected.

• Due to the difficulty of obtaining the original data, the generative confrontation
network can be used to learn the original data features and generate more authentic
simulation data.

• The neural network is trained through various feature parameters, determining by
trial and error the optimal topology of the neural network, the number of hidden layer
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nodes, and the neural network layer transfer function. This method provides a new
idea for network training [24,25].

• For the three types of features extracted in this manuscript, the feature fusion operation
is performed through the method of attention mechanism. The fusion features could
be used to test the effect of burden surface recognition.

• Through the effective fusion of the features of burden surfaces and the parameters
of furnaces, the matching and fault diagnosis of new burden surface data could be
achieved.

The feature parameters and the voxel and point cloud features are fused based on the
attention mechanism, and a feature matrix is established. The original point cloud data can
be replaced with this feature matrix. Then, by means of the double clustering algorithm, the
feature parameters of the BF state are fused with the matrix of the burden surface features
to produce a new feature matrix. This feature matrix is used to troubleshoot the BF and
match the burden surface.
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