A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures
Abstract
:1. Background
2. Interdependencies
- Impacts due to the disaster may be reducing by considering the propagation of failures inside the network;
- The reduction of the severe impacts of disaster may be enchanted by considering network dependencies;
3. Seismic Resilience
4. Multidimensional Seismic Resilience
5. Linear Hypothesis
6. Case Study
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
List of symbols | |
SR | seismic resilience |
t0E | time of occurrence of the event E |
RT | repair time (RT) |
Q | functionality |
N | number of interdependent infrastructures present in the network |
ci | parameter that describes the trend of the linear recovery function |
final value of the functionality |
References
- Guidotti, R.; Chmielewski, H.; Unnikrishnan, V.; Gardoni, P.; McAllister, T.; van de Lindt, J. Modeling the resilience of critical infrastructure: The role of network dependencies. Sustain. Resil. Infract 2016, 1, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Hallegatte, S.; Rentschler, J.; Rozenberg, J. Lifelines: The Resilient Infrastructure Opportunity (Sustainable Infrastructure); The World Bank: Washington, DC, USA, 2019; Available online: http://hdl.handle.net/10986/31805 (accessed on 21 November 2022).
- Mattsson, L.-G.; Jenelius, E. Vulnerability and resilience of transport systems—A discussion of recent research. Transp. Res. Part A Policy Pract. 2015, 81, 16–34. [Google Scholar] [CrossRef]
- Eun Oh, J.; Espinet Alegre, X.; Pant, R.; Koks, E.E.; Russell, T.; Schoenmakers, R.; Hall, J. Addressing Climate Change in Transport. Volume 2: Pathway to Resilient Transport (Vietnam Transport Knowledge Series); The World Bank: Washington, DC, USA, 2019; Available online: http://documents.worldbank.org/curated/en/438551568123119419/pdf/Volume-2-Pathway-to-Resilient-Transport.pdf (accessed on 21 November 2022).
- Forcellini, D. A new methodology to assess Indirect Losses in Bridges subjected to multiple hazards. Innov. Infrastruct. Solut. 2019, 4, 10. [Google Scholar] [CrossRef]
- Forcellini, D.; Walsh, K.Q. Seismic resilience for recovery investments of bridges methodology. Inst. Civ. Eng. Bridge Eng. 2021. [Google Scholar] [CrossRef]
- Forcellini, D. A resilience-Based Methodology to Assess Soil Structure Interaction on a Benchmark Bridge. Infrastructures 2020, 5, 90. [Google Scholar] [CrossRef]
- Mostafizi, A.; Wang, H.; Cox, D.; Cramer, L.A.; Dong, S. Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies. Nat. Hazards 2017, 88, 1347–1372. [Google Scholar] [CrossRef]
- Hilljegerdes, M.; Augustijn-Beckers, E.-W. Evaluating the Effects of Consecutive Hurricane Hits on Evacuation Pattern in Dominica. ISCRAM. 2019. Available online: https://idl.iscram.org/files/martinhilljegerdes/2019/1954_MartinHilljegerdes+Ellen-WienAugustijn-Beckers2019.pdf (accessed on 21 November 2022).
- Colon, C.; Hallegatte, S.; Rozenberg, J. Criticality analysis of a country’s transport network via an agent-based supply chain model. Nat. Sustain. 2021, 4, 209–215. [Google Scholar] [CrossRef]
- Espinet Alegre, X.; Stanton-Geddes, Z.; Aliyev, S.; Bun, V. Analyzing Flooding Impacts on Rural Access to Hospitals and Other Critical Services in Rural Cambodia Using Geo-Spatial Information and Network Analysis; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51–59. [Google Scholar] [CrossRef]
- Schweikert, A.E.; L’her, G.L.; Nield, L.G.; Kerber, S.W.; Flanagan, R.R.; Deinert, M.R. Resilience in the Caribbean-Natural Hazards Exposure Assessment and Areas for Future Work: 360° Resilience Background Paper; World Bank: Washington, DC, USA, 2020; Available online: https://openknowledge.worldbank.org/handle/10986/36408 (accessed on 14 December 2022).
- Buldyrev, S.; Parshani, R.; Paul, G.; Stanleyand, H.; Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 2010, 464, 1025–1028. [Google Scholar] [CrossRef] [Green Version]
- Parandehgheibi, M.; Modiano, E. Robustness of interdependent networks: The case of communications networks and the power grid. In Proceedings of the IEEE Global Communications Conference, Atlanta, GA, USA, 9–13 December 2013; pp. 2164–2169. [Google Scholar]
- Sydney, A.; Scoglio, C.; Youssefand, M.; Schumm, P. Characterizing the robustness of complex networks. Int. J. Internet Technol. Secur. Trans. 2010, 2, 291–330. [Google Scholar] [CrossRef]
- Iyer, S.; Killingback, T.; Sundaramand, B.; Wang, Z. Attack robustness and centrality of complex networks. PLoS ONE 2013, 8, e59613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motter, A.E.; Lai, Y.C. Cascade-based attacks on complex networks. Phys. Rev. E 2002, 66, 065102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweikert, A.E.; L’Her, G.F.; Deinert, M.R. Simple method for identifying interdependencies in service delivery in critical infrastructure networks. Appl. Netw. Sci. 2021, 6, 44. [Google Scholar] [CrossRef]
- Gomez, S.; Diaz-Guilera, A.; Gomez-Gardenes, J.; Perez-Vicente, C.J.; Moreno, Y.; Arenas, A. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 2013, 110, 028701. [Google Scholar] [CrossRef] [Green Version]
- De Domenico, M.; Nicosia, V.; Arenas, A.; Latora, V. Structural reducibility of multilayer networks. Nat. Commun. 2015, 6, 6864. [Google Scholar] [CrossRef] [Green Version]
- Parshani, R.; Buldyrev, S.V.; Havlin, S. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 2010, 105, 048701. [Google Scholar] [CrossRef] [Green Version]
- Cimellaro, G.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. Eng. Struct. 2010, 32, 3639–3649. [Google Scholar] [CrossRef]
- Forcellini, D. SRRI Methodology to Quantify the Seismic Resilience of Road Infrastructures. Appl. Sci. 2022, 12, 8945. [Google Scholar] [CrossRef]
- Sharma, N.; Gardoni, P. Mathematical modeling of interdependent infrastructure: An object-oriented approach for generalized network-system analysis. Reliab. Eng. Syst. Saf. 2021, 217, 108042. [Google Scholar] [CrossRef]
- Ouyang, M.; Wang, Z. Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliab. Eng. Syst. Saf. 2015, 141, 74–82. [Google Scholar] [CrossRef]
- Yang, L.; Wang, P.; Wang, Q.; Bi, S.; Peng, R.; Behrensdorf, J.; Beer, M. Reliability analysis of a complex system with hybrid structures and multi-level dependent life metrics. Reliab. Eng. Syst. Saf. 2021, 209, 107469. [Google Scholar] [CrossRef]
- Karakoc, D.B.; Almoghathawi, Y.; Barker, K.; González, A.D.; Mohebbi, S. Community resilience-driven restoration model for interdependent infrastructure networks. Int. J. Disaster Risk Reduct. 2019, 38, 101228. [Google Scholar] [CrossRef]
- Watcher, R.F.; Forcellini, D.; Warnell, J.M.; Walsh, K.Q. Relationship Amongst Coastal Hazard Countermeasures and Community Resilience in the Tōhoku Region of Japan following the 2011 Tsunami; Natural Hazards Review; ASCE: Reston, VA, USA, 2023; in press. [Google Scholar]
- Xiao, X.; Zhao, X.; Wu, X.; Chen, Z.; Hong, H.; Zhu, L.; Liu, Y. Seismic resilience assessment of urban interdependent lifeline networks. Reliab. Eng. Syst. Saf. 2022, 218, 108164. [Google Scholar] [CrossRef]
- Renschler, C.; Frazier, A.; Arendt, L.; Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for Defining and Measuring Resilience at the Community Scale: The PEOPLES Resilience Framework; Technical report MCEER-10-006; University at Buffalo: Buffalo, NY, USA, 2010. [Google Scholar]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Winterfeldt, D.V. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Ceferino, L.; Reiser, J.M.; Kiremidjian, A.; Deierlein, G.; Bambar’en, C. Effective plans for hospital system response to earthquake emergencies. Nat. Commun. 2020, 11, 4325. [Google Scholar] [CrossRef] [PubMed]
- Deco, A.; Bocchini, P.; Frangopol, D.M. A probabilistic approach for the prediction of seismic resilience of bridges. Earthq. Eng. Struct. Dyn. 2013, 42, 1469–1487. [Google Scholar] [CrossRef]
- Dong, Y.; Frangopol, D.M. Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties. Eng. Struct. 2015, 83, 198–208. [Google Scholar] [CrossRef]
- Durante, M.G.; Sarno, L.D.; Zimmaro, P.; Stewart, J.P. Damage to roadway infrastructure from 2016 Central Italy earthquake sequence. Earthq. Spectra 2018, 34, 1721–1737. [Google Scholar] [CrossRef]
- Sun, L.; D’Ayala, D.; Favialoup, R.; Gehl, P. Agent-based model on resilience-oriented rapid responses of road networks under seismic hazard. Reliab. Eng. Syst. Saf. 2021, 216, 108030. [Google Scholar] [CrossRef]
- Bi, X.; Wu, J.; Sun, C.; Ji, K. Resilience-Based Repair Strategy for Gas Network System and Water Network System in Urban City. Sustainability 2022, 14, 3344. [Google Scholar] [CrossRef]
- Zhai, C.; Zhao, Y.; Wen, W.; Qin, H.; Xie, L. A novel urban seismic resilience assessment method considering the weighting of post-earthquake loss and recovery time. Int. J. Disaster Risk Reduct. 2023, 84, 103453. [Google Scholar] [CrossRef]
- Elms, D.G. Improving Community Resilience to Natural Events. Civ. Eng. Environ. Syst. 2015, 32, 77–89. [Google Scholar] [CrossRef]
- Forcellini, D. The Role of Climate Change in the Assessment of the Seismic Resilience of Infrastructures. Infrastructures 2021, 6, 76. [Google Scholar] [CrossRef]
- Kafali, C.; Grigoriu, M. Rehabilitation Decision Analysis. In Proceedings of the 9th International Conference on Structural Safety and Reliability (ICOSSAR’05), Rome, Italy, 19–23 June 2005. [Google Scholar]
- Chang, S.E.; Shinozuka, M. Measuring improvements in the disaster resilience of communities. Earthq. Spectra 2004, 20, 739–755. [Google Scholar] [CrossRef]
- Comerio, M.C. Estimating downtime in loss modeling. Earthq. Spectra 2006, 22, 349–365. [Google Scholar] [CrossRef]
- Kang, H.; Burton, H.V.; Miao, H. Replicating the recovery following the 2014 South Napa Earthquake using stochastic processmodels. Earthq. Spectra 2018, 34, 1247–1266. [Google Scholar] [CrossRef]
- Didier, M.; Baumberger, S.; Tobler, R.; Esposito, S.; Ghosh, S.; Stojadinovic, B. Seismic resilience of water distribution and cellular communication systems after the 2015 Gorkha earthquake. J. Struct. Eng. 2018, 144, 104018043. [Google Scholar] [CrossRef]
- Forcellini, D. The Role of Soil Structure Interaction on the Seismic Resilience of Isolated Structures. Appl. Sci. 2022, 12, 9626. [Google Scholar] [CrossRef]
- Sun, L.; Stojadinovic, B.; Sansavini, G. Resilience Evaluation Framework for Integrated Civil Infrastructure-Community Systems under Seismic Hazard. arXiv 2019, arXiv:1901.06465. [Google Scholar] [CrossRef]
RT1 (CWD) | RT2 (CWD) | C1 | C2 | SR |
---|---|---|---|---|
100 | 400 | 0.01 | 0.0025 | 0.763 |
100 | 200 | 0.01 | 0.005 | 0.786 |
100 | 150 | 0.01 | 0.0066 | 0.858 |
100 | 100 | 0.01 | 0.011 | 0.948 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forcellini, D. A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures. Appl. Sci. 2022, 12, 12975. https://doi.org/10.3390/app122412975
Forcellini D. A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures. Applied Sciences. 2022; 12(24):12975. https://doi.org/10.3390/app122412975
Chicago/Turabian StyleForcellini, Davide. 2022. "A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures" Applied Sciences 12, no. 24: 12975. https://doi.org/10.3390/app122412975
APA StyleForcellini, D. (2022). A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures. Applied Sciences, 12(24), 12975. https://doi.org/10.3390/app122412975