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Abstract: In this study, to investigate the contamination characteristics and potential health impli-
cations of heavy metals in road dust of the typical county in central China, heavy metals (Cd, Co,
Cr, Cu, Mn, Ni, V, Pb, Zn) in typical road dust with large traffic flow, in different functional areas
of Yangxin County, were determined. The results of the geo-accumulation index (Igeo) showed that
Co, Mn, Ni, and V were not polluted, while other heavy metals caused different degrees of pollution.
According to principal component analysis (PCA), there were three main sources of heavy metals.
The result of statistical analysis showed that heavy metal pollution in road dust mainly comes from
traffic activities, industrial production activities, building pollution, and the natural environment.
The carcinogenic and non-carcinogenic risks of children and adults were within the safe range, and
hand–oral contact was the main exposure route of non-carcinogenic risks. The non-carcinogenic risk
and carcinogenic effects of heavy metals in urban road dust were acceptable to children and adults.
However, we should still pay attention to the impact of heavy metals on the ecological environment
and human health.

Keywords: road dust; toxic elements; pollution; health risk

1. Introduction

In China, due to dust particles, the rapid growth in urbanization and industrialization
has increased the risk of pollution in road areas. The fine particles can be suspended into
the atmosphere again through the action of wind, pedestrians, and traffic [1,2]. Most of the
pollutants are persistent in road dust, and road dust resuspension is a source of air pollu-
tion [3,4]. Several studies mentioned that road dust particle suspension has a significant
impact on human health in Kuwait [5], India [6], and Korea [7]. Road dust may cause direct
and indirect adverse effects on fauna, flora, and human health on the regional scale [8].
Road dust also has a socioeconomic impact on health [9], the oil sector [10], and photo-
voltaic energy efficiency [11]. Studies have shown that road fine dust particles (<63 µm
radius diameter dust particles) can not only be suspended into the atmosphere but also be
exposed more easily to humans [12]. Due to the diverse components and complex sources
of urban road dust, it carries a large number of heavy metal elements and has also become
the main research object of heavy metal pollution in the urban environment [13], and the
content of heavy metals enriched in urban road dust is significantly higher in comparison
to that in urban surface soil [14]. Besides, urban road dust has various components and
complex sources. It contains many toxic, universal, and persistent heavy metal elements.
Heavy metals are absorbed by the human body and will continue to bioaccumulate in
key organs (such as the brain, liver and kidney) for a long time, which will have adverse
effects on health [15–18]. Therefore, it is necessary to estimate the harm of heavy metal
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pollutants caused by urban dust to human health through different exposure pathways.
Since the 1970s, research on urban dust pollution has been carried out on a global scale,
focusing on the characteristics, sources, and health risks of heavy metals in the dust on
urban roads [19–24].

The current research concentrates on the distribution characteristics, source identifi-
cation, accumulation rules, potential risks to human health, and environmental effects of
heavy metals in road dust, and it usually focuses on large cities with dense populations, de-
veloped economies and industries, and high urbanization. At present, the most concerning
heavy metal elements are Cd, Cu, Cr, Ni, Pb, and Zn, among which Cu, Pb, and Zn are also
called “urban elements” [25–27]. Inevitably, a large volume of wastewater containing Cr,
Cd, Cu, Ni, Pb, and other metal elements is discharged by the electroplating industry [28].
Cu may cause serious damages or necrotizing changes to the liver, kidney, and central
nervous system [29]. Cr, Cd, Ni, and Pb can induce cancer to a certain extent [30].

Since the implementation of China’s rural revitalization strategy, the economy has
achieved great development [31]. For example, Yangxin County, Hubei Province, combined
with its advantageous industries, actively docked industrial patents in developed regions
and made full use of the national major regional strategy to the county. In addition, it has a
leading role in strengthening investment promotion, and thus, the economy of Yangxin
County has achieved dramatic development. Yangxin County has a population more than
one million. However, with the rapid development of the economy and urbanization, the
contradiction between economic development and environmental pollution has become
increasingly obvious. Yangxin County is a typical copper-rich and zinc-rich mineral area
with frequent smelting activities, which emit significant dust and slag rich in toxic heavy
metals into the surrounding environment.

This study took Yangxin County as the object and selected different types of roads
in the old town (OT), the Economic Development Zone (EDZ), and the Chengdong New
District (CND). It collected dust samples and tested the content of heavy metals (Cd, Co,
Cr, Cu, Mn, Ni, V, Pb, and Zn) in road dust. The date can be used to support theoretical
guidance and the decision-making basis for improving regional environmental quality. The
main objectives are: (1) to study the distribution of heavy metals in different functional
areas; (2) to evaluate heavy metals pollution by the geo-accumulation index (Igeo); (3) to
determine the possible sources of heavy metals by multivariate statistical analysis; (4) to
evaluate the impact of heavy metal pollution in dust on human health.

2. Materials and Methods
2.1. Study Area

Yangxin County is located on the south bank of the middle reaches of the Yangtze
River, which is at the northern foot of the Mufu Mountain Range and in the southeastern
part of Hubei Province. With an average annual temperature of 16.8 ◦C and an average
annual rainfall of 1389.6 mm, it is a northern subtropical climate zone. There are a lot of
types of mineral deposits and large reserves. Yangxin is famous for its minerals in China,
containing over 40 kinds of proven mineral deposits, China’s eight major copper production
bases, as well as being one of the hundred key coal mining counties. The main industries
include light industry, auto parts, machinery, electronics, logistics, chemical industry, and
metallurgy. Additionally, it is an important logistics and commercial distribution center in
the adjacent areas of the three provinces (Hunan, Hubei, and Jiangxi Province).

On 15 October 2019, 48 total samples were collected on different types of roads
collected in three areas in Yangxin County (Figure 1). There were about 150,000 people in
the 10 square kilometers of OT and about 200,000 people in the 12 square kilometers of CND.
Population density of the study area was between 15,000 and 16,667 persons/km2. Firstly,
clean plastic dustpans and brushes were used to collect dust and transfer the collected road
dust to polyethylene sealed bags (the five dust samples were mixed into one sample, which
was evenly arranged in range of 10 m × 10 m), and the samples were numbered. Secondly,
environment and weather information was recorded (temperature, wind speed, humidity,
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and pressure). Then, the samples were taken to the laboratory. The samples were dried
naturally at room temperature, screened through a 200-mesh (75 µm) standard sieve, and
dust samples under the sieve were collected for testing.
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2.2. Sample Analysis

After natural air drying, 0.2000 g dust samples of the sieve were placed into the
50 mL crucible, and three replicates of dust samples (n = 3) were obtained at every five
sampling sites. The HCl–HNO3–HF–HClO4 wet digestion method was used to analyze
the samples for pretreatment, inductively coupled plasma optical emission spectrometry
(ICP-OEC, ICAP7200 Radial, Thermo Fisher, Waltham, MA, USA) was used to determine
Co, Cr, Cu, Mn, Ni, V, Pb, Zn in dust samples, and inductively coupled plasma source
mass spectrometry (ICP-MS, NexION1000, Perkin-Elmer) was used to determine Cd. In
the experiment, various chemical reagents all had high-grade purity. All the utensils were
soaked in aqua regia for more than 24 h, and the relative standard deviation (RSD) of the
sample analysis was less than 10%. At the same time, the recovery rate of the analysis
process was controlled with the national standard soil sample (GSS-3), and the recovery
rate of the measured elements was greater than 90%.
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2.3. Geo-Accumulation Index

The geo-accumulation index (Igeo) was proposed to evaluate the heavy metal pollution
in sediments by Muller [32], and it was also used to identify heavy metal pollution in road
dust [33,34]. The function is as shown in Equation (1):

Igeo = log2
Cn

k × Bn
(1)

where Cn is the measured concentration of the nth heavy metal in the road dust, mg/kg; k
is the correction coefficient used to consider the changes in the environmental background
value that may be caused by diagenesis (usually 1.5); Bn is the metal geochemical back-
ground value, mg/kg. This study took the soil environmental background value of Hubei
Province [35] as the surface dust background value. The pollution status was classified into
seven grades based on Igeo [36].

2.4. Health Risk Assessment

In this study, the health risk assessment model issued by the United States Envi-
ronmental Protection Agency (USEPA) [37,38] was employed to evaluate the health risks
caused by dust exposure to urban residents in Yangxin County. The calculation model
formulas of the pollutant exposures ADDing, ADDinh, and ADDderm, through the hand–oral
contact intake, respiratory inhalation, and skin contact, are shown as Equations (2)–(4).
The calculation model of the lifelong average exposure dose of carcinogenic heavy metal
inhalation is shown as Equation (5).

ADDing = C ×
EF × ED × Ring

AT × BW
× 10−6 (2)

ADDinh = C × EF × ED × Rinh
AT × BW × PEF

(3)

ADDderm = C × EF × ED × AF × SA × ABS
AT × BW

× 10−6 (4)

LADDinh =
C × EF

PEF × AT
× (

Rchild
inh × EDchild

BWchild
+

Radult
inh × EDadult

BWadult
) (5)

where ADDing, ADDinh, and ADDderm are the non-carcinogenic exposures of pollutants in
the three routes of hand–oral contact, inhalation, and skin contact, mg/(kg·d); LADDinh is
the average daily exposure amount of carcinogenic heavy metals inhalation, mg/(kg·d);
C is the heavy metal content of road dust, mg/kg. The meanings and sources of other
parameters were shown in literature [36].

The total non-carcinogenic and carcinogenic risks of various types of heavy metal
pollution in dust to the human body can be calculated by Equations (6) and (7).

HI = ∑ HQi = ∑
ADDij

RfDij
(6)

RT = ∑ Ri = ∑ LADDij × SFij (7)

where HI is the total non-carcinogenic risk; RfD is the reference dose; RT is the total
carcinogenic risk; SF is the carcinogenic slope factor, standing for the probability of human
exposure to a certain pollutant causing cancer. When HI < 1, the risk is small or negligible.
When HI > 1, it indicates that there is a non-carcinogenic health risk. According to the
USEPA standard, Ri < 10−6 is considered to have no carcinogenic risk, and Ri > 10−4 is
considered to have a significant carcinogenic risk [39]. Table 1 showed the reference doses
and carcinogenic slopes of various heavy metals in different exposure routes.
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Table 1. Reference doses and slope factors for different exposure routes of heavy metals.

Project Cd Co Cr Cu Mn Ni V Pb Zn

RfDing 1.00 × 10−3 3.00 × 10−4 3.00 × 10−3 4.00 × 10−2 4.60 × 10−2 2.00 × 10−2 7.00 × 10−3 3.50 × 10−3 3.00 × 10−1

RfDinh 1.00 × 10−3 5.71 × 10−6 2.86 × 10−5 4.02 × 10−2 5.00 × 10−5 2.06 × 10−2 7.00 × 10−3 3.52 × 10−3 3.00 × 10−1

RfDderm 1.00 × 10−5 1.60 × 10−2 6.00 × 10−5 1.20 × 10−2 1.84 × 10−3 5.40 × 10−3 7.00 × 10−5 5.25 × 10−4 6.00 × 10−2

SF 6.3 9.8 42 - - 0.84 - - -

2.5. Statistical Analyses

Descriptive statistics (maximum, minimum, mean, standard deviation, coefficient of
variation, Pearson’s correlation analysis (P’CA), principal component analysis (PCA), and
Cluster analysis) of the research data used SPSS26 (IBM SPSS). KMO (Kaiser–Meyer–Olkin)
test and Bartlett sphericity test were used to test the applicability of the original PCA data
set. ArcGIS 10.5 (ESRI, Redlands, CA, USA) was applied to mapping, and ordinary Kriging
was adopted for interpolating the concentrations of all metals.

3. Results and Discussion
3.1. Distribution Characteristics of Heavy Metals

The contents of heavy metals in road dust in Yangxin County were shown in Table 2.
The average contents of Cd, Co, Cr, Cu, Mn, Ni, V, Pb, and Zn were 1.48, 12.75, 185.89,
123.11, 587.78, 34.75, 87.80, 48.30, and 205.23 mg/kg, respectively, which were 8.63, 0.83,
2.16, 4.01, 0.83, 0.93, 0.80, 1.81, and 2.45 times the soil background value of Hubei Province.

Table 2. Heavy metals contents in road dust in Yangxin County, mg·kg−1.

Sampling Area Cd Co Cr Cu Mn Ni V Pb Zn

EDZ

Mean 1.91 12.09 195.47 122.39 595.53 27.54 85.41 49.04 182.01
Max 11.11 15.63 462.23 478.51 879.44 55.51 126.83 77.69 308.77
Min 0.05 8.97 53.59 32.09 350.42 13.82 42.56 13.72 66.87
SD 2.59 1.93 116.18 140.64 138.46 10.74 20.57 19.84 80.68
CV 136 16 59 115 23 39 24 40 44

OT

Mean 1.30 11.88 161.36 122.13 549.70 34.51 85.29 57.17 230.71
Max 8.71 28.69 262.27 381.47 1214.71 75.92 124.29 204.11 429.98
Min 0.01 8.24 63.85 53.10 354.93 18.60 66.14 17.09 92.20
SD 2.00 4.80 58.54 97.04 186.99 14.66 14.76 40.28 80.23
CV 154 40 36 79 34 42 17 70 35

CND

Mean 1.24 14.27 200.85 124.83 618.09 42.22 92.71 38.69 202.98
Max 11.25 46.06 559.05 832.94 966.42 222.54 142.11 169.96 511.56
Min 0.06 8.32 71.42 18.99 419.12 13.08 71.10 11.94 55.26
SD 2.61 8.54 126.90 188.61 133.39 50.19 15.08 34.98 101.19
CV 209 60 63 151 22 119 16 90 50

SUN

Mean 1.48 12.75 185.89 123.11 587.78 34.75 87.80 48.30 205.23
Max 11.25 46.06 559.05 832.94 1214.71 222.54 142.11 204.11 511.56
Min 0.01 8.24 53.59 18.99 350.42 13.08 42.56 11.94 55.26
SD 2.44 5.87 106.37 146.94 157.43 31.40 17.36 33.72 90.15
CV 164 46 57 119 27 90 20 70 44

Background value of soil 0.17 15.40 86.00 30.70 712.00 37.30 110.20 26.70 83.60

Obviously, these nine heavy metals were enriched in road dust to varying degrees.
These results showed that there was heavy metal pollution in road dust in Yangxin County.
The coefficient of variation (CV) can reflect the influence of human activities on the content
of heavy metals to some extent. The larger the CV, the greater the change of heavy metal
content in the spatial scale and the impact of human interference. If the CV was greater than
50%, it was considered that the spatial distribution of heavy metals was heterogeneous,
and the existence of local point pollution sources should be considered [40]. The order of



Appl. Sci. 2022, 12, 12958 6 of 14

CV was Cd (164%) > Cu (119%) > Ni (90%) > Pb (70%) > Cr (57%) > Co (46%) > Zn (44%) >
Mn (27%) > V (20%). The CV of Cd, Cr, Cu, Ni, and Pb exceeded 50%, indicating that these
elements were unevenly distributed in different pavement areas of Yangxin County, and
they were considered as local pollution sources or artificial non-point pollution sources.
The CV of Mn and V were 27% and 20%, and it was considered that the two metals were
homogeneously distributed.

The statistical analysis of heavy metal content in road dust samples in Yangxin County
was carried out, and the analysis results were shown in Figure 2. Research showed that
the sources of heavy metals in road dust were affected by human factors [27,41]. The
spatial distribution patterns were obviously different in the study area. Generally, the
high contents of Pb, Zn, and Ni coincided with metal smelting, auto parts, machinery
manufacturing, and other leading industries [42]. The relatively high Cu content may
be related to the development of the modern logistics industry in the region because the
wear of automobile brake pads will lead to the input of copper in dust [43,44]. The copper
mine in Yangxin County accounted for 25.23% of the identified reserves in Hubei Province.
Therefore, the influence of natural factors, such as wind, was also one of the reasons for
the enrichment of copper [45]. The high content of Cd and Cr in OT was mainly due to
the impact of traffic activities. The OT was the main living area of residents [46,47]. There
were many public places, such as shops, schools, and hospitals, as well as crowded people
and high traffic flow, so car braking frequency was high, and car brakes, brake pads, tire
wear, and other human activities will cause Cd, Cr, and Cu to fall on the ground [48,49].
There was no significant difference in the content of V in the three different functional
areas, which may be related to the dense greening on both sides of the road and more soil
particles in the road dust. At the same time, as a major mining County, Yangxin County had
high Zn and Cr contents and large reserves of common and associated minerals. Therefore,
mining and other activities were also the reasons for the high content of Zn and Cr in road
dust [50,51].
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From the perspective of different road types in the three regions, the content of Cr,
Cu, and Zn in the main roads of OT and EDZ was higher than that of CND. This may be
related to the industry, modern logistics, smelting, parts manufacturing, etc. in the special
economic zone. The high content of Cr, Cu, and Zn in the trunk roads of OT is associated
with the large traffic flow, the large number of people, and intersections with traffic lights.
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Cu, Zn, and other elements entered the road environment due to the frequent start and
stop times of the vehicle and the frequent use of brakes. The highest content of Cd and Ni
were in the branch road of OT, while Cd and Ni were related to people’s daily travel and
coal combustion. At present, OT is the main living area of residents in Yangxin County.
Dense population, daily travel, heating, and other activities will lead to high contents of
Cd and Ni on the branch. The content of each element in the three types of roads in CND
was high, which was mainly because CND was in the stage of infrastructure construction,
with relatively high passenger and vehicle flows and frequent construction activities.

3.2. Evaluation of the Igeo

It can be seen from Figure 3 that the order of the average Igeo of heavy metals in road
dust in Yangxin County was Cd (2.52) > Cu (1.42) > Zn (0.71) > Cr (0.53) > Pb (0.27) >
Ni (−0.69) > Mn (−0.86) > Co (−0.86) > V (−0.91). According to Igeo classification, Cd
presented moderately to heavily contaminated, Cu presented moderately, Cr, Pb, and Zn
presented uncontaminated to moderately contaminated, and Co, Mn, Ni, and V presented
not polluted. The average Igeo of nine types of heavy metals in the EDZ, OT, and CND
areas were 1.11, 1.05, and 0.79 respectively, indicating that the heavy metal pollution in
high-density human activity areas was significantly higher than that in low-density human
activity areas. In addition, heavy metal pollution of road dust was related to human
production and life [52–54]. The average Igeo of the heavy metals in the whole area was
0.98, and the overall pollution level was slightly polluted, indicating the low pollution level
of road dust in the urban area of Yangxin County. However, there were also some pollution
phenomena that need to be paid attention. Combined with the distribution characteristics
of road dust emission, the distribution characteristics of heavy metal content in road dust,
and the evaluation of heavy metal pollution degree, it can be concluded that most heavy
metal elements showed obvious differences in high and low concentrations. In addition,
this difference was consistent with the high-density and low-density ranges of human
activity areas.
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3.3. Source Identification of Heavy Metals
3.3.1. Pearson’s Correlation Analysis

The Pearson’s correlation analysis results of road dust in Yangxin County were shown
in Table 3. Positive correlations existed between the heavy metals. Cd, Cu, Ni, Pb, and
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Zn showed significant positive correlation at p < 0.01. Except Cr-V (r = 0.126), Co, Cr, Mn,
and V showed significant positive correlation at p < 0.01. There were positive correlations,
suggesting an analogous origin of these elements. In the road dust samples with heavy
traffic, the contents of Cd, Cu, Ni, Pb, and Zn were high, and their sources may be related
to the exhaust emissions, tire wear, and the wear and corrosion of alloys [55].

Table 3. Correlation coefficients for heavy metals in road dust in Yangxin County.

Elements
Correlation Coefficient

Cd Co Cr Cu Mn Ni V Pb Zn

Cd 1
Co 0.059 1
Cr 0.245 0.53 ** 1
Cu 0.558 ** 0.177 0.312 ** 1
Mn 0.019 0.576 ** 0.431 ** 0.265 1
Ni 0.534 ** 0.303 * 0.535 ** 0.65 ** 0.236 1
V −0.014 0.623 ** 0.126 0.349 * 0.617 ** 0.08 1
Pb 0.619 ** 0.008 0.159 0.728 ** 0.019 0.477 ** 0.122 1
Zn 0.379 ** 0.003 0.225 0.639 ** 0 0.472 ** 0.051 0.662 ** 1

** Reflects a significance level of 0.01. * Significance level of 0.05.

3.3.2. Principal Component Analysis

In order to explore the relationship between the contents of heavy metals in road
dust and the sources of pollutants in Yangxin County, principal component analysis (PCA)
was carried out by SPSS. KMO (Kaiser–Meyer–Olkin) test and Bartlett sphericity test were
used to test the heavy metal content (KMO = 0.708, Bartlett = 0.000). After rotating by
the Kaiser normalization maximum variance method, three principal components with
eigenvalues greater than 1 were extracted, and they accounted for 77.478% of the total
variance (Table 4), which can better represent the information contained in the data. Cd
(0.707), Cu (0.866), Pb (0.909), and Zn (0.802) were strong positive loadings in the PC1, and
the variance contribution rate was 34.658% (Table 5). Cd and Cu were the most commonly
used materials in cables and electrical and electronic components, which can be used
to form many kinds of alloys and coatings [56,57]. Pb and Zn were mainly affected by
traffic activities. Tire wear and corrosion may cause substances containing Pb or Zn to
accumulate in road dust [58,59]. Co (0.747), Mn (0.803), and V (0.937) were higher in
the PC2, and the variance contribution rate was 24.843%. Co, Mn, and V had low mean
contents and were close to their background values. They were less affected by human
activities. It was inferred that these elements were from the natural environment. Therefore,
PC2 might be the natural source. Cr (0.883) and Ni (0.635) were higher in the PC3, and
the variance contribution rate was 17.977%. Cr and Ni were the main elements added
to stainless steel [60,61]. They were also used in electroplating, metallurgy, and other
industrial activities. Therefore, PC3 might be the industrial source.

3.3.3. Cluster Analysis

Z-score was used to standardize the heavy metal content data, and Ward’s clustering
algorithm was used to cluster analysis the nine kinds of heavy metals (Figure 4). The nine
heavy metals were divided into three clusters: cluster 1 was Cd-Cu-Pb-Zn, cluster 2 was
Cr-Ni, and cluster 3 was Co-V-Mn. However, there was still a moderate correlation between
the clusters. Cd-Cu-Pb-Zn cluster and Cr-Ni cluster were connected, indicating that their
sources may be the same. The maximum content of Cd-Cu-Zn and Cr-Ni appeared in
CND, while CND was in the stage of infrastructure construction with higher traffic flow,
construction, and demolition activities [62–64].
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Table 4. Eigenvalues and cumulative contribution rates obtained from a heavy metal factor analysis
of road dust in Yangxin County.

Factor

Initial Eigenvalues Before Rotation After Rotation

Eigenvalues
Variance

Percentage
(%)

Accumulative
Contribution Rate

(%)
Eigenvalues

Variance
Percentage

(%)

Accumulative
Contribution

Rate (%)
Eigenvalues

Variance
Percentage

(%)

Accumulative
Contribution Rate

(%)

1 3.733 41.479 41.479 3.733 41.479 41.479 3.119 34.658 34.658
2 2.222 24.690 66.169 2.222 24.690 66.169 2.236 24.843 59.502
3 1.018 11.309 77.478 1.018 11.309 77.478 1.618 17.977 77.478
4 0.618 6.866 84.344
5 0.435 4.836 89.180
6 0.373 4.141 93.321
7 0.257 2.851 96.171
8 0.216 2.401 98.572
9 0.128 1.428 100.000

Extraction method: principal component analysis; rotation method: maximum variance rotation.

Table 5. Factor loads associated with heavy metals in surface dust in Yangxin County.

Elements
After Rotation

PC1 PC2 PC3

Cd 0.707 −0.111 0.292
Co −0.046 0.747 0.468
Cr 0.133 0.236 0.883
Cu 0.866 0.283 0.133
Mn 0.000 0.803 0.295
Ni 0.602 0.074 0.635
V 0.133 0.937 −0.148
Pb 0.909 0.027 −0.014
Zn 0.802 −0.018 0.060

Extraction method: principal component analysis; rotation method: maximum variance rotation.
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3.4. Health Risk Assessment

It can be seen from Table 6 that the order of daily average exposure doses of nine
kinds of heavy metals, for children and adults, was Mn > Zn > Cu > V > Pb > Cr >
Ni > Co > Cd. The order of non-carcinogenic exposure doses of children and adults
was ADDing > ADDderm > ADDinh. The exposure doses of the hand–oral intake route
accounted for a relatively high proportion of the total exposure dose, reaching 99.05%
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and 98.67%. Obviously, the hand–oral intake route was the most important route of road
dust exposure [65–67]. The exposure dose of children to road dust was higher than that
of adults, indicating that children were more threatened by road dust [68–70]. The results
were consistent with those reported in other studies [71,72].

Table 6. Health risks of heavy metals in road dust in Yangxin County.

Population Risk Cd Co Cr Cu Mn Ni V Pb Zn

Child

ADDing 4.88 × 10−7 4.19 × 10−6 6.11 × 10−5 4.72 × 10−4 2.25 × 10−3 1.14 × 10−5 3.37 × 10−4 1.85 × 10−4 7.87 × 10−4

ADDinh 1.20 × 10−10 1.03 × 10−9 1.50 × 10−8 1.16 × 10−7 5.53 × 10−7 2.80 × 10−9 8.25 × 10−8 4.54 × 10−8 1.93 × 10−7

ADDderm 4.56 × 10−9 3.91 × 10−8 5.70 × 10−7 4.41 × 10−6 2.10 × 10−5 1.07 × 10−7 3.14 × 10−6 1.73 × 10−6 7.35 × 10−6

HQing 4.88 × 10−4 1.40 × 10−2 2.04 × 10−2 1.18 × 10−2 4.90 × 10−2 5.71 × 10−4 4.81 × 10−2 5.29 × 10−2 2.62 × 10−3

HQinh 1.20 × 10−7 1.80 × 10−4 5.24 × 10−4 2.88 × 10−6 1.11 × 10−2 1.36 × 10−7 1.18 × 10−5 1.29 × 10−5 6.43 × 10−7

HQderm 4.56 × 10−4 2.44 × 10−6 9.51 × 10−3 3.67 × 10−4 1.14 × 10−2 1.97 × 10−5 4.49 × 10−2 3.29 × 10−3 1.22 × 10−4

HI 9.44 × 10−4 1.42 × 10−2 3.04 × 10−2 1.22 × 10−2 7.15 × 10−2 5.91 × 10−4 9.30 × 10−2 5.62 × 10−2 2.75 × 10−3

Adult

ADDing 2.96 × 10−7 2.54 × 10−6 3.70 × 10−5 2.86 × 10−4 1.37 × 10−3 6.92 × 10−6 2.04 × 10−4 1.12 × 10−4 4.77 × 10−4

ADDinh 5.51 × 10−11 4.73 × 10−10 6.90 × 10−9 5.33 × 10−8 2.54 × 10−7 1.29 × 10−9 3.80 × 10−8 2.09 × 10−8 8.88 × 10−8

ADDderm 3.93 × 10−9 3.38 × 10−8 4.92 × 10−7 3.80 × 10−6 1.82 × 10−5 9.21 × 10−8 2.71 × 10−6 1.49 × 10−6 6.34 × 10−6

HQing 2.96 × 10−4 8.46 × 10−3 1.23 × 10−2 7.15 × 10−3 2.97 × 10−2 3.46 × 10−4 2.91 × 10−2 3.21 × 10−2 1.59 × 10−3

HQinh 5.51 × 10−8 8.28 × 10−5 2.41 × 10−4 1.33 × 10−6 5.09 × 10−3 6.26 × 10−8 5.43 × 10−6 5.94 × 10−6 2.96 × 10−7

HQderm 3.93 × 10−4 2.11 × 10−6 8.21 × 10−3 3.17 × 10−4 9.87 × 10−3 1.70 × 10−5 3.88 × 10−2 2.84 × 10−3 1.06 × 10−4

HI 6.89 × 10−4 8.55 × 10−3 2.08 × 10−2 7.47 × 10−3 4.47 × 10−2 3.63 × 10−4 6.79 × 10−2 3.49 × 10−2 1.70 × 10−3

R 1.10 × 10−9 1.47 × 10−8 9.19 × 10−7 3.44 × 10−9

The non-carcinogenic risks of heavy metals in road dust, through three exposure
routes, was V > Mn > Pb > Cr > Co > Cu > Zn > Cd > Ni. The order of non-carcinogenic
risk was HQing > HQderm > HQinh. The results showed that no significant non-carcinogenic
risk was found for all measured heavy metals in the study areas since the HQi and HI
values were <1 [36,73]. The non-carcinogenic risk of children was higher than that of adults
but lower than the allowable limit. Adults’ health risks were relatively low [74–76]. The
maximum single non-carcinogenic risk of the three exposure routes was 0.068, indicating
that road dust did not pose a non-carcinogenic risk to adults. However, the possibility that
these metals may cause serious health effects through their accumulation in body tissues
still exists.

In terms of carcinogenic risk, the order of carcinogenic risk of the four carcinogenic
elements was Cr > Co > Ni > Cd. The range of carcinogenic risk in the study area was
1.1 × 10−9–9.19 × 10−7, while lower than 1 × 10−6 was the accepted. However, there
were still some deficiencies in the current risk assessment research. For example, the
soil background value was used to replace the lack of surface dust background value;
there were other potentially toxic metals (e.g., Sb, Fe, As, etc.) and organic pollutants
(e.g., polycyclic aromatic hydrocarbons, microplastics, etc.) in the dust, which have not
been evaluated [77,78]. Therefore, more research on other pollutants is needed in the future.

4. Conclusions

The average concentrations of Cd, Cr, Cu, Pb, and Zn in the road dust in Yangxin
County were higher than the soil environmental background values in Hubei Province and
were obviously enriched. Cd pollution in dust was the most serious, showing moderate to
severe pollution, Cu was moderate pollution, Cr, Pb, and Zn were not polluted to moderate
pollution, and Co, Mn, Ni, and V were not polluted. The heavy metal pollution levels
were consistent in EDZ, OT, and CND (except Pb). Traffic activities, industrial production
activities, building pollution, and the natural environment were the main sources of heavy
metals in urban road dust. Hand–oral ingestion was the main exposure route of non-
carcinogenic risk. The non-carcinogenic risks and carcinogenic effects of heavy metals in
urban road dust were acceptable to children and adults. Therefore, we should pay attention
to the impact of heavy metals on the ecological environment and human health. Plantation,
using native plants and green belts, has contributed to the reduction in the annual rates
of mobile sand and dust [79,80]. The use of native cultivation was efficient in controlling
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pollution [81–84]; therefore, dense cultivations with native vegetation should take place to
reduce the pressure on the ecological environment.
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